

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 45

整合統一語言與派翠網路來建構工作流程
An Integrated Approach for Workflow Process

Modeling and Analysis Using UML and Petri Nets

楊鎮華1 陳群奇**
Stephen J.H. Yang Chyun-Chyi Chen

摘要

工作流程管理系統是用來定義、協同、管理和執行複雜商業活動的一個軟體系統。此外，工作

流程管理系統支援巨大且異質性分散的執行環境。在所有工作流程技術中，程序定義是工作流程管理

系統的核心部分。基於工作流程管理組織的標準，我們提出以 UML為程序定義方法。我們的方法包
括了以下四個階段：應用使用情況圖來建構程序的功能需求；應用分纇圖來建構系統資訊結構；應用

活動圖來表示程序的控制流；和將使用情況圖轉換為活動圖。在本文中，我們將分纇圖和活動圖轉變

為顏色派翠網路和古典派翠網路。此外、派翠網路提供了許多的性質分析技術可以用來分析工作流程

的正確性，像有限性、存活性、公平性和可到達性等，以及時序的性質，像終於、從今以後、直到等。

關鍵詞：工作流程、派翠網路、統一語言、程序定義、程序分析。

Abstract
Workflow management system is a software system that defines, coordinates, manages, and

executes complex business activities. Furthermore, workflow management system supports large and
heterogeneous distributed execution environments. Of all the workflow techniques, process definition
is one of the kernel parts. Based on the workflow management coalition (WfMC) standard, we
propose an UML approach for process definition. Our approach consists of four phases: Applying use
case diagram for process functional requirements modeling; Applying class diagram for constructing
process information structure; Applying activity diagram for process control flow; and
transformation of use case diagram to activity diagram. In this paper, we then transform class, and
activity diagrams into Coloured Petri nets, and classical Petri nets, respectively. In addition, Petri
nets provide a variety of property analysis techniques for analyzing the correctness of workflow
process, such as boundedness, liveness, fairness, and reachability etc and temporal properties, such
as eventually, henceforth, until etc.

Keywords: Workflow, Petri nets, UML, process definition, process analysis.

1國立高雄第一科技大學電腦與通訊系

Department of Computer and Communication Engineering, National Kaohsiung First University of Science and Technology

**國立中央大學資訊工程所
Institute of Computer Science and Information Engineering, National Central University

46 資管評論 第十二期 民國九十一年十二月

1. Introduction

Many enterprises are facing pressures

from market competition, reduction of cost,
and rapid development of new products and
services, they need new techniques to reduce
processing time, allocate resource efficiently,
improve performance, and shorten product’s
time to market. Workflow management
techniques give the answer. However,
Workflow management system is a software
system that defines, coordinates, manages,
and executes complex business activities.
Furthermore, workflow management system
supports large and heterogeneous distributed
execution environments where sets of
interrelated tasks can be carried out in an
efficient and closely supervised fashion. For
these characteristics, workflow management
techniques has been applied comprehensively
in many areas, such as telecommunication,
manufacturing, finance, virtual enterprise,
global logistics, business process
reengineering, electronic commerce and so
on.

With the evolution of the computer
technology, workflow has experienced
numbers of shifts in changes. In the early
years, the process specification of workflow
was hardcoded into application programs in
order to satisfy certain requirements of office
procedures. Nowadays, thanks to the progress
of communication, information and
object-oriented technologies, workflow
management system has been able to support
decentralized organizational units through
graphical interfaces and a workflow engine to
manage distributed tasks and resources on
different locations (Veijalanen et al. 1995).
Workflow has played an important role that
provides back-end services to response
front-end requirements in the age of
electronic commence. Therefore, more and

more venders have invested in the
development of workflow products. These
includes ActionWorkflow System of Action
Technologies; IBM's Flow Mark; Visual
WorkFlow of FileNet; InConcert produced by
Xsoft (a division of Xerox Corp); FormFlow
of Delrina; Regatta of Fujitsu (currently
incorporated into ICL's TeamWARE); SAP
Business Workflow by SAP; HP’s
WorkManager; OPEN/workflow of WANG
and so on. However, many products are
incompatible and no standards to enable these
workflow products to work together. In 1993,
the Workflow Management Coalition
(WFMC) was established to encourage the
development of workflow. WFMC provides a
common “Reference Model” of workflow
management systems to identify workflow
management system’s characteristics,
terminology and components, and also
enables individual specifications to be
developed within the context of an overall
model for workflow systems (Workflow
Management Coalition 1994). Thus, all
workflow products can achieve a level of
interoperability through the use of common
standard for various functions.

Most related researches of workflow
could be classified into process definition
modeling and analysis, activity coordinating
and scheduling, workflow system architecture
and design, and development methodology.
Of all the workflow techniques, process
definition is one of the kernel parts. It defines
necessary information related to business
process, such as the information of starting
and completing conditions, constituent tasks,
rules for navigating between activities, user
tasks to be undertaken, applications that may
be invoked and relevant data that may need to
be referenced, and the resulting process
definition will be executed by the workflow
management system. Thus, the integrity and

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 47

accuracy of process definition will affect the
result of execution. We will address our UML
approach for workflow process definition in
the following.

The rest of this paper is organized as
follows. We will express what UML and
business process are respectively in section 2.
Section 3 represents how to utilize our UML
approach to model business processes.
Section 4 represents how to transform UML
activity diagram and class diagram to
classical petri nets and Coloured Petri nets.
Section 5 introduces system properties,
analysis methods, and the analysis of
workflow properties. Section 6 concludes this
paper with our future research.

2. UML Modeling and Business Process

In software life cycle, analysis phase is a

major period to determine whether the
software is corresponded to requirement of
users. If the gap between domain experts or
users and system developers is very narrow,
the software system can be implemented to
conform to the requirement of users. However,
it is difficult to achieve the goal in the past.
Because when the system developers receives
the domain experts’ description, they have
trouble to catch the meaning of the
terminology used by domain experts. Then,
the system developers use their own system
specification, such as specific specification
language or unfriendly graphic representation
used another terminology form a technical
perspective. Further, the discrepancy from
analysis to implementation results in that
software system becomes difficult to use
finally.

2.1 UML Modeling

In order to eliminate the difference

between the business description and the
software specification, unearthing common
language understood by users and developers
is imperative. Each symbol and semantic
within the language must be defined clearly
and intuitive for users. UML (Unified
Modeling Language) is a well-defined and
standard modeling language. UML consists of
use case, sequence, collaboration, class,
object, state, activity, component, and
deployment diagrams (Rational and UML
partners 1997). A system could be modeled
via these diagrams form various aspects, such
as structural, behavior, implementation, and
environment views. Developers can design
and exchange meaningful models without
losing any information, adopted by software
industry. UML furnishes users with
user-friendly visual notations that improve the
communications between users and
developers, and translate the requirements of
users into software specifications more
precisely. UML even provides a unified
development framework from analysis phase
to implementation phase with software
specifications. UML exhibits rich and
expressive notations and semantic for
specifying, visualizing, constructing and
documenting software systems, business
modeling and other non-software systems.
Within UML modeling elements, some
extended and tailored notations are suitable to
represent the process definition of workflow.
In the following, we will illustrate how to
make use of UML approach to specify
process definition. Firstly, we adopt use case
diagram to express the specification of
business functionality, goals, responsibility
and interactions. Secondly, we adopt class
diagram to express the organization of
information related to business process.
Finally, we adopt activity diagram to model
business logical steps and dynamic behavior
derived from previous use case diagram.

48 資管評論 第十二期 民國九十一年十二月

Before starting any steps of modeling,
knowing what business processes can be
implemented though workflow management
techniques is necessary. Next, we would like
to discuss what kinds of business process are
suitable for workflow.

2.2 Business Process

In workflow management systems,

business process is a set of one or more
procedure(s) or activity(s), which realize
business objectives or policy goals such as an
insurance claims process, an order process, or
a loan process. Even though workflow
management techniques are able to reduce
manual efforts and to provide enterprises with
automatic environments, but these techniques
may not be suitable for all business processes.
Since the concept of workflow is originally
used in solving management problems of
business processes, it is adapted for a
business process, whose activities are
allocated, scheduled, routed, managed, and
executed automatically. Business processes
suitable for workflow management are
usually characterized with properties such as
automation, monitoring, repeatability,
predictability, integration, and so on. In
contrast, workflow management mechanism
will not be suitable for business process
characterized with simple, rarely used, or
needs many manual works.

Once we can identify business processes
suitable for workflow management techniques,
the next issue is to decide using which
method and how to model these business
processes. In next section, we will present our
UML through an illustration of a loan process
of a bank.

3. Defining Business Process Using

UML

We used to transform business processes

directly into logical steps, such as Petri Nets,
event flow, state transition diagram, etc (Aalst
1996; Lei et al. 1997). However, once
processes change, we don’t understand how
logical steps are derived from the
specification of a business process. Because
such approaches only represent logical steps
and lack for antecedent documentation.
Therefore, in order to solve the above
problems, we adopt UML approach consisting
of use case, class, and activity diagrams to
model diverse perspectives of business
processes.

In the following, we will illustrate our
UML approach through a banking loan
example. There are steps for processing a loan
for a typical banking system. The process
contains interview with customers, accepting
applications, creditability checking and
pledge checking, evaluation, loan granted,
and loan transfer finally.

3.1 Use Case Diagram and Business
Processes

In order to capture the context of a

business process, use case diagram is useful
to represent goals, responsibility, functionality,
and boundary intuitively. Use case diagram
also expresses static interactions between
business processes and their external objects.
When notations of use case diagram maps
into workflow mechanism, use case notations
stand for sub-processes of a business process,
and actor notations stand for participants
(Workflow Management Coalition 1996).
Therefore, based on the internal functions of a
business process, each use case notation
describes a sub-process, which composes the
whole business process. Each use case also
can be further detailed in another use case
diagram. An actor of use case diagram may be

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 49

a user, an invoked application, a database, or
a legacy system. Besides drawing uses cases
or actors, a short textual description also
helps readers understand the meaning of each
use case and actor. Figure 1 shows a use case
diagram for the loan process. This diagram
contains five use cases and seven actors. In
order to improve understanding, some textual
descriptions for the content of each use case
and actor are need. For example, the
“interview” use case refers to that a staff
contacts with a customer and collects related
information filled in forms. The “accounting
system” actor refers to that the external
accounting system must be updated once the
customer has obtained the loan.

Use case diagram is a helpful technique
to exchange information. On one hand, it
provides developers and users or domain
experts with a high comprehensibility via
intuitive notations and descriptions. On the
other hand, it also furnishes a well
documentation form the version perspective.
After modeling, business processes will be
turned into software specifications more
precisely.

interview

accept
application

checking

evaluation

loan transfer

customer

accounting system

staff for interviw

checking system

evaluation system

manager

cashier

Figure 1. Use case diagram for the loan
process

3.2 Class Diagram and Business Processes

From information aspect, class diagram
of UML is useful to represent information of
actors, roles, organizational units, and
relevant data for business processes. These
information objects can be seen as classes
with relevant attributes in class diagram. In
class diagram, a person may play one or more
role(s) rendered by means of different classes
according to his/her responsibilities. A class is
an abstraction of description of a set of
information objects from business processes.
An attribute presents some properties within
the information object and it usually displays
enough information for the general readers to
understand the meaning of the information
object. If necessary, attributes of a class will
be invoked as the process definition of the
loan is executed and retrieves certain relevant
data. For example, Figure 2 shows a part of
information structure of the loan process
including six classes: employee, worker,
manager, application, pledge, and customer.
For each class, it has its own attributes to
express the intent of the class, such as the
“employee” class contains id, name, and
department attributes to exhibit the
information of an employee. No class stands
alone, each works in collaboration with others
to describe relevant information about
business processes. Hence, associations
represent structural relationships between
information objects. Association also
represents both concepts of Aggregation and
Generalization. These two special kinds of
associations are beneficial in modeling
information structure of business processes.
Aggregation expresses a “whole/part”
relationship, in which an information object
of the whole has information objects of the
part. For example, an application may hole
one or more pledge(s) shown in Figure 2.
Generalization expresses an “inheritance”
relationship between a general information
object and a more specific information object,

50 資管評論 第十二期 民國九十一年十二月

in which a specific information object can
inherit properties of a general information
object. For example, a worker or a manager
can inherit all properties defined by the
“employee” class shown in Figure 2.
Furthermore, association also has a
multiplicity value indicating how many
instances of class may be linked to an
instance of another class. For example, the
“application” class has a one-to-many
association to the “pledge” class referring to
that at least one instance of the “pledge” class
is owned by one instance of the “application”
class shown in Figure 2.

employee
id
name
department

managerworker

pledge
substance

application
amount of loan
income
possession
creditability

application()
evaluateButton()
evaluateApplicationButton()
declineButton()

1..*

customer
id
first name
last name
address

Figure 2. Class diagram for the loan process

3.3 Activity Diagram and Workflow
Primitives

Even though use case diagram represents

business processes, it cannot show the order
of each use case instance and dynamic
behavior. Within the UML model elements,
both sequence diagram and activity diagram
support to describe the dynamic behavior of

use cases. Whereas sequence diagram
emphasizes the flow of control from object to
object, activity diagram emphasizes the flow
of control form activity to activity (Booch et
al. 1996). In contrast to sequence diagram,
activity diagram is very useful in modeling
the process definition of the workflow and in
describing the behavior that contains a lot of
parallel processing. Each activity can be
followed by another activity. Unlike the flow
chart, the activity diagram not only represents
simply sequencing but also can direct parallel
processing. This is essential for business
processes. In order to improve efficiency,
many tasks must be processed simultaneously
within business processes.

Activity

Activity

Activity

ActivityActivity

Activity

Activity

Activity

Activity

Activity

Activity

ActivityActivity

Activity

Activity

Activity

[]
[]

[]

AND-join AND-split

OR-join OR-split

Activity Activity Activity

[]

[]
Iteration

Activity Activity Activity

Causality

Figure 3. Workflow primitives specified by
activity diagram

WFMC defined six primitives to model

business logical steps (Workflow
Management Coalition 1994). In this paper,
we adopt activity diagram to specify these six
primitives because activity diagram supports
the modeling of workflow activity, transition,
condition, synchronization, parallelism,
iteration, etc. We specify workflow activity

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 51

by means of activity notation of activity
diagram and workflow transition by means of
transition notation with an arrow of activity
diagram. Figure 3 shows how activity
diagrams are corresponded to the six
workflow primitives defined by WFMC.
AND-join primitive expresses that two or
more parallel threads meet into a single thread
and the synchronization bar may only be
crossed to next workflow activity when all
input transitions on the bar have been
triggered (Muller 1997). AND-split primitive
expresses that a single thread split into two or
more threads and the output transitions
attached to the synchronization bar are
triggered simultaneously. OR-join primitive
expresses that when two or more alternative
workflow branches re-converge into a single
thread without any synchronization. OR-Split
primitive expresses that when a single thread
makes a decision upon which branch to take
when encountered with multiple workflow
branches. Branches between activities can be
guarded by conditions. If guards validate, the
transitions close to them are triggered to next
workflow activities. Iteration primitive
expresses that a workflow activity cycle
involves the repetitive execution of workflow
activity until a condition is met. Causality
primitive expresses that two or more
workflow activities are executed in a
sequential form without any join or split.

ActivityActivity

Activity A

Activity B

Activity C

ActivityActivity

Activity A

Activity B

Activity C

[c1]
[c2]

[c3]

Activity Activity A Activity

[]
Iterative routing

Activity AActivity BActivity C

Sequential routing

Parallel routing

Conditional routing

(a)

(b)

(c)

(d)

Figure 4. Process routing presented by
workflow primitives

With the above six workflow primitives

specified by activity diagram as shown in
Figure 3, we can further to define four
process routing, which are sequential,
conditional, parallel, and iterative routing
(Aalst 1996; Lawrence 1997). In workflow
process, the four routing can be used to model
any business process workflow and business
process workflow can be used to model
enterprise workflow. The results are show in
Figure 4. Sequential routing is used to deal
with causal relationships between activities.
For example, three activities A, B, and C are
executed sequentially. Figure 4.a shows how
to use Causality workflow primitive to model
sequential routing. Parallel routing is used
when the ordering of activity execution is not
of concern. For example, three activities A, B,
and C are executed and the order of their
execution is arbitrary. Figure 4.b shows how
to use AND-split and AND-join workflow
primitives to model parallel routing.

52 資管評論 第十二期 民國九十一年十二月

Conditional routing is used when instances
need to be considered and those instances
may depend on the workflow attributes. For
example, in Figure 4.c one of three activities
A, B, and C are executed and one of
execution is depend on the workflow
attributes whether satisfy condition c1, c2 and
c3. Figure 4.c shows how to use OR-split and
OR-join workflow primitives to model
conditional routing. Iterative routing is used
to deal with activity which need to execute
one or more than one times. Figure 4.d shows
how to use iteration workflow primitive to
model iterative routing.

3.4 Transformation from Use Case to
Activity Diagrams

Activity diagram allows the

representation of logical steps of a business
process for use case diagram. However, we
have to know how to transform use case
diagram into activity diagram. Before
transformation, scenario is an advantageous
mechanism to help developers understand
procedures of a business process from starting
to ending. Scenario is an instance of a use
case that describes how use case is realized. It
is a course of the flow of events for a use case,
and contains preconditions, a primary
scenario and one or more exceptional
scenario(s). Developers can unearth objects
from scenario through typical UML approach
for OO modeling. In our approach, we adopt
similar manners discussed previously, but we
find activities applied in workflow process
definition from scenarios and not objects. For
example, the scenario of the “evaluation” use
case shown in Figure 1 indicates a
precondition describing an application have
been received to start with evaluation, a
primary scenario describing a evaluation
system received a customer’s application and
dispatched to junior officers or senior officers

to review based on the amount of the
application, and finally the application may
be accepted or declined. In the following, we
will discuss the transformation of use case
diagram to activity diagram.

Firstly, it is necessary to identify the
preconditions of initial state and the
postconditions of final state, which betters to
comprehend the border of the flow of control.
Then, using scenarios to work through it can
help identify activities of business processes
and transitions from activity to activity.
Before distinguishing the type of transitions,
it is not hard to get sequential and branching
transitions via scenarios in advance and then
consider forking and joining transitions. If a
transition meets a branching, guards should
not overlap and must cover all possibilities.
Similar to use case diagram, a complicated
activity can detail further in another activity
diagram. For example, Figure 5 shows the
loan process specified by activity diagram.
These activities are derived from the
scenarios of use case diagram shown in
Figure 1. The process starts as a customer
applies a loan and ends as the loan of the
application has been transferred or declined.
It is difficult to specify forking and joining of
parallel transitions at first time, such as the
“creditability checking” activity and the
“pledge checking” activity. Hence, we can
consider the flow from the “creditability
checking” activity to the “pledge checking”
activity or from the “pledge checking”
activity to the “pledge checking” activity in
advance and then further specify the parallel
processing.

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 53

interview

data entry

apply for loan

creditability checking pledge checking

evaluation

junior officer review senior officer review

loan granted

loan transfered

declinedecline

[amount < 100k] [amount > 100k]

[accept] [accept][not accept] [not accept]

Figure 5. Activity diagram for the loan
process

In order to follow the standard defined

by WFMC, activity diagram must be
decomposed to correspond with the six
primitives of workflow. Based on previous
discussion about activity diagram and
workflow primitives, Figure 5 can be
decomposed as shown in Figure 6. Compared
with the six primitives as shown in Figure 3,
we can see that Figure 6.a and Figure 6.b are
Causality primitive. Figure 6.c is an
AND-split primitive. Figure 6.d is an
AND-join primitive. Figure 6.e, Figure 6.f,
and Figure 6.g are OR-split primitive. Figure
6.h is an OR-join primitive.

interview

data entry

apply for loan

creditability checking pledge checking

creditability checking pledge checking

loan granted

loan transfered

apply for loan

evaluation

evaluation

junior officer review senior officer review

[amount < 100k] [amount > 100k]

junior officer review

loan granteddecline

[accept][not accept]

senior officer review

loan granted decline

[accept] [not accept]

loan transfered
declinedecline

(a)
(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6. Decomposed activity diagram of
Figure 5

4. Transformation from UML to Petri

Nets

We use UML approach to model

54 資管評論 第十二期 民國九十一年十二月

business process that solve the following
problem by logical steps modeling such as
Petri Nets, event flow, state transition diagram,
etc (Aalst 1996; Lei et al. 1997). Once
processes change, we don’t understand how
logical steps are derived from the
specification of a business process. Because
logical steps approaches only represent
logical steps and lack for antecedent
documentation. But UML approach model
lack business process analysis. In order to
perform business process analysis, we
transfer UML to Petri nets. This because Petri
nets provide many mathematical formalism
for properties analysis, which can be used to
analyze the correctness of workflow process
definition. In this section, we discuss how to
transfer UML activity diagram and class
diagram into classical Petri nets and Coloured
Petri nets.

4.1 Transformation of UML Activity
Diagram to Petri Nets

In this subsection, we address the rules

that transform activity diagrams into classical
Petri nets. Peterson (Peterson 1981) presents
the transformation of flowcharts to classical
Petri nets. The notion of flowcharts is similar
to the one of activity diagrams (Boocks 1998).
Thus, we adopt his idea from the flowcharts
to classical Petri nets and refine them as
follows. Figure 7 shows the corresponding
Petri net transformed from the activity
diagram in Figure 5. A state is called a source
state that the state will change to other states
if an event occurs. A state is called an activity
state if we can further divide it into many
states. A state is called an action state if we
can’t further divide it. Therefore, an action
state is atomic and an activity state may be
composed of one or more action states. In
other words, an action state is a special case
of an activity state. In addition, if we desire to

understand the details of an activity state, we
can zoom into the contents of the activity
state via another activity diagram. An activity
diagram would seem to be very analogous to
a Petri net. Therefore, the suitable
transformation from activity diagrams to Petri
nets replaces the vertices of activity diagrams
with transitions in Petri nets and the arcs of
activity diagrams with places in Petri nets.
The vertices of activity diagrams are
represented in different ways, depending on
the class of the vertices, that is, action state or
branch. Figure 8 shows the two ways of
transformation.

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 55

p1

t1

p2

t2

p3

t3

p4

t4

p5

t5

p7p6

t6

p9

p10

t10

p11

t11

p13p12

t13

t8 t9

p8

t7

t14 t15t12

p15 p16

t17

p17

t19

p18

p14

t18t16

interview

data entry

apply for loan

pledge checkingcreditability checking

evaluated

[account > 100k][account < 100k]

senior officer reviewjunior officer review

[not accept] [not accept]
[accept]

[accept]

decline
loan granted

decline

loan transfered

Figure 7. A Petri net model transformed from

the activity diagram in Figure 5.

select

[else]

[not accept]

e

d

c

b

a

select

a

b

[else]

c

de

[not accept]

branch

action state

Figure 8. Transforming action state and
branch vertices in activity diagrams to

transitions in Peri nets

In UML, we usually use a
synchronization bar to model the forking and
joining of control. Similarly, we can specify
these operations with transitions of Petri nets.
Figure 9 illustrates fork and join operations of
activity diagrams transformed to the
transitions of Petri nets.

Fork

Join

Fork

Join

Figure 9. Transforming activity diagrams’
fork and join operations to Petri nets’

transitions

4.2 Transformation of UML Class Diagram
to Petri Nets

56 資管評論 第十二期 民國九十一年十二月

This subsection deals with how class

diagrams are transformed into Colorured Petri
nets. Watanabe, et al. (Watanabe at el. 1998)
integrate class diagrams and statechart
diagrams in order to obtain Coloured Petri
nets and then verify its correctness for
specification before implementation in Java.
Hence, we, in detail, address transformation
in this subsection and add some stuff about
analysis of Coloured Petri nets in the
following section. Figure 11 shows a Colored
Petri net transformed from the class diagram
in Figure 2 and the statechart diagram in
Figure 10. A class can be treated as a set of

attribute and operations. The value of a token
can stand for the value of an attribute of an
object, so that we can stand for a class with a
set of Coloured Petri nets where each
Coloured Petri net represents its
corresponding operation in the class.
Therefore, we first transform the operation of
a class into Coloured Petri nets and then
integrate the Coloured Petri nets based on
their relationships, such as method invocation
(aggregation) and generalization between
classes. Table 1 gives the itemize the
transformation between Object-Oriented
concepts and Coloured Petri nets notation.

Table 1. Transformation between OO and Coloured Petri nets

Object-Oriented concepts Coloured Petri Nets
Class A group of Coloured Petri nets
Operation Coloured Petri nets
Object (instance) Token associated with an object identifier

(class name) and an identifier of a thread
Thread The same as above
Attribute Place
Value (inputs, outputs of operations, and
attribute value.

Token associated with related color

Type of Values Color
Action Transition

application : Boolean

entry/Return: true

application : Boolean

entry/Return: evaluate()

EvaluateApplication

ClerkCheckForLoan

EvaluateOtherApplicatioon

[Application = false]

[Application = true]Loan : Integer
Income : Integer
Possession : Long

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 57

Figure 10. A statechart diagram for Application class

p1
In

InstanceThread

p3
Demand

InstanceThread

t1
CheckApplication

p2
p4
Demand

p5
Application

t3
evaluate other Application

EvaluateApplication

p6
Demand

p7

p8
p9
Result

t4
Evaluate(demand)

t5
End

p11
Return

p10
Out

(self, thread)
(de
ma
nd,
 se
lf,

thr
ead
)

(demand, self, thread)
(se
lf,
thr
ead
)

 (self, thread)

 (de
mand,
self, th
read)

(demand, application, self, thread)

(demand, applic
ation, self, threa

d)

(demand, application, self, thread)

(demand, application, self, thread)

(self, thread)

(self, thread)

(return, self. thread)(se
lf,
thre
ad)

(re
tur
n,
sel
f. t
hre
ad
)

(re
tur
n,
sel
f,
thr
ea
d)

(d
ema
n
d
,
 se
lf,
th
rea
d
)

(demand, self, thread)

(self, thread)

InstanceThread IntInstanceThread

IntInstanceThread

InstanceThread

BoolInstanceThreadInstanceThread

BoolInstanceThreadInstanceThread

(demand, self, thread)
(sel
f, th
rea
d)

[Application = true]
[Application = false]

BoolArrayInstance
Thread

(return, self, thread)

(self, t
hread)

(sel
f. th
rea
d)

HS

HS

Figure 11. A Coloured Petri net transformed from Figures 6 and 8

4.2.1 Outline of Transformation

As Figure 12 shows, because of the

sophisticated structure of class diagrams, for
the transformation between Petri nets and
class diagrams we briefly give a big picture

and itemize the procedure of the
transformation of class diagrams and
statechart diagrams to a Coloured Petri net as
follows.

1. Transforming attributes and operations,

58 資管評論 第十二期 民國九十一年十二月

which are specified in class diagrams and
statechart diagrams, in Figure 2 between
classes, into a Coloured Petri nets.

2. Based on the relationships generalization
deriving coloured Petri nets (see the case
Coloured Petri net/Relatoinship). Those
relationships can be elicited from the
class diagram.

3. According to the relationships
aggregation, integrating the above two
Coloured Petri nets into one coloured
Petri nets.

We will apply the example bank loan

process to illustrate the above procedure in
the following subsections.

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 59

OperA()

OperB()

Statechart Diagram

Class Diagram OperA

OperB

Transformed CP-nets (Operation)

Integrated CP-nets

CP-nets1/OperA CP-nets2/OperB

 Transformed CP-nets (Relationship)

Transformation Transformation

Integration

UML Specification

Figure 12. Transformation of class diagrams and statechart diagrams to a Coloured Petri net

60 資管評論 第十二期 民國九十一年十二月

ClassA.data()

ClassA.funct()

ClassA.procedure()

ClassB.proc()

fun()

Evaluate

CreateClassA
entry:

ClassB
entry:

Evaluate

CreateClassA
entry:

ClassB
entry:

[loan=true]

[loan=false]

/info:=
funct()

/info:=
data()

info:int

ClassA

data()
function()
procedure()

ClassB
information : Integer

proc()
funct()

Figure 13. A class diagram with statechart diagrams indicating its properties and behavior

4.2.2 Transformation of Methods

Figure 14 shows the CP-nets

transformed from the operation “data()” of
class “ClassA” in Figure 13. Since there is
only a state within the statechart diagram
connected with the class “data()” and the
operation “data()” has no argument, the
structure of the transformed CP-nets is very
simple. In the Figure, there are two places
“entry” and “exit” to be introduced as the
starting point and ending point of the
operation “data()”, respectively. Once a token
flows into the place “entry”, the transition
“ClassA.data()” is capable of firing and will
initiate the process. If the transition “End” is
fired, then produces a token in the place
“exit”, which shows that the process ends.
When “t1” in Figure 14 fires, the state of

“data()” in the statechart diagram of Figure
10 change imediately. Each token before
going through an arc is associated with a pair
of a object identifier and a thread identifier
denoted as “objID” and “threadID”,
respectively. It shows that when a token is
flowing on an arc, the “objID” and
“threadID” will be replaced with a object
identifier and a thread identifier of the token,
and those two identifiers can’t be changed
during flowing. That is, a token which stands
for an object of a class will not change its
identifier from the starting point to the ending
point of an arc, and object identifier and
thread identifier represent where the token is
produced and used. Transforming the
operation with arguments into CP-nets is
more complex than the above. Figure 25
shows the CP-nets which is a template for

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 61

representing the operation transformed with
arguments. In the figure, token, which differs
from other token in Figure 14, has many
attributes that represent the type of different
information such as object identifier, thread
identifier, arguments, or return values. In
addition, a transition “End” is inserted into
the end, in order to ensure that the object that
invokes the operation and assigns the
parameters is identical, and then decide if
pass the return values to it.

entry ObjectThread

classA.data()

(
o
b
j
I
D
,

t
h
r
e
a
d
I
D
)

p1

t1

p2

End

exit

(
o
b
j
I
D
,

t
h
r
e
a
d
I
D
)
(
o
b
j
I
D
,

t
h
r
e
a
d
I
D
) (
o
b
j
I
D
,

t
h
r
e
a
d
I
D
)
(
o
b
j
I
D
,

t
h
r
e
a
d
I
D
) (
o
b
j
I
D
,

t
h
r
e
a
d
I
D
)

ObjectThread

ObjectThread

ObjectThread

Figure 14. Transformation of Operation

data()

entry

ObjectThread

method(arg:float):boolean

End

exit

R
e
l
a
t
e
d

P
r
o
c
e
s
s

o
f

m
e
t
h
o
d

booleanObjectThread

argument

exit

ObjectThread

FloatObjectThread

Figure 15. A method invocation

4.2.3 Transformation of Object Creation

The transformation of the constructor

operation is analogous to that of the ordinary
operation. As shown in Figure 16, the only
difference is that a module “identifier creator”
is introduced into the entry of the process as a
device, in order to create an object identifier
(a pair of class name and an integer). That is,
the transition asks the CP-nets with the
places ”ClassName” and “ID” as its input
places in the box “InstanceCreator” for
producing a token with a pair of ClassName
and integer (ID) in the place “exit”. The token
with object identifier is the output of the
CP-net “InstanceCreator”, and the ID number
will be +1 to be the ID number of next object

62 資管評論 第十二期 民國九十一年十二月

identifier to be created.

Object Creater

Input
port

ObjectThread

f

floatObjectThread

new Obj(float.f)

entry

concurrencyf

thread
arg
um
ent

thread
thre
ad

Obj(float.f)

a
r
g
u
m
e
n
t
a
r
g
u
m
e
n
t

exit newobj

ObjectThread

ObjectThread

t
hre
ad

New Thread

threadnew
obj

EXIT

thre
adnewobj

New
Output
port

threadnew
obj

ObjectThread ObjectThread

ObjectThreadObjectObjectThread

ObjectThread

Object

Input
port

ObjectCreator

entry

ObjectThread

Object Creation

exit

id#

th
re
ad

n
e
w
o
b
j

ObjectThread

Object

c
l
a
s
s

ClassName

id#+1

Figure 16. A Coloured Petri net for Creating Objects

4.2.4 Inheritance and Polymorphism

The way of transformation of inheritance

and polymorphism mechanism is to find
which operation is invoked (i.e.,
polymorphism) and which class the invoked
operation belongs to (i.e., inheritance). Figure
17 and 18 illustrate the transformation of how
to find the operation and the class (as
mentions above) according to the two
mechanisms.

Also, a transition whose name is
identical to the operation in class diagrams is
inserted into the starting point of CP-nets as
the beginning of the invocation. For example,

the transition “I1.inheritance()” denotes the
beginning of “I1.inhteritance()” method
invocation. If there are two or more
operations associated with the transition, the
expression should be replaced with guard
expressions. For example, if a guard
expression is “[A.method(), B.method()], it
stands for that the operations “A.method()”
and “B.method()” must be invoked
simultaneously. When transforming the
operation by means of inheritance mechanism,
the distance between the class that the object
belongs to and the class that the operation
belongs to is derived in the hierarchy of
inheritance (generalization/specification)

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 63

(Booch et al. 1998), and then based on the
distance decide an arc linked with the nearest
superclass and attach the guard expression to
the transition. For example, in Figure 17, if a
token whose class name is either “I1” or “I2”,
and then transition “I1.inheritance()” that the
method is transformed into will be fired (i.e.,
I1.inheritance() will be invoked) through the
inheritance hierarchy in the left of Figure 17.
Likewise, if a token with either class name
“I3” or “I4” is in the place “Input port”, and
then transition “I3.inheritance()” that the
method of class I3 is transformed into will be

fired (i.e., I3.inheritance() will be invoked).
The colors of the place “entry” include
“threadID” and “objectID” which are class
name and ID, respectively. In addition, the
concept of polymorphism is analogous to that
of the above. The arc expression is used to
check if the token equals the class that object
belongs to. For example, If the class name of
the token of the place “p” is “Poly1”, then the
system will fire the transition
“Poly1.polymorp()” or else fire
“Poly2.polymorp()” if “ClassName = Poly2”.

Input
port

CP-nets derived from method invocation by Inheritance

I3.inheritance()

EXIT

I1.inheritence()

entry

Expect

entry

EXIT

exitexit

Output
port

entry

exit

entry

exit

CP-nets from
I3.inheritance()

CP-nets from
I1.inheritance()

[ClassName = I1 || I2] [ClassName = I3 || I4]

I1

inheritance()

I2

I3

inheritance()

I4

Figure 17. A Coloured Petri net based on Inheritance mechanism

64 資管評論 第十二期 民國九十一年十二月

Input
port

CP-nets derived from method invocation by polymorphism

Poly2.polymorp()

EXIT

p

Poly1.polymorp()

entry

Expect

entry

EXIT

exitexit

Output
port

entry

exit

entry

exit

CP-nets from Poly2.polymorp()CP-nets from Poly1.polymorp()

[ClassName = Poly1] [ClassName = Poly2]

Poly

Polymorp()

Poly1

Polymorp()

Poly2

Polymorp()

Figure 18. A Coloured Petri net in terms of polymorphism mechanism

5. Workflow Process Analysis

In this section, we describe how to

analyze the properties of transformed Petri
nets. Software consists of data, function, and
behavior (Brooks 1986), and requirements
can be classified as functional requirements.
Thus once a system had been constructed, we

shall require the system meet the functional
requirements (i.e. data, function, and
behavior). Therefore, we induce the
relationships between our Petri net models
and software. That is, data and functions
correspond to Coloured Petri nets, and
behaviors correspond to classical Petri nets.
The correspondences are summarized below

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 65

in Table 2.
Table 2. The relationships among Petri nets, UML and requirements

Requirements Functional

Data Functions Behavior

Petri nets

Coloured Petri nets Coloured Petri nets Classical Petri nets

UML

Class diagrams Statechart diagrams Activity diagrams

From the above inductions, we

determine to focus our analysis on three
views, i.e., behavior (classical Petri nets), data
(Coloured Petri nets) and function (Colured
Petri nets) aspects. In case we found
properties are not satisified, we make
modification directly on the corresponding
Petri nets. The modification continues until
the modified Petri nets can satisfy the
specified properties. In the above subsection,
we first introduce system properties and
analysis methods of Petri nets, then we begin
our Petri nets analysis from classical Petri
nets to analyze behavioral properties.

5.1 System Properties

In this subsection, we address behavioral

properties, and temporal behaviors from the
viewpoints of Petri nets and temporal logic.
We first classify behavioral properties into
reachablility, conservation, boundedness, safe,
liveness, reversibility, home state, persistence,
synchronic distance, and fairness. Secondly,
we address the reasoning of temporal
behaviors such as next, eventuality, always,
and until.

5.1.1 Behavioral Properties

Peterson (Peterson 1981) originally

addressed the following behavioral properties.
A rachability problem is a problem of finding

M if M∈R(M0) for a given marking M in a net
(N, M0), where R(M0) means the set of all
possible markings reachable from M0 in the
net (N, M0). A Petri net (N, M0) is said to be
strictly conservative if, for all reachable
marking from M0, the total number of tokens
of each reachable marking is equal to that of
tokens of M0. A Petri net is said to be
bounded if and only if for each place p of any
marking reachable from M0 such that the
number of tokens is finite and less than k,
where k is a finite number. A Petri net is said
to be safe if and only if it is 1-bounded, i.e.
for each place of the token number is less
than 1. We will define five different levels of
liveness as follows. For a set of all possible
firing sequences from M0, a transition t is
said to be L0-Live (dead) if t can never fired
in any firing sequence. t is said to be L1-Live
(potentially live) if t can fire at least once in
some firing sequences. t is said to be L2-Live
if t can fire at least k times in some firing
sequences and k is given any positive integer.
t is said to be L3-Live if t can fire at infinitely
often in some firing sequences. t is said to be
L4-Live (Live) if t is L1-Live for every
markings. A Petri net is said to be reversible,
if it can always get back to the M0. A marking
M is said to be a home state, if for any
marking M’ in R(M0), such that M is
reachable from M’. A Petri net is said to be
persistent, if for any two enabled transitions
such that the firing of one transition will not

66 資管評論 第十二期 民國九十一年十二月

disable the other. Synchronic distance is the
maximum difference of firing counts of two
transitions t1 and t2, i.e., d12 = max |F(t1) -
F(t2)|, where F is the number of times that
transition ti, i = 1,2 fires in F. Two transitions
t1 and t2 are said to be in a bounded-fair (or
B-fair) relation if the maximum number of
times that either one can fire while the other
is not firing is bounded.

5.1.2 Temporal Behavior

Even thought the capability of

representing timing constraints, TPN is lack
of the expressive power of certain temporal
behaviors, such as “t1 will fire next”,
“Eventually t1 will fire”, and “t2 cannot fire
unless t1 fire”. As a result, temporal PN is
proposed to solve the above problems (Suzuki
and Lu 1989). Let σ is an infinite firing
sequence starting from a current marking Mc,
proposition pj is defined as a place pj having
at least one token; proposition tj is defined as
a transition tj is fireable. The temporal logic
notations of temporal PN of the above
addressed temporal behaviors are (σ,Mc) |=

t1, (σ,Mc) |= ◊t1, (σ,Mc) |= (¬t2 u t1),
respectively.

Since temporal Petri nets follow
linear-time temporal logic, the specification
and verification of temporal properties is
confined to a linear firing sequence. This
suffers the same high complexity problem of
other linear-time temporal logic pertaining to
concurrence analysis (Sistla and Clarke 1985).
We have extended the use of temporal PN in
two perspectives from classic PN to time
PN (reachability tree to be exactly) and from
linear-time temporal logic to branching-time
temporal logic (Yang at el. 1998).

Definition (Reachability Tree Logic): RTL is
a 5-tuple RTL = (P,T,M,A,R) where

1. P is a set of places, i.e.,

P=(p1,p2,...,pm);
2. T is a set of transitions, i.e.,

T=(t1,t2,...,tn);
3. M is a set of markings, i.e., M =

(M0,M1,...,Mc,...,Mm). Mc = (pj), where
pj ∈P. M0 denotes the initial marking;

4. A is a finite set of arcs in a reachability
tree denoting all possible binary
relation between two markings, i.e., A
⊆ M×M. An arc, Ak = tk(Mc, Mj), is a
transition tk between two markings Mc
and Mj, such that Mj is the resulting
marking of firing tk at Mc, where tk∈T
and Mc, Mj∈M;

5. R is a finite set of atomic propositions.

 There are two atomic propositions in
RTL: place propositions and transition
propositions. A place proposition is denoted
as the same notation of place pj. Mc |= pj if pj
have at least one token at marking Mc; a
transition proposition is denoted as the same
notation of transition tj and Mc |= tj is true if
tj is fireable at Mc. Every atomic proposition
is a RTL state formula. We express a state
formula f holds at a current marking Mc of a
net N as N.Mc |= f, or simply Mc |= f if N is
known. Mc |= f can be abbreviated as f when
Mc is known. It is well known that the until
operator u can be used to define eventuality
operator ◊ as well as unless w operator, and
eventuality operator can be used to define
henceforth (always) operator . Thus,
assume that we have propositions f, f1, f2 and
let a current marking be Mc. We only need
two primitives operators: next operator and
until operator u, and two path quantifiers-
there exist ∃ and for all ∀ to represent all RTL
operators. For detailed definitions and theory
of RTL. Please refer to (Yang at el.1998).

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 67

5.2 Analysis Methods

There are two fundamental techniques

mostly used to analyzing behavioral
properties. The first one is to use coverability
(reachability) tree to enumerate all reachable
markings. The other one is to utilize
mathematical formalism of incidence matrix
and state equation. As far as the analysis of
temporal behavior is concerned, we propose a
model-checking mechanism based on
reachability tree of a Petri net.

5.2.1 The Coverability (Reachability) Tree

Through finding all reachable markings

of a Petri net (N, M0), we can conclude a tree
representation called reacahbility tree. In the
tree, each node represents a marking which is
reachable from M0 (the root). Each arc
represents a transition firing, which
transforms one marking to another. But if a
Petri net was unbounded, the tree will become
infinitely large. To make the tree finite, we
introduce a symbol w which means “infinity”,
where w > n, w ± n = w for each integer n.
When the Petri net is unbounded, the tree is
called as coverability tree; otherwise called
reachability tree.

5.2.2 Incidence matrix and State Equation

For a Petri net N with m transition and n

places, the incidence matrix of N, A = [ai,j] is
a m×n matrix of integers in which the entry of
i-th row j-th column in A is denoted as m×n
matrix. Let A+ = [ai,j+], in which ai,j+ is the
weight of arc from a transition ti to its output
place pj, and let A- = [ai,j-], in which ai,j- is
the weight of arc to a transition ti from its
input place pj. Let ai,j = 0 if there is no arc
connection between transition ti and place pj.
We have that: ai,j = ai,j+ - ai,j- and A = A+ -

A-. For state equation, let σ be a firing
sequence leading from the initial marking M0
of N to a marking Md. ∆ M = Md - M0. X is
a vector [x1, x2,…, xi,…, xm] in which xi
denotes the firing counts of transition ti in σ.
If ATX = ∆ MT has non-negative integer
solutions of X, then Md is said to be a
reachable marking from M0. For example, in
our NCUPN, the incidence matrix and the
state equation of the Petri net in Figure 19 are
shown in Figure 20.

Figure 19. A Petri net PNa

Figure 20. Incidence matrix and state

equation

5.2.3 Model-Checking

68 資管評論 第十二期 民國九十一年十二月

Basically, a model-checking is a search
mechanism used to check whether we can
find a model to satisfy the to-be-checked
formulas. Our model-checking mechanism
(Yang et al. 1998) use the depth-first (left
child first) traversal order starting from a
current marking Mc, To check Mc |= (f1 u f2),
for each firing sequence σi, σi ∈σ, the
mechanism searches for the first marking Mk
that satisfies f2 or the last Mk labeled with (f1
u f2) along the σi. If such Mk exists, then
traverse the σi from Mc again to check
whether all the markings Mj along the σi
satisfy f1. Mj is labeled with (f1 u f2) if Mj
satisfy f1, otherwise Mj is labeled with ¬(f1 u
f2). If all of the Mj along the σi are labeled
with (f1 u f2), then we conclude that Mc |=
(f1 u f2) over σi. Otherwise we conclude that
¬Mc |= (f1 u f2) over σi. If we need to check
a model for Mc |= ∀(f1 u f2), this mechanism
will not stop traversal until we find the first σi,
such that ¬Mc |= (f1 u f2) over the σi. If we
need to check a model for Mc |= ∃(f1 u f2),
the algorithm will not stop traversal until we
find a σi such that Mc |= (f1 u f2) over the σi.

5.3 The Analysis of Classical Petri Nets

Base on our transformed classical Petri

net, we shall represent an application for bank
loan with a token, so in Figure 7 a token will
be place in the starting place p1 for
representing the initial state of the application.
In this section, we focus on analysis
techniques, which can be used to verify
workflow properties. Once a system has been
modeled, it exhibits two kinds of properties of
the modeled system that is behavioral
properties and structural properties.
Behavioral properties are properties that
dependent upon system’s initial marking
(state), whereas the structural properties do
not. In (Aalst 1996), a ‘good’ structural

characterization of workflow is to balance
AND/OR-split and AND/OR-join. It is means
that two parallel workflows initiated by an
AND-split should not ended with an OR-join,
two alternative workflows initiated by an
OR-split should not ended with an AND-join.
As a result, if we found that two alternative
workflows initiated by an OR-split are ended
with by an AND-join, then we know the
AND-join will casue a deadlock. If two
parallel workflows are initated by an
AND-split and ended with an OR-join, then
we know the two workflow processes are
redundant. There are two fundamental
techniques mostly used in Petri nets to
analyzing behavioral properties. The first one
is to use coverability (reachability) tree to
enumerate all reachable markings. For our
example of bank loan in Figure 7, the
corresponding reachability tree is shown in
Figure 21. The other one is to utilize
mathematical formalism of incidence matrix
and state equation. Our NCUPN provides
both of the techniques. Once a wrokflow
process is transferred using Petri nets,
NCUPN can do the process property analysis
automatically.

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 69

Figure 21. A reachability tree constructed

from the Petri nets in Figure 7

We classify five situations under which
workflow process will result in misbehaviors:
co-exist of AND-split and OR-join; co-exit of
OR-split and AND-join; deadlock; starvation;
and safety. We refer to a resulting Petri net as
the Petri net model of workflow process. If
there is a co-exist of AND-split and OR-join,
then the resulting Petri net will not be
1-bounded. For our example of bank loan in
Figure 7, it is not a co-exist of AND-split and
OR-join, and the resulting is 1-bounded as
shown in Figure 22. If there is a co-exit of
OR-split and AND-join, then the resulting
Petri nets will be L0-live. For our example of
bank loan in Figure 7, it is not a co-exit of
OR-split and AND-join, and the resulting is
L1-live as shown in Figure 23. If there is a
deadlock, then the resulting Petri net will be
L0-live. For our example of bank loan in
Figure 7, it is not happen deadlock, because it

is L1-live as shown in Figure 23. If there is a
starvation, then the resulting Petri net is not
B-fair, or for all synchronic distance of paired
transitions is one. For our example of bank
loan in Figure 7, it is not happen starvation,
because it is B-fair as shown in Figure 24.
The resulting Petri net is in safety condition if
there are no such reachable unsafe markings.
In the following, we will address those
behavioral properties, which can be analyzed
by using our NCUPN, and present how to use
NCUPN to do the analysis.

Figure 22. Example in Figure 7 is boundness.

Figure 23. Example in Figure 7 is L1-Live.

70 資管評論 第十二期 民國九十一年十二月

Figure 24. Example in Figure 7 is B-fair.

5.4 The Analysis of Coloured Petri Nets

This section discusses how the Coloured

Petri nets are analyzed. First, let’s construct
the reachability trees (i.e., occurrence graph)
corresponding to the Coloured Petri nets
(Jensen 1992). By means of the analysis
method reachability tree, we can directly
analyze some behavioral properties, such as
reachability, boundedness, liveness, fairness
etc on the tree. If the reachability tree can’t
s a t i s f y t h o s e p r o p e r t i e s , w e m a k e
modification directly on the class diagram and
the statechart diagram in terms of Coloured
Petri nets, and then transform the class
diagram and the statechart diagram into the
corresponding Coloured Petri net again.
Analogously, we will also analyze those
properties on the tree. This modification will
continue until it can satisfy those properties.
As the example of the bank loan process, after
the applicant had filled out the application
and delivered it to the clerk, the clerk
double-checked all fields on the form and
then took it to his supervisors for the approval.
Those supervisors may serve in different
departments so that for their signature the
clerk may a step in their personal office and

discussed with them. Each supervisor will
review the related fields. Therefore, once one
of the fields has errors or can’t meet the
regulations of the bank, the amount of the
loan may be decreased or even rejected.

Based on (Jensen 1992) and readability,
we decide to analyze the reachability and
liveness properties. For example, when the
bank had approved or rejected the application,
we can know if such an application is
approved or rejected by checking the
reachable marking. In Figure 25 we construct
the corresponding reachability tree of the
Coloured Petri nets. The marking [p5 p10 p11]
is the final marking of the reachability tree.
According to it, we can check the value of its
token is “true” or “false”. The value “true”
stands for that the application is accepted,
while the value “false” stands for that the
application is rejected. In other words, by
means of the reachability property, we are
capable of finding whether the marking had
appeared in the reachability tree. Furthermore,
the transition t2 commented with “evaluate
application” is a hierarchical substitution
(Jensen 1992). By its hierarchical structure,
we can further specify a number of
regulations in order to check the records of
the applicant, such as credit, possessions, the
amount of his loan etc. Analogously, the
transition t5 commented with
“evaluated(demand)” is a hierarchical
substitution that can be further specified by
other specific regulations. Nevertheless, we
skip the specification and directly show our
input and output. For more information,
please see (Jensen 1992). The following test
cases are provided for verifying our Coloured
Petri net model. Then we enter this test case
to verify the application the reachability tree
of the Coloured Petri net as Follows in Table
3.

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 71

Table 3. A list with three test cases showing if the loans are accepted or rejected by checking their
multiple conditions

 The number of
the application

The amount
the loan

Income Credit Possession Grant

Input 1 1 1,000,000 50,000 50,000 100,000 Rejected
Input 2 2 2,000,000 10,000 500,000 1,000,000 Accepted
Input 3 3 50,000 20,000 50,000 100,000 Accepted

So far, we have completed the analysis

of the reachability property. Similarly, for the
liveness property we are able to verify L0, L1,
L2, and L4-live state (Murata 1989) by using
the above analysis method on the tree. For
example, in Figure 10 let’s specify number 3
application as the value of the token of the
initial marking. That is, p3 have number 3 as
the value of the token “d”. In addition, we
also put some tokens to form the initial
marking of this Coloured Petri net. First, we
construct its reachability tree, and then verify
if t2 commented with ”evaluateApplication”
appears in the tree, i.e., check if an L1-live
state appears in it. If not (i.e., L0-live), this
implies that there is not number 3 application,
and immediately by firing t3 another
application will be chosen and dealt with. Of
course, by verifying its liveness property, we
can modify the CPN model until it can satisfy
those desired behavior. As mention before,
the modification is analogous to the analysis
of the pervious reachability property.

Figure 25. A reachability tree constructed
from the Petri nets in Figure 11

6. Conclusions and Future Research

In this paper, we have presented an UML

approach to model business processes. We
adopt use case diagram to capture the
requirements of business processes, class
diagram to exhibit information structure of
business processes, activity diagram to
express logical steps of business processes.
All these UML modeling comply with the
standard six workflow primitives defined by
WFMC. We will continue to develop
workflow management system and apply it in
electronic commence in our future research.

Acknowledgements

72 資管評論 第十二期 民國九十一年十二月

This research is supported by the
National Science Council in Taiwan under
grant NSC 89-2213-E-008-009.

References

1. Aalst, W. M. P. “Three Good Reasons

for Using a Petri-net-based Workflow
Management System,“ Proc. Of the
International Working Conference on
Information and Process Integration in
Enterprises (IPIC’96). Eds. S. Navathe
and T. Wakayama, Camebridge,
Massachusetts, Nov. 1996, pp. 179-201.

2. Booch, G., Rumbaugh, J., and Jacobson,
I. The Unified Modeling Language User
Guide, Addison-Wesley Longman, Inc.,
1998.

3. Brooks, F. P. “No Silver Bullet: Essence
And Accidents of Software
Engineering,” Information Processing
‘86, 1986, pp. 10-19.

4. Lawrence, P. Workflow Handbook 1997,
Wiley and Sons Ltd, New York, 1997.

5. Lei, Y., and Singh, M. P. “A Comparison
of Workflow Metamodels,” 1997,
http://osm7.cs.byu.edu/ER97/workshop4
/ls.html.

6. Jensen, K. Coloured Petri nets: Basic
concepts, Analysis methods, and
Practical use, Vol. 1-3, Springer-Verlag,
1992.

7. Muller, P. A. Instant UML, Wrox Press
Ltd., 1997.

8. Murata, T. “Petri Nets: Properties,
Analysis and Application,” proceeding
of IEEE, Vol. 77, No. 4, 1989, pp.
541-580.

9. Peterson, J. L. Petri net theory and the
modeling of systems, Prentice-hall,
Central Book Company, Taipei, Taiwan,
1981.

10. Rational, and UML partners, “UML
Notation Guide version 1.1,” 1997,

http://www.rational.com/uml/resources/
documentation/notation/index.html.

11. Sistla, A.P., and Clarke, E. M.
“Complexity of Propositional Linear
Temporal Logics,” Journal of ACM, Vol.
32, No. 3, July 1985, pp. 733-749.

12. Suzuki, I., and Lu, H. “Temporal Petri
Nets and Their Application to Modeling
and Analysis of a HandShake Daisy
Chain Arbiter,“ IEEE Trans. on
Computer, Vol. 38, No. 5, May 1989, pp.
696-704.

13. Veijalanen, J., Lehtola, A., and
Pihlajamaa, O. “Research Issues in
Workflow Systems,” October 1995.

14. Workflow Management Coalition,
Workflow Management Coalition The
Workflow Reference Model, Nov 1994.

15. Workflow Management Coalition,
Workflow Management Coalition
Terminology & Glossary, June 1996.

16. Yang, S. J. H., Chu, W., Lin, S., and Lee,
J. “Specifying and Verifying Temporal
Behavior of High Assurance Systems
Using Reachability Tree
Logic,“ Proceedings of the 3rd IEEE
International High-Assurance Systems
Engineering Symposium, 1998, pp.
150-156.

About the Authors

Stephen J.H. Yang (楊鎮華)
is an associate professor in
the Department of Computer
and Communication
Engineering at the National
Kaohsiung First University of
Science and Technology. Dr.
Yang was the Founder and
CEO of T5 Corp. Taiwan.

From 1996 to 2000, he was an associate professor
in the Department of Computer Science and

 An Integrated Approach for Workflow Process Modeling and Analysis Using UML and Petri Nets 73

Information Engineering at the National Central
University, Taiwan. From 1995 to 1996, he was an
associate professor in the Department of
Information Engineering at the Feng Chia
University, Taiwan. Dr. Yang is the coauthor of the
book Distributed Real-Time Systems: Monitoring,
Visualization, Debugging, and Analysis (John
Wiley & Sons, Inc., 1996) and the coeditor of the
book Monitoring and Debugging of Distributed
Real-Time Systems (IEEE Computer Society Press,
1995). His research interests include Petri nets,
software engineering, e-Business applications,
software component, and object-oriented
technologies.

Dr. Yang received a B.E. in Computer
Science from the Tamkang University, Taiwan in
1985 and an M.S. and a Ph.D. in Electrical
Engineering and Computer Science from the
University of Illinois at Chicago in 1993 and 1995,
respectively. He is a member of IEEE Computer
Society and ACM.

Chyun-Chyi Chen (陳群奇) received his B.S.
degree in Mathematics from Fu Jen Catholic
University, Taipei, Taiwan, in 1995; and his MS
degree in Industrial Engineering from Chung Yuan
Christian University, Chung-Li, Taiwan, in 1997.
He is currently a Ph.D. student in the Department
of Computer Science and Information Engineering
at the National Central University, Chung-Li,
Taiwan.

In 1997, he joined the Laboratory of
Software Engineering, National Center University,
where he is working on the technologies of
software engineering, workflow management
system, Petri nets and temporal logic. His current
interests include workflow management system,
object-oriented technologies, Petri nets, temporal
logic, rule-based system, enterprise resource
planning systems, supply chain management
system, and electric commerce.

74 資管評論 第十二期 民國九十一年十二月

