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Abstract
Evolution strategies are applied to optimize real-valued vectors of objective variables. These
strategies rely primarily on mutation to explore the solution search space. Many combinatorial
optimization problems such as quadratic assignment problems, engineering design optimization
problems, and others can be successfully solved by analog evolution. This evolutionary algorithm
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wastes much time in managing invalid solutions and is typically less efficient.

This paper presents a new approach, called the path-encoding method, which modifies the
path searching idea of dynamic programming for combinatorial evolution strategies to enhance the
performance of evolutionary process. The NP-hard production allocation problem is used to
evaluate the effectiveness of the approach. This experiment compares the proposed approach to the
combination-encoding method, the penalty-encoding method and integer programming. The
computed results show that the proposed approach is always feasible and outperforms the others
because it narrows the solution search space.

Keywords: Evolution Strategies, Production Allocation Problems, DP Variant Evolution Strategies,
Path Encoding Method, Path Mutation
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1. Introduction

Using conventional algorithms to find an
optimal solution for NP-hard problems, such
as combinatorial optimization problems, is
troublesome.  Therefore, some  other
approaches such as approximation algorithms
and evolutionary algorithms have been
developed to find sufficiently good solutions
to these NP-hard problems. In which, the
evolutionary algorithms are probabilistic
search algorithms that mimic biological

evolution to produce better offspring solutions.

A chromosome, which represents an instance
of the population, encodes a solution to a
given problem. This chromosome may be a
string of bits, a string of real numbers or a
tree-like string.  Evolutionary algorithms
assign fitness to every individual. According
to the quality of the solution that each
individual represents, fitter individuals in the
population are more likely to survive to the
next generation, and vice versa. Every
generation must pass through all or some of
the main operations - selection, crossover and
mutation. This evolutionary cycle is repeated
until a satisfactory solution is found. Nissen
(1994), Yagiura et al (1996), Cai et al (1996),
Li et al (1996), Chu et al (1997), Ahuja et al
(2000)...and other researchers have proposed
several evolutionary algorithm modifications,
for specific problems. Evolutionary algorithms
based on the principles of evolution and
natural selections have successfully been
applied to many complex problems in the
areas of optimization, system identification,
data mining and others (Biethahn et al. 1995).

Dynamic programming (DP) is a method
that can solve several optimization problems.
In most applications, it splits a complex
problem into many simpler sub-problems, and
then determines the optimum solution stage by
stage. Dynamic programming restricts the
acquisition of a good solution from the
starting point to the goal point, obeying all

constraints. It can yield valid solutions which
slowly become better and better. The
shortcoming is that dynamic programming
typically wastes much time in finding all
sub-solutions and generally expands in
non-polynomial time to solve complex
problems. Conventional dynamic
programming is therefore inefficient to solve
complex problems. Evolution strategies use
the basic principles of replication, variation
and selection from Darwin’s evolutionary
theory, but with some adjustment on solution’s
representation, selection scheme, strategic
parameter adaptation and sequence of
evolutionary operators. The most important
characteristic of evolution strategies is that
they explore the solution search space
simultaneously from several points, as in
parallel  processing. Useful information
derived from the objective function is used to
find good solutions within the search space.
This study presents a variant of evolution
strategies that can accelerate evolution. The
proposed approach encodes the dynamic
programming  decision path into a
chromosome to solve production allocation
problems. The evolution of these paths can
quickly determine a good solution. We
provide an efficient resolution that proposes a
new encoding method for evolution strategies.
This new encoding method can greatly reduce
the solution search space and more effectively
find optimal solutions. A specialized mutation
operator is proposed to enable this efficient
encoding method to run smoothly. The
production allocation problem, which is
NP-hard, is used to evaluate the effectiveness
of this approach. Using this test problem, the
approach is compared to combination
encoding (Hou et al. 2002), penalty encoding
(Garavelli et al. 1996) and integer
programming (Winston 1991). Computational
experiments confirm that the new resolution
model is always feasible and outperforms the
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others.

2. Evolution Strategies

Rechenberg (1973, 1994) and Schwefel
(1977, 1995) developed evolution strategies to
solve engineering optimization problems. The
method resembles genetic algorithms but with
some differences. These two kinds of
evolutionary  algorithm  differ in the
representation of the solution, selection
scheme, strategic parameter adaptation and
sequence of evolutionary operators. Evolution
strategies usually use real-valued vectors to
represent the solution, while genetic
algorithms usually use binary vectors
(Goldberg 1989). Evolution strategies rely
primarily on mutation operations to explore
the solution search space, while the dominant
operator of evolutionary processes for genetic
algorithms is crossover.

Evolution strategies randomly set an
initial population and then calculate the fitness
of individuals. The reproduction step can be
implemented if the population cannot satisfy
the objective function. In this step, A children
are created as an intermediate population by
mutating p parents, where the mutation
operation uses normally distributed random
variables. The fitness of all individuals in the
population is then evaluated. The next step
selects p best individuals from intermediate
population ((u,A)-selection) or selects p best
individuals from the set of parents and
children  ((u+A)-selection) as the new
generation. This cycle is repeated until the
termination  criterion applies. Evolution
strategies differ from traditional search and
optimization techniques in that the former
simultaneously explore the solution search
space from several points. Information derived
from the objective function (fitness) is
required to guide the search for good solutions
within the search space. Moreover, evolution

strategies rapidly complete optimization
because the random distribution of new trials
concentrates the computational effort on
solutions that were previously proven
successful, reducing the computational effort
(Cai et al. 1996; Nissen 1994).

General evolution strategies are typically
applied to real-valued vectors of the objective
variables to be optimized. Many combinatorial
optimization problems can be solved through
analog evolution, which is the combinatorial
variant of evolution strategies (Chang 2000;
Nissen  1994). Solving the different
combinatorial optimization problems usually
depends on a problem-specific encoding
method and self-adaptive correlated mutations
to guide the search process more efficiently.

3. Production Allocation Problems

Production allocation problems concern
the assignment of global demand for a product
to a multinational company characterized by
subsidiaries located in different geographical
areas (Garavelli et al. 1996). They involve
allocating plant output among many markets
to minimize the costs to the multinational
company subject to capacity constraints and
market demand (Bhatnagar et al. 1993;
Lootsma 1994). Figure 1 represents such a
production allocation problem.

The left side nodes represent the plants (7)
that produce products to meet the demands of
all of the markets () on the right side. The
manufacturing costs per unit production in
plant i are expressed by m;. t; represents the
transportation costs per unit. d; represents the
import duties and taxes per unit for a product
shipped from plant i to market ;. g;; represents
the quantity of product produced by plant i to
support market ;.C; is the maximal production
capacity of plant 7, and D; denotes the
minimum demand of market ;. Hence, the
costs of plant i to produce a unit of product to
supply to market j can be written as,
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Cost; =(m; +t, +d,;)xq,
For simplicity, the plants are considered

to produce a single product. The production
allocation problem can thus be modeled as,

min Cost = min {z Cost,./}

iJ

subject 104> g, 2D v, 2

q,20,and q, €Z

where inequality (1) states that the total
quantity that each plant supplies to each
market must be less than the production
capacity of each plant. Inequity (2) specifies
that the demand of each market must be met
by the total production from all plants. The
variable g; is a discrete nonnegative integer
variable.

This problem is a combinatorial
optimization problem and can be recognized
as an NP-hard problem (Garavelli et al. 1996),
such that solving this problem within
polynomial time using general algorithms is
impossible. Using iterative and random search
methods, which involve parallel processing,
an evolutionary process has a powerful
solution searching capability. These features
characterize the general-purpose search and
optimization techniques that are applicable to
several difficult problems (Nissen 1994).

Costy=(m;+t;+d;)

Figure 1. Production allocation model

This study used evolution strategies to
solve the production allocation problem. An
efficient new encoding method, called path
encoding, is proposed along with a specialized
mutation operation, called path mutation. The
following section introduces the DP variant
evolution strategies encoding method with
self-adaptive correlated mutations, to guide
more efficiently the search process in
combinatorial optimization problems.

4. DP Variant Evolution Strategies to
Solve Production Allocation Problems

This paper presents a new encoding
method and a mutation operator that is
abstracted from the benefits of dynamic
programming to perform the evolutionary
procedure of evolution strategies, called DP
variant evolution strategies. This encoding
method and the corresponding mutation
operator can restrict the evolutionary process
to check only valid solutions. This solution
procedure involves parallel processing, which
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is the advantage of evolution strategies.
Incorporating the idea that a dynamic
programming decision path must obey all
constraints of the problem and obtain only
valid solution from all evolutionary processes,
evolution strategies are become more efficient
when solving complex problems. The DP
variant evolution strategies proceed as
follows.

DP variant Evolution Strategies( )
{ Applying path encoding method to
generate initial population
Evaluate the initial individuals

Repeat
{ Reproduction (path mutation)
Selection }

Until (termination criterion holds) }

Generation 1 2

In DP variant evolution strategies, path
encoding is applied to the population to
generate valid individuals. A problem-specific
mutation operator is proposed to match the
evolutionary procedure to ensure that the
intermediate chromosomes are always valid.

Figure 2 shows the approach. In the
initial stage, DP variant evolution strategies
generate p (p is the population size) valid
individuals.  After the problem-specific
mutation operator is applied to individual 1,
2, ..., i,..., p and the selection operator is
implemented, the second generation acquires
new individuals 17, 2°,..., i’,..., p". Using the
analog evolutionary process, a better solution
is rapidly obtained after a few generations.
This new approach is suited to combinatorial
problems.

Chromo¥owe 1

Chromosome 1’

Chromosome 2’

Chromosome 2

Chromosome 3

S S —> @
Start Goal
Chromogsdme i’
Chromosome i
Chromosomep’ T
Chromosome p

Solution Space

Figure 2. The evolution process of DP Variant Evolution Strategies
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Initialization and Path Encoding
Method
The production allocation  model

allocates output from each of the international
company’s plants to the different markets.
Consider s markets and » plants. The new
path encoding method is developed for this
problem to enhance the evolution performance
and vyield better offspring for DP variant
evolution strategies. Assuming s markets, M,,
M, ... M, ..., M, a corresponding market
demand of Dy, Dy, ..., D;, ..., D,; and r plants,
Py P, .. P, .. P.;, the corresponding
production capacity of the plants is Cy, C, ...,
C, ..., C.,. Figure 3 depicts how the encoding
of the chromosome.

Each segment j (=0 ~ s-1) represents the
demand in a market. The integer number in
each subsegment, g;, is the quantity or

quantity percentage of products supplied
by plant i (i=0~r-1) to market j. If the
demands are quite large, then g;’s are used to
represent the percentage supplied. This will
restrict the length of the chromosome to a
reasonable size. Markets’ demands are
sequentially assigned by plants to prevent
an invalid chromosome from being
obtained, which occur when the total
products supplied by plant i exceeds the
plants’ production capacity, or when the
demand in some markets cannot be
satisfied. ¢; (i=0 ~ r-1) of segment j
continues to be processed until segment ; is
completely assigned. Then, segment j+1 mod
s begins to be processed. This assignment
process can be started from any markets.
Figure 4 describes the above procedure.

Mo (Do) M; (Dy) Ms.1 (Ds-1)
........................ T T
Qoj Qi  Qe-vj
Segment 0 Segment j Segment s-1

Figure 3. Chromosome in the production allocation problem
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Segment 0
¢ ~a Segment 1
Pogoo—
Pl_ql.o v ™~
P, s Po o Segment j
P‘I (0%
: v
Pi — Qu____ POglj—
: Pth_
Pi Jij_

Figure 4. DP variant Evolution Strategies encoding procedure

There are some restrictions on the
assignment of ¢; for plant i to market ;.
Because plant i can’t supply more than its
capacity C;, in the mean time, and the demand
of market j should be satisfied. The value of g
should lie within a condition-specific region.
The upper bound is the minimum value of
surplus capacity of plant i or the remaining
demand of market j. The lower bound is the
difference between the remaining demand of
market j and the remaining product capacity of
other plants. They are expressed as follows.

Upper bound:

-1 i1
min{Cl. —jZ:qix,Dj —qu]} +(3)
x=1 x=1

Lower bound:

k=i+1

Max{O,D/ —iqki — Zt: (C, —jzlq,d)} -.(4)

j-1
in which, ci_qu_x represents the
x=1

present surplus capacity of plant i, and

i—1
Dj—Zquj is the remaining demand of

i1 1 j-1
market j, and D, —qu,- - z (C, _qu,)

k=1 k=i+1 =1
is the remaining demand of market ; minus the
maximum remaining production from other
plants. When ¢, is between these two limited
values, inequalities (1) and (2) of the
production allocation model are always
satisfied by the chromosomes of the evolution
strategies.
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This method can reduce the solution
search space, allowing effective solutions to
be more rapidly obtained in the evolutionary
process. Applying the upper and lower bounds
can generate chromosomes when initializing
the population, and ensures that the
chromosomes do not violate inequalities (1)
and (2) of the production allocation model. An
example is presented below:

Suppose three plants (Py, P;, P,), meet
the demand of two markets (M, M;). The
corresponding production capacity of these
three plants is Cy=50, C;=40, C,=50. The
demand of the two markets is D,=70 and
D;=60. Figure 5-(1) depicts a valid
chromosome since each g; falls between its
upper and lower bounds. The total quantity of

(1)

all plants support to these two markets can
meet their demand, that is Z‘L’o =D, (=70)

Besides, the

and qu'l =D, (=60)
production quantity of each plant doesn’t
violate its production capacity, that is

Zqoj <Cy(=50) - Z q,; < C (= 40) and
J J

3¢, <C,(=50) . Figure 5-(2) shows an
J

invalid chromosome. Although all plants can
satisfy the demand of these two markets,
q:0+q1 (=50) exceeds the production capacity
of plant 1 (C,=40).

My(Do=70
oBo ) rq‘”\r Q11 ~ 021 ~N
40 10 20 10 30 20
- q J\q A\ q J
00 10 20 M, (D;=60)
Qo+t gu<Cifori=0,1,2=>valid
(2)
My(Do=70
oBo ) -~ Qo1 \r%l\r 021 ~N
20 40 10 20 10 30
- q AN q J\q J
00 10 20 M, (D;=60)

Qo + 011> C; => invalid
(40 +10>40)

Figure 5. Examples of valid and invalid chromosomes
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Evaluation

Once g, satisfies equation 3 and 4, the
path encoding method directly codes
inequalities (1) and (2) of the production
allocation model into the chromosome.
Consequently, the chromosome will satisfies
the required constraints, i.e. the quantity
provided by each plant to all markets is less
than that plant’s production capacity, and the
demand of each market can be satisfied. The
total cost to each plant of supplying products
to a market can be used to evaluate of each
chromosome. The chromosome has a higher
probability to survive in the next generation
when it has a higher fitness. This approach can
improve the performance of the evolution
strategies in searching for effective solutions,
because all constraints are encoded into
individuals.

Selection

Two general methods exist for
maintaining a population of solutions in the
evolution strategies - (u+A)-selection and
(w,A)-selection. The (u+A)-selection involves
p parents that generate A offspring and puts
pu+A individuals in competition to survive.
Only the best p individuals survive to the
subsequent generation. The (u,A)-selection
excludes the parents of each generation, such
that only the children compete for survival.
The best p children remain to form the
subsequent generation. Generally,
(w,A)-selection is preferable because it allows
for a temporal deterioration of the
population’s best solution (Schwefel 1995).
This deterioration may be required to
overcome a local optimum and prevent
premature convergence. Hence, this study uses
(u,A)-selection.

Path Mutation

The general mutation method for
evolution strategies is inadequate for the
combination problem because it may yield
invalid results. Therefore, a suitable mutation
operator is proposed herein for production
allocation problem. This new mutation
operator first arbitrarily selects a segment, say
Jj, which represents the demand of market j and
then chooses any subsegment, say i. The
number of g; in segment j represents the
quantity or quantity percentage of a
product provided by plant i to meet
demand in market ;. After a subsegment is
randomly selected, a few number (&) are
added to this subsegment, and the same
number (o) are deleted from the adjacent,
i+1, subsegment in order to satisfy the
demand of market ;. And the small random
number, 5, is normally distributed. If the
inequalities (1) and (2) are still met
following this mutation operation, the
mutation process is completed. However,
this action may cause one of these two
subsegments to violate the production
capacity of the corresponding plants. If
such a violation occurs, the production
value of the corresponding two plants in
the next segment, j+1, must be deleted for
an equal number (o) in subsegment i and
added for an equal number (& ) in
subsegment i+1, until chromosome is
valid.  After mutation, the new
chromosome is generated and continues to
satisfy to the constraints.

Figure 6 depicts a valid chromosome
that underwent mutation. Segment ; may
undergo mutation by adding two units’
products in the P; block and deleting two
units” products from the P;;; block for a



e [P A e 53 PRI L

chromosome. When the corresponding
plants i and i+1 does not violate the
production capacity of the plants after the
blocks P; and P.; in segment ; are
mutated, segment j+1 is not altered. The

chromosome”.  Otherwise, the new
chromosome resembles chromosome™, in
which the part that is blocked in segment
j+1 may delete two units’ products from
P, and add two units’ products to P, .

new chromosome may become
MJ Mj+1
Pi Pis1 Pi Pis1
chromosome: ...... ... 3 . 5 |1 ......
Segmen j Segment j+1
Pi Pis1 Pi Pis1
chromosome’: ...... | 5 | 5 || ......
+2 -2
Segmen j Segment j+1
Pi Pis1 Pi Pis1
chromosome™: ...... - 5 - 3 | ......
+2 -2 -2 +2
Segment j Segment j+1

Figure 6. Chromosome mutation

5. Hlustrative Examples

Three highly complex scenarios were
built and tested using the following four
methods - the new path encoding method,
combination encoding (Hou et al. 2002),
penalty encoding (Garavelli et al. 1996) and
integer programming (Winston 1991), to show
that the new path encoding method is highly
efficient when applied to combinatorial

problems. These scenarios were modified
from Garavelli et al (1996), and involve
characterized by demand from three, four and
five markets for a product supplied from five,
six and seven plants of a global manufacturing
company. The three cases are (three markets,
five plants), (four markets, six plants) and
(five markets, seven plants). Table 1 shows a
simple example of the (three markets, five
plants) case. The other two scenarios are
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similar.

P; (i=0 ~ 4) represents the five plants.
The quantity of product produced at each plant
is given. The corresponding value Cy, (=0 ~ 2)
represents the cost to plant i of producing ¢
units of the product to meet the demand of
market ;. The demand of the three markets is
70, 60 and 80 respectively. The production
capacities of the five plants are 50, 40, 50, 45

and 50. Each plant must produce g; number
products to satisfy the demand of all markets,
while minimizing the cost of the company.
The computational complexity of this scenario
is 3.24559x10%, and that of the other two
scenarios is 5.9368x10* and 3.65631x10",
making them high complexity problems.

Table 1. Configuration for the test scenarios

ost| Demand of Market O [ Demand of Market 1 | Demand of Market 2
unig| Py | P1| P, | P3| Py P; P;

0 | xx|xx] xx |xx]|xx XX XX

1 XX | XX XX XX | XX | == . XX | e P s XX PP .

2| xx | xx|] xx | xx|xx XX XX

3 xx|xx|] xx | xx|xx XX XX

q C20q Cilq CiZq

The new path encoding method encodes
two constraints into the chromosome. These
are the demand of markets and the production
capacity of plant. The combination encoding
method encodes one constraint (market
demand) into the chromosome. The second
constraint is limited by the penalty function.
The penalty encoding method must exploit the
penalty function to cause the evolutionary
algorithm to meet these two constraints and
yield good solutions.

These algorithms were coded in C and
run on an IBM compatible PC. This new path
encoding method can encode all constraints
into the chromosomes such that the search
space is smaller than that of other encoding
methods that can encode only one constraint
into the chromosome, or use only the penalty
function to guide the evolutionary algorithms.
Figure 7 shows the search space of these three
encoding methods.
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)

Problem Space
Constraint 1

Constraint 2

@

Intersection
(Search Space of Path Encoding Method)

Problem Space
Constraint 1

Constraint 2

Gray part
(Search Space of Combination Encoding Method)

) Problem Space

Constraint 1

b Constraint 2

All

(Search Space of Penalty Encoding Method)

Figure 7. Search space of three encoding

Figure 7-(a) reveals that the intersection
of constraints (1) and (2) specifies the search
space of the path encoding method. Figure
7-(b) shows that the shaded region of
constraints (1) is the search space of the
combination encoding method. The whole
shaded part in Fig. 7-(c) is the search space of
the penalty encoding method. This figure
reveals that the path encoding method may
search in a smaller solution search space than
other methods. As the constraint number is
over than two, we can take advantage of
penalty function to guide the evolution
process to get sufficient good solutions.

Table 2 compares the results achieved by

the three encoding methods and integer
programming applied to the test problem. The
first column gives the generation that leads
these three encoding methods and integer
programming to converge to good solutions.
Ten trials were performed for each experiment.
The (s markets, r plants) subcolumn shows the
fitness (total cost) of the best chromosomes
from the experiments. If the value of the (s
markets, » plants) sub-column is invalid, then
the evolutionary algorithm cannot yield a
feasible solution until the corresponding
number of generations has reached. A value is
valid if the evolutionary algorithm begins to
find feasible solutions.



N

Table 2. Computational results of the test scenario

Cost Path Encoding

Combination Encoding

Penalty Encoding

Generati

3M, 5P)| (aM, 6P)|(5M, 7P)| (3M, 5P) | (4M, 6P) | (5M, 7P)| (3M, 5P)| (4Mm, 6P)| (5M, 7P)

120] Valid Valid Valid Valid

Invalid Invalid | Invalid | Invalid Invalid

200 219

350 2069

Valid

500 310

Valid

3000

Valid

8000 219

Valid Valid

17000

269

30000

310

40000

223

90000

277

150000

319

Integer Programming

(3M, 5P) | (4M, 6P) | (5M, 7P)

Integer Programming only can
get feasible solutions but not
good solutions

feasible

feasible
solution | solution | solution

feasible

252

363

For the (three markets, five plants) case,
Table 2 shows that the new path encoding
method significantly outperforms the other
two encoding methods and integer
programming, requiring just 200 generations
and finding good solutions (total cost=219).
This performance is good because the
solutions of the new encoding method in the
search space are always feasible. The result
matches the assumption that the suitable path
mutation operators do not generate infeasible
chromosomes such that good solutions are
obtained more quickly. The combination
encoding method must run for around 120
generations to gain valid solutions and reach
8000 generations to yield good solutions (total
cost=219). This many generations are required
because the combination encoding method

encodes only a single constraint (market
demand) into the chromosomes. Before 120
generations, the evolutionary algorithm tends
to yield valid chromosomes with the help of
the penalty function. A valid chromosome may
be invalidated when the crossover and
mutation operators are implemented. This
situation may delay obtaining feasible
solutions by evolutionary algorithms. The
penalty encoding method takes even more
time than the combination encoding method to
obtain valid chromosomes up approximately
3000 generations and also requires more effort
to find good solutions. It is also likely to result
in local optimization (total cost=223). Good
solutions are slowly obtained because this
encoding method merely exploits the penalty
function to cause the evolutionary algorithms
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not to violate these two constraints. This test
scenario is highly complex so the penalty
encoding may fail due to local optima.
Therefore, these two encoding methods are
always less likely to find good solutions than
the path encoding method and require more
time to converge. The LINGO package was
used to solve these three scenarios by integer
programming. For the (three markets, five
plants) case, only LINGO can find feasible
solutions (total cost=252) because the
scenarios are all highly complex. The
interpretations of the other two scenarios are
as above.

6. Conclusions

The effectiveness of an algorithm can be
roughly determined by the size of the solution
search space (Hou et al. 2002). A smaller
search space corresponds to a more effective
algorithm. Hence, one of the most important
ways to improve the performance of an
algorithm is to narrow the solution search
space explored by the algorithm. The general
evolution strategies applied to combinatorial
problems waste much time in managing
invalid solutions during evolution. This study
proposed dynamic programming variant
evolution strategies, employing the path
encoding method and mutation operator, to
solve this problem.

The concept of upper and lower bound is
used to restrict the valid decision path that
satisfies the constraints and thus yields a good
solution from the initial to final states of
decision process. A combinatorial problem,
the production allocation problem, was used
as a benchmark to test the feasibility and
effectiveness of this new approach.
Computational experiments tested the new
method, combination encoding, penalty
encoding and integer programming. The
experimental results prove that our new path
encoding method and mutation operator

perform better than other methods in finding
good solutions. Our new approach greatly
narrows the search space, accelerating
convergence to a solution. In the future, this
new approach will be applied to other
combinatorial problems.
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