
MIS Review Vol. 21, Nos. 1/2, September(2015)/March (2016), pp. 15-34
DOI: 10.6131/MISR.2015.2101.02
© 2016 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

Metamorphic Malware Detection Using Function Call
Graph Analysis

Prasad Deshpande, Mark Stamp
San Jose State University, San Jose, CA

ABSTRACT:	 Previous work has shown that well-designed metamorphicmalware can evade many
commonly-used malware detection techniques, including signature scanning. In this
paper, we consider a previously developed score which is based on function call
graph analysis. We test this score on challenging classes of metamorphic malware
and we show that the resulting detection rates yield an improvement over other
comparable techniques. These results indicate that the function call graph score is
among the stronger malware scores developed to date.

KEYWORDS:	 Malware, Function Call Graph, Metamorphic Software

1. Introduction

Malware is a software that is designed to perform malicious activity (Panda Security,
2011). Examples of such malicious activity range from crashing a system to collecting and
infiltrating sensitive data. There are many different categories of malware, including virus,
worm, trojan horse, logic bomb, back door, and spyware (Aycock, 2006). In this paper, we
use the term virus generically to refer to any type of malware.

According to Symantec (2011), the number of unique malware variants increased
from about 286 million to more than 403 million between 2010 and 2011. Also, in 2011,
Symantec claimed to have blocked more than 5.5 billion attacks (Symantec, 2011). These
numbers give some indication of the scope and prevalence of the malware threat--a
massive threat that shows no sign of abating anytime soon.

Code obfuscation is used to obscure the characteristics of code (Xu et al., 2013).
Virus writers have developed a variety of code obfuscation techniques, many of which
are designed to evade signature detection. Arguably, the most potent such technique
is metamorphism, that is, code morphing that changes the internal structure with each
infection, while maintaining the essentials of its original function (Shang et al., 2010).
Metamorphic generators are readily available, so that even a novice attacker can easily
take advantage of this powerful technique. Examples of notable metamorphic generators

Prasad Deshpande, Mark Stamp

include

•	 NGVCK (Next Generation Virus Creation Kit) (Snakebyte, 2000)

•	 MPCGEN (Mass Code Generator) (Tips Trik Dan Berbagi Informasi, n.d.)

•	 G2 (Second Generation Virus Generator) (VX Heavens, n.d.)

•	 VCL32 (Virus Creation Lab for Win32) (Attaluri et al., 2009)

•	 MetaPHOR (The Mental Driller, 2002)

•	 NRLG (NuKE’s Random Life Generator) (Symantec, n.d.)

•	 NEG (NoMercy Excel Generator) (Symantec, n.d.)

Function call graphs have been previously applied to the malware detection problem.
For example, Bilar (2007) propose and analyze a mechanism to generate call graphs for
malware detection. The paper Shang et al. (2010) proposes an algorithm to determine
similarity between function call graphs, while Karnik et al. (2007) uses a cosine similarity
metric to measure the overall similarity between code samples, based on call graphs. In
Christodorescu et al. (2007), a data mining algorithm is used to construct call graphs via
dynamic analysis.

In this paper, we apply a call graph-based score to several challenging classes of
metamorphic malware. We compare the results obtained using this call graph approach
to previous results obtained using hidden Markov model (HMM) analysis (Wong &
Stamp, 2006). These HMM results have previously served as a benchmark for comparing
the effectiveness of a wide variety of detection techniques (Attaluri et al., 2009; Kazi
& Stamp, 2013; Lin & Stamp, 2011; Runwal et al., 2012; Shanmugam et al., 2013;
Sridhara & Stamp, 2012; Tamboli et al., 2014). We show that call graph analysis can yield
improved results over many of these previous techniques in these particularly challenging
cases.

This paper is the first to test call graph based scoring on such challenging classes
of malware. Our results indicate that function call graphs are a powerful technique for
scoring malware, and such scores are relatively immune to many common obfuscation
techniques.

This paper is organized as follows. Section 2 provides background information on
malware and detection techniques, including a discussion of Hidden Markov Models. We
also briefly discuss various metamorphic techniques. In Section 3 we discuss call graph
analysis and its application to malware detection and, of course, we emphasize the specific
implementation that we have chosen. Section 4 contains our experimental results. Finally,
Section 5 has our conclusion and suggestions for possible future work.

Metamorphic Malware Detection Using Function Call Graph Analysi 17

2. Background

In this section, we first discuss metamorphic malware and various code morphing
techniques. Then we briefly discuss Hidden Markov Models (HMMs) and their use in
malware detection. HMMs will serve as a benchmark for comparing the call graph scores
analyzed in this paper.

2.1 Metamorphic techniques

A metamorphic generator can produce a large number of different generations of
code, where the functionality remains the same, but the internal structure differs. Such
code obfuscation can alter instructions as well as program data and control flow (Borello
& Mé, 2008; You & Kim, 2010). These techniques can be used to evade signature
detection, as well as to evade statistical analysis. Next, we briefly consider some code
morphing techniques.

2.1.1 Register swap

Register swapping is one of the easiest metamorphic techniques to implement, but
it is also one of the least effective. RegSwap, which was arguably the first metamorphic
viruses, used this technique exclusively (Szor, 2005). Table 1 shows code fragment from
different generation of W95/RegSwap virus.

2.1.2 Transposition

Subroutine permutation is another elementary code morphing technique. If there
are n subroutines, then it is trivial to generate n! different metamorphic copies by simply
permuting the order of the subroutines. BadBoy and W32/Ghost are two viruses that
employ subroutine permutation (Szor, 2005). BadBoy has 8 subroutines, so it can generate
8! = 40320 different variants.

Table 1 Two Generations of RegSwap
pop edx pop edx

mov edi, 0004h mov ebx, 0004h
mov esi, ebp mov edx, ebp
mov eax, 000Ch mov edi, 000Ch
add edx, 0088h add eax, 0088h
mov ebx, [edx] mov esi, [eax]
mov [esi+eax*4+00001118], ebx mov [edx+edi*4+00001118], esi
Source: Szor, 2005

Prasad Deshpande, Mark Stamp

More generally, if two instructions (or groups of instructions) are independent of
each other then their order can be changed. Even more general transposition can be used,
provided jump instructions are inserted to preserve the order of code execution.

2.1.3 Dead code insertion

Dead code insertion can be a highly effective morphing strategy. Dead code may or
may not be executed; if such code is executed, care must be taken so that it has no effect
on the functioning of the program. Examples of dead code insertions are given Table 2
Note that none of the instructions in Table 2 change the value of the register.

Dead code insertion is useful for evading signature detection and can also aid in
evading statistical-based detection. Dead code insertion is used, for example, in Win95/
Zperm (Szor, 2005) and also in the experimental metamorphic worm MWOR, which is
analyzed in Sridhara and Stamp (2012).

2.1.4 Instruction substitution

An instruction or group of instructions can be substituted for another equivalent
instruction or group of instructions. For example, the instruction xor eax, eax can be
replaced by sub eax, eax. Instruction substitution can be highly effective, but is relatively
difficult to implement. Instruction substitution is used extensively in W32/MetaPHOR
(Szor, 2005) and also to some extent in the MWOR worm Sridhara and Stamp (2012).

2.1.5 Formal grammar mutation

A code morphing engine can be viewed as nondeterministic automata, where
transitions are possible from every symbol to every other symbol (Zbitskiy, 2009). Here,
the set of symbols consists of the set of possible instructions. By formalizing mutation
techniques in this way, we can apply formal grammar rules and create malicious copies
with large variation; see Zbitskiy (2009) for an example.

Table 2 Example of Dead Code
Instruction Description
add Reg,0 Add value 0 to register
mov Reg,Reg Transfer register value to itself
or Reg, 0 Logical OR operation of register with 0
nop No operation

Source: Szor and Ferrie (2001)

Metamorphic Malware Detection Using Function Call Graph Analysi 19

2.1.6 Host code mutation

Some viruses mutate the code of the host along with their own code (Konstantinou
& Wolthusen, 2008). Win95/Bistro is an example of malware that uses this concept of host
code mutation Szor (2000).

2.1.7 Code integration

Win95/Zmist implements a “code integration” technique. Specifically, Zmist
decompiles a portable executable (PE) file, inserts itself into the code of the file,
regenerates the code and data references, and recompiles the executable (Szor & Ferrie,
2001).

2.2 Hidden Markov model based detection

Hidden Markov Model (HMM) analysis has proven useful in a wide array of fields,
ranging from speech recognition (Rabiner, 1989) to software piracy detection (Kazi &
Stamp, 2013). Previous research has shown that HMMs can be a highly effective tool
for detecting metamorphic malware (Attaluri et al., 2009; Lin & Stamp, 2011; Wong &
Stamp, 2006). Since HMMs have been widely studied, we use an HMM-based score as
the benchmark for comparison with the call graph score considered in this paper.

An HMM includes a “hidden” Markov process, and a sequence of observations
that are probabilistically related to this hidden process. We can train an HMM for a given
sequence of observations. Then we can score a sequence against this trained model to
determine how closely it matches the training data. The relevant notation commonly used
in HMMs appears in Table 3.

A generic HMM is illustrated in Figure 1, where Xt and 𝒪t represent the (hidden)
state sequence and the observation sequence, respectively. The underlying Markov process
is driven by the A matrix. The observations 𝒪t are related to the current state of the Markov

Table 3 HMM Notation
Symbol Description

T length of the observed sequence
N number of (hidden) states in the model
M number of distinct observation symbols
𝒪 observation sequence (𝒪0, 𝒪1, . . . , 𝒪T −1)
A N × N state transition probability matrix
B N × M observation probability matrix
π 1 × N initial state distribution matrix

Source: Stamp (2015).

Prasad Deshpande, Mark Stamp

process by probability distributions contained in the B matrix. The matrices A, B, and π
are row stochastic, that is, the elements of each row satisfy the conditions of a probability
distribution.

For the metamorphic malware detection problem considered in Wong and Stamp
(2006), opcodes are extracted from several members of a given metamorphic family.
These opcode sequences are concatenated to form a sequence 𝒪, and an HMM is trained
on 𝒪. To score a given file, its opcode sequence is extracted and scored against the trained
HMM. The results in Wong and Stamp (2006) indicate that this technique is highly
effective at detecting hacker-produced metamorphic code.

These results have been confirmed and further analyzed in a substantial body of
subsequent research, including Attaluri et al. (2009), Kazi and Stamp (2013), Lin and
Stamp (2011), Runwal et al. (2012), Shanmugam et al. (2013), Sridhara and Stamp (2012)
and Tamboli et al. (2014). Consequently, we use HMM scoring as a benchmark to measure
the effectiveness of the call graph technique considered here.

3. Call Graph Analysis

In this section, we first discuss previous malware detection work based on using call
graph analysis. Then we discuss function call graphs in general, and explain in detail the
scoring algorithm used in this research.

3.1 Previous work

Malware writers have developed a variety of techniques for evading signature
detection (Aycock, 2006). In contrast to signature detection, functional call graph analysis
relies on higher-level structure, that should be more difficult to obfuscate. The purpose

Figure 1 Generic Hidden Markov Model (Stamp, 2015)

Metamorphic Malware Detection Using Function Call Graph Analysi 21

of this research is to determine the effectiveness of call graph-based techniques when
confronted with advanced metamorphic malware. Such malware easily defeats signature
scanning and, if properly constructed, can also evade statistical-based detection (Sridhara
& Stamp, 2012).

A function call graph is created from the disassembled code of an executable as
follows. Each function is represented by a vertex, with directed edges represent the caller-
callee relationships between functions (Xu et al., 2013). In addition, edge “weights” can
be considered, which can be based on opcode analysis and graph coloring techniques.
Once such graphs have been constructed, determining the similarity between programs
reduces to determining the similarity between their function call graphs.

We implemented the technique given in (Xu et al., 2013). We apply this technique to
several advanced metamorphic generators. Our test results are given in Section 4. But first
we discuss the process used to construct function call graphs and to measure the similarity
of such graphs.

3.2 Function Call Graph Construction

An graph can be represented as G = (V, E), where V is the set of vertices and E is
the set of edges. For a function call graph, the vertices represent functions while the edges
represent caller-callee relationships between functions (Xu et al., 2013). The functions
in V are classified as one of two types, namely, local functions or external functions.
Local functions are contained within the executable, while external functions are system
or library functions. After disassembling an exe, functions begin with sub_xxxxxx and
end with sub_xxxxxx where “xxxxxx” represents the name of the function. For local
functions, the name of the called function is also found within the executable, while
external functions names are not.

Given an executable, we first disassemble it using IDA Pro (Hex-Ray, n.d.). From
the resulting assembly code, we search for functions and extract relevant information for
each. Once the relevant information has been extracted for all functions, the function call
graph is constructed. Figure 2 shows part of the function call graph for the virus Win32.
Bolzano. As can be seen in Figure 2, the graph consists of local functions (those with
names of the form sub_xxxxxx) and external functions, such as GetVersion. Note that
local functions can call external functions, but an external function cannot call a local
function.

As in Shang et al. (2010), we use a breadth first search (BFS) to determine caller-
callee relationships between functions. In a BFS, we start from a root node and process
successive levels. For our experiments, the entry point function serves as the root node
and the the algorithm used is a straightforward BFS; for additional details, see Shang et al.
(2010) or Deshpande (2013).

Prasad Deshpande, Mark Stamp

3.3 Function call graph similarity

Once function call graphs have been constructed, we then determine the simi-larity
of the corresponding programs by measuring the similarity of their graphs. External
functions are matched using their symbolic names, since these will be the same across
different programs. However, the symbolic names used for local functions need not be the
same across metamorphic code variants. Consequently, we must analyze local functions to
determine their similarity across different programs. We use three different techniques to
match local functions.

3.3.1 Matching external functions

External functions have the same name across all executables and make no further
calls within the call graph (Carrera & Erdelyi, 2004). Hence, in terms of the call graph,
external functions have in-degree 1 and out-degree 0, and these functions can be matched
based simply on their symbolic names. For example, the GetVersion function in one
function call graph can be matched with same function in any other call graph.

Given function call graphs G1 and G2, we extract the external functions from each.
As noted above, these functions are easily determined. Then both sets of external functions
are compared, and for any common symbolic names, the corresponding vertex is saved
to a common external vertex set, which will be used for scoring. Details of the scoring
process are given in Section 3.3, below.

3.3.2 Local function similarity based on external functions

The first method that we use to find matching local functions consists of match-ing
common external function calls. All local functions in the graphs G1 and G2 are compared
and we simply tabulate matches in the external functions called. If the number of such
matches is two or greater, the corresponding local functions are considered to match by
this criteria, so they are saved to a common local set.

Figure 2 Function Call Graph in Win32.Bolzano (Xu et al., 2013).

Metamorphic Malware Detection Using Function Call Graph Analysi 23

3.3.3 Local function similarity based on opcode sequences

Local functions that do not match based on external functions are compared based
on their opcode sequences. There are many different opcode-based similarity techniques
(Attaluri et al., 2009; Runwal et al., 2012; Shanmugam et al., 2013; Wong & Stamp., 2006).
So that our results will be consistent with previous work on call graph similarity, here we
use the opcode similarity technique in Xu et al. (2013), which we now describe in detail.

Each vertex in the call graph is “colored” depending on the instructions used.
Functions are considered to match provided their “colors” match. In case of matches, the
score is computed using cosine similarity.

To make this score more robust against morphing techniques such as code sub-
stitution, we classify all X86 instructions into one of 15 categories, according to their
function (Xu et al., 2013). These categories are listed in Table 4.

A 15-bit color variable is associated with each vertex corresponding to a local
function in the graph. If an opcode of type Ci appears in the function, bit i of the color
variable is set -- if no such opcode exists in the function, color bit i is 0. There is also a
corresponding vector that holds the count of the number of instructions in each class. For
example, the first column in Table 5 contains a function from Win32.DarkMoon. The

Table 4 x86 Instruction Classification
Class Type Description

C1 Data data transfer such as mov
C2 Stack stack operation
C3 Port in and out
C4 Lea destination address transmit
C5 Flag flag transmit
C6 Arithmetic shift, rotate, etc.
C7 Logic bitbyte operation
C8 String string operation
C9 Jump unconditional transfer
C10 Branch conditional transfer
C11 Loop loop control
C12 Halt stop instruction
C13 Bit bit test and bit scan
C14 Processor processor control
C15 Float floating point operation

Source: Xu et al. (2013).

Prasad Deshpande, Mark Stamp

second column in Table 5 lists the opcode, while the third column is the category of the
opcode, as found in Table 4.

The color variable and vector of counts from Table 5 appear in Table 6. These are
used for computing a score based on cosine similarity, which we now discuss.

Table 5 Local Function from Win32.DarkMoon
Assembly code Opcode Category

sub 4059DC proc near — —
push ebx push C2

mov ebx,eax mov C1

cmp ds:byte 4146C1, 0 cmp C6

jz short loc 405A04 jz C10

push 0 push C2

call SwapMouseButton call C9

mov ds:byte 4146C1, 0 mov C1

mov eax,ebx mov C1

mov edx,offset dword 405A28 mov C1

call sub 403DEC call C9

pop ebx pop C2

retn retn C9

push 0FFFFFFFFh push C2

call SwapMouseButton call C9

mov ds:byte 4146C1, 1 mov C1

mov eax,ebx mov C1

mov edx,offset dword 405A28 mov C1

call sub 403DEC call C9

pop ebx pop C2

retn retn C9

sub 4059DC endp — —
Source: Xu et al. (2013).

Table 6 Color Vector of Win32.DarkMoon
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

color 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
count 7 5 0 0 0 1 0 0 6 1 0 0 0 0 0

Source: Xu et al. (2013).

Metamorphic Malware Detection Using Function Call Graph Analysi 25

Let X = (x1, x2, . . . , x15) and Y = (y1, y2, . . . , y15) be the vectors of counts from two
functions. Then the cosine similarity between these two vectors is computed as

� (1)

If the color vectors match exactly, and the cosine similarity between the corre-
sponding count vectors is greater than a predetermined threshold, then the functions are
considered a match. In our experiments, we use the same parameters for scoring as in Xu
et al. (2013).

3.3.4 Local Function Similarity Based on Matched Neighbors

If two functions match, then it is more likely that functions corresponding to
neighboring vertices in the function call graphs should match. For example, suppose that
in Figure 3, vertex A has been matched with vertex B. Then there is a higher likelihood
that one or more of vertices U, V will match with one or more of the vertices X, Y, Z.

Because of this higher likelihood of a match, we alter the score computation for such
neighboring vertices. Successors and predecessors of previously matched functions are
scored using a slightly relaxed version of the color-based score discussed in the previous
section. The difference here is that there is no requirement that the color vectors match,
that is, we compute the cosine similarity score in (1), regardless of the color vectors. In
addition, we use a slightly different threshold for the similarity score.

3.3.5 Similarity Score

Given two function call graphs G1 and G2, we determine all common vertices using
the function matching algorithms outlined in Sections 3.3 through 3.3, above. Once we
have found all common vertices, we determine the common edges. Suppose vertices A
and B from G1 have been matched to vertices C and D from G2, respec-tively. If there is

Figure 3 Successors Functions of Matched A and B

Prasad Deshpande, Mark Stamp

an edge between A and B in G1 and an edge between C and D in G2, then G1 and G2 are
said to have a common edge. Let common edge (G1, G2) be the set of such common edges.
Then the similarity between two function call graphs is calculated as Xu et al. (2013).

� (2)

where E(Gi) is the edge set of the graph Gi.

4. Experiments

In this section, we analyze the performance of the similarity scoring algorithm
discussed in Section 3. We test the technique on two families of metamorphic malware,
namely, the Next Generation Virus Generation Kit (NGVCK) Snake-byte (2000) and the
experimental MWOR worms developed and analyzed in Sridhara and Stamp (2012). The
NGVCK viruses have previously been shown to be highly metamorphic, but detectable
using statistical-based techniques (Runwal et al., 2012; Shanmugam et al., 2013; Toderici
& Stamp, 2013; Wong & Stamp, 2006). The MWOR worms were designed to be highly
metamorphic and to evade statistical-based detection -- and they do successfully evade
such detection (Sridhara & Stamp, 2012). Both of these metamorphic families have been
used in studies of several other malware scoring techniques (Attaluri et al., 2009; Baysa
et al., 2013; Lin & Stamp, 2011; Runwal et al., 2012; Shanmugam et al., 2013; Toderici
& Stamp, 2013; Wong & Stamp, 2006), and hence they provide a basis for judging the
effectiveness of the call graph similarity score considered here.

4.1 Test Data

Our test data consists of 50 NGVCK virus files and a total of 120 MWOR files. The
MWOR worms have an adjustable “padding ratio” parameter that specifies the fraction
of dead code to worm code. For example, a padding ratio of 2.0 means that each worm
has twice as much dead code as actual functioning worm code. The dead code is selected
from benign files and, at higher ratios; it serves to effectively defeat statistical-based
detection techniques (Sridhara & Stamp, 2012). We consider distinct sets of MWOR
worms with padding ratios of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. For the NGVCK viruses we
use 50 Cygwin utility files as representative examples of benign files. Since MWOR is a
Linux worm, we use a set of 20 Linux library files for the representative benign set for the
MWOR experiments. These data sets are consistent with those used in previous related
research (Baysa et al., 2013; Runwal et al., 2012; Shanmugam et al., 2013; Wong &
Stamp, 2006). In all experiments, we score all pairs of malware samples with each other,
and we score all pairs consisting of one malware sample and one benign file.

Metamorphic Malware Detection Using Function Call Graph Analysi 27

4.2 Evaluation Criteria

To evaluate our results, we use Receiver Operating Characteristic (ROC) curves. To
construct an ROC curve, we plot the fraction of true positives versus the fraction of false
positives as the threshold varies through the range of scores. The area under the curve
(AUC) provides a single measure that enables us to directly compare experimental results.
An AUC of 1.0 indicates ideal separation, that is, we can set a threshold for which no false
positives of false negatives occur. At the other extreme, an AUC of 0.5 indicates that the
binary classifier performs no better than flipping a coin.

4.3 Test Results

4.3.1 NGVCK

First, we tested the call graph based scoring technique on NGVCK viruses. A
scatterplot of the resulting scores is given in Figure 4 (a), and the corresponding ROC
curve appears in Figure 4 (b). In this case, the AUC is clearly 1.0, as we have ideal
detection.

4.3.2 MWOR

Next, we tested the call graph score on MWOR worms, using a wide range of
padding ratios. Recall that the MWOR padding ratio is the fraction of dead code to
functional worm code. Figure 5 shows the similarity scores for MWOR worms, where the
padding ratio ranges from 0.5 to 3.0. These results show that for padding ratios of 2.0 or
less, we obtain ideal classification in each case. However, for padding ratios of 2.5 and
above, there will be some misclassifications, regardless of the threshold.

(a) Similarity scores (b) ROC curve

Figure 4 Call Graph Similarity for NGVCK Virus Family

Prasad Deshpande, Mark Stamp

(a) Padding ratio 1.0 (b) Padding ratio 1.5

(c) Padding ratio 2.0 (d) Padding ratio 2.5

(e) Padding ratio 3.0 (f) Padding ratio 4.0

Figure 5 MWOR Similarity Scores

Metamorphic Malware Detection Using Function Call Graph Analysi 29

ROC curves corresponding to the scores in Figure 5 were constructed, and the AUC
for each computed. The first column of Table 7 contains the AUC statistic for each of the
resulting ROC curves.

4.3.3 Comparison with Previous Work

Next, we compare the results obtained using the call graph score to an HMM-based
score. As previously mentioned, this HMM score has served as a benchmark for several
previous studies on malware detection and hence provides a useful measure of the success
of the call graph score, relative to previous work.

For the MWOR worms, a direct comparison (in terms of the AUC statistic) is
provided in Table 7, where the HMM results are taken from Sridhara and Stamp (2012)
and the “simple substitution” results are from Shanmugam et al. (2013) (which itself
improved on the HMM score for the MWOR family). From these results, we see that the
call graph technique is superior to both of these other techniques for padding ratios of
1.5 or greater. In Figure 6, we have plotted the results from Table 7 in the form of a bar
graph, which clearly shows the robustness of the call graph score with respect to common
morphing techniques.

5. Conclusion and future work

We implemented a function call graph technique and applied it to the malware
detection problem. Opcode analysis and graph coloring techniques are employed to
compute this score.

We tested this similarity score on two challenging metamorphic malware families.
The results show that the function call graph score outperforms a straightforward HMM-

Table 7 MWOR AUC Comparison

Padding ratio
Area under the ROC curve (AUC)

call graph HMM simple substitution
0.5 1.0000 1.0000 1.0000
1.0 1.0000 0.9900 1.0000
1.5 1.0000 0.9625 0.9980
2.0 1.0000 0.9725 0.9985
2.5 0.9999 0.8325 0.9859
3.0 0.9989 0.8575 0.9725
4.0 0.9979 0.8225 0.9565

Prasad Deshpande, Mark Stamp

based score and a “simple substitution” score. This is impressive, since the HMM score
has served as a benchmark in several previous studies, and it has proven difficult to
significantly improve on the HMM results.

Future work could focus on possible improvements to call graph score technique
considered in this paper. Specifically, the step where we match similar functions is worth
reconsidering. Possible alternatives to the graph coloring approach used here include any
of a variety of additional statistical techniques, such as HMM analysis (Wong & Stamp,
2006), chi-squared statistics (Toderici & Stamp, 2013), and the “simple substitution”
distance in Shanmugam et al. (2013). In addition, structural techniques such as the
entropy-based score in Baysa et al. (2013) and Sorokin (2011) or the compression-based
score in Lee et al. (2015) could prove more robust than scores that rely directly on opcode-
based analysis.

References

Attaluri, S., McGhee, S. and Stamp, M. (2009), ‘Profile hidden Markov models and
metamorphic virus detection’, Journal in Computer Virology, Vol. 5, No. 2, pp. 151-169.

Figure 6 AUC for Function Call Graph, Simple Substitution, and HMM Scores

Metamorphic Malware Detection Using Function Call Graph Analysi 31

Aycock, J.D. (2006), Computer Viruses and Malware, Springer-Verlag, New York, NY.

Baysa, D., Low, R.M. and Stamp, M. (2013), ‘Structural entropy and metamorphic malware’,
Journal of Computer Virology and Hacking Techniques, Vol. 9, No. 4, pp. 79-192.

Bilar, D. (2007), ‘On callgraphs and generative mechanisms’, Journal in Computer Virology,
Vol. 3, No. 4, pp. 285-297.

Borello, J. and Mé, L. (2008), ‘Code obfuscation techniques for metamorphic viruses’, Journal
in Computer Virology, Vol. 4, No. 3, pp. 211-220.

Carrera, E. and Erdelyi, G. (2004), ‘Digital genome mapping-advanced binary malware
analysis’, Proceeding Virus Bulletin Conference, City, State, pp. 187-197.

Christodorescu, M., Jha, S. and Kruegel, C. (2007), ‘Mining specifications of malicious
behavior’, Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Dubrovnik, Croatia, pp. 5-14.

Deshpande, P. (2013), ‘Metamorphic detection using function call graph analysis’, Unpublished
master thesis, San Jose State University, San Jose, CA.

Hex-Ray. (n.d.), ‘IDA: about’, available at: http://www.hex-rays.com/products/ida/index.shtml
(accessed on February 14 2017).

Karnik, A., Goswami, S. and Guha, R. (2007), ‘Detecting obfuscated viruses using cosine
similarity analysis’, Proceedings of the First Asia International Conference on Modelling
Simulation, Phuket, Thailand, pp. 165-170.

Kazi, S. and Stamp, M. (2013), ‘Hidden Markov models for software piracy detection’,
Information Security Journal: A Global Perspective, Vol. 22, No. 3, pp. 140-149.

Konstantinou, E. and Wolthusen, S. (2008), ‘Metamorphic virus: analysis and detection’,
Technical Report RHUL-MA-2008-02, Department of Mathematics, Royal Holloway,
University of London , Egham, UK.

Lee, J., Austin, T.H. and Stamp, M. (2015), ‘Compression-based analysis of metamor-phic
malware’, International Journal of Security and Networks, Vol. 10, No. 2, pp. 124-136.

Lin, D. and Stamp M. (2011), ‘Hunting for undetectable metamorphic viruses’, Journal in
Computer Virology, Vol. 7, No. 3, pp. 201-214.

Panda Security (2011) ‘Virus, worms, trojans and backdoors: other harmful relatives of viruses’,
available at: http://www.pandasecurity.com/homeusers-cms3/security-info/about-malware/
generalconcepts/concept-2.html (accessed on February 14 2017).

Prasad Deshpande, Mark Stamp

Rabiner, L.R. (1989), ‘A tutorial on hidden Markov models and selected applications in speech
recognition’, Proceeding of the IEEE, Vol. 77, No. 2, pp. 257-286.

Runwal, N., Low, R. and Stamp, M. (2012), ‘Opcode graph similarity and metamor-phic
detection’, Journal in Computer Virology, Vol. 8, No. 1-2, pp. 37-52.

Shang, S., Zheng, N., Xu, J., Xu, M. and Zhang, H. (2010), ‘Detecting malware variants via
function-call graph similarity’, 5th International Conference Malicious and Unwanted
Software, Nancy, France, pp. 113-120.

Shanmugam, G., Low, R. and Stamp, M. (2013), ‘Simple substitution distance and metamorphic
detection’, Journal of Computer Virology and Hacking Techniques, Vol. 9, No. 3, pp. 159-
170.

Snakebyte (2000) ‘Next generation virus construction kit (NGVCK)’, available at: http://
vxheaven.org/vx.php?id=tn02 (accessed on 14 February 2017).

Sorokin, I. (2011), ‘Comparing files using structural entropy’, Journal in Computer Virology,
Vol. 7, NO. 4, pp. 259-265.

Sridhara, S. and Stamp, M. (2012), ‘Metamorphic worm that carries its own morphing engine’,
Journal of Computer Virology and Hacking Techniques, Vol. 9, No. 2, pp. 49-58.

Stamp, M. (2015), ‘A revealing introduction to hidden Markov models’, available at: http://
www.cs.sjsu.edu/~stamp/RUA/HMM.pdf (accessed on 14 February 2017).

Symantec. (2011) ‘Internet security threat report, Vol. 17’, available at: http://www.symantec.
com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.
pdf (accessed on 14 February 2017).

Symantec. (n.d.), `Virus construction kit’, available at: http://computervirus.uw.hu/ch07lev1sec7.
html (accessed on 14 February 2017).

Szor, P. (2000), ‘The new 32-bit medusa’, available at: https://www.virusbulletin.com/uploads/
pdf/magazine/2000/200012.pdf (accessed on 14 February 2017).

Szor, P. (2005), ‘Advanced code evolution techniques and computer virus generator kits’,
available at: http://www.informit.com/articles/article.aspx?p=366890&seqNum=6
(accessed on 14 February 2017)

Szor, P. and Ferrie, P. (2001), ‘Hunting for metamorphic’, available at: https://www.symantec.
com/avcenter/reference/hunting.for.metamorphic.pdf (accessed on 14 February 2017).

Tamboli, T., Austin, T. and Stamp, M. (2014), ‘Metamorphic code generation from LLVM IR
bytecode’, Journal of Computer Virology and Hacking Techniques, Vol. 10, No. 3, pp. 177-187.

Metamorphic Malware Detection Using Function Call Graph Analysi 33

The Mental Driller. (2002) ‘Metamorphism in practice or “How I made MetaPHOR and what
I’ve learnt”, available at: http://biblio.l0t3k.net/magazine/en/29a/ (accessed on 14 February
2017).

Tips Trik Dan Berbagi Informasi. (n.d.), ‘Virus creation tools: VX heavens’, available at: http://
oktridarmadi.blogspot.com/2009/09/virus-creation-tools-vx-heavens.html (accessed on 14
February 2017).

Toderici, A.H. and Stamp, M. (2013), ‘Chi-squared distance and metamorphic virus detection’,
Journal of Computer Virology and Hacking Techniques, Vol. 9, No. 1, pp. 1-14.

VX Heavens (n.d.), ‘Access macro generator’, available at: http://download.adamas.ai/dlbase/
Stuff/VX%20Heavens%20Library/static/vdat/creatrs1.htm (accessed on 14 February 2017).

Wong, W. and Stamp, M. (2006), ‘Hunting for metamorphic engines’, Journal in Computer
Virology, Vol. 2, No. 3, pp. 211-219.

Xu, M., Wu, L., Qi, S., Xu, J., Zhang, H., Ren, Y. and Zheng, N. (2013), ‘A similarity metric
method of obfuscated malware us-ing function-call graph’, Journal of Computer Virology
and Hacking Techniques, Vol. 9, No. 1, pp. 35-47.

You, I. and Yim, K. (2010), ‘Malware obfuscation techniques: a brief survey’, International
Conference on Broadband, Wireless Computing, Communication and Applications,
Fukuoka, Japan, pp. 297-300.

Zbitskiy, P. (2009), ‘Code mutation techniques by means of formal grammars and automatons’,

Journal in Computer Virology, Vol. 5, No. 3, pp. 199-207.

Prasad Deshpande, Mark Stamp

About the authors

Prasad Deshpande holds an undergraduate degree from Pune University in India, and he
completed his Master’s in Computer Science at San Jose State University in December
2013. Prasad currently works on disaster recovery and business continuity products at
Symantec Corporation in Silicon Valley. E-mail address: prasad.0210@gmail.com

Mark Stamp can neither confirm nor deny that he spent more than seven years working as a
cryptologic mathematician at the super-secret National Security Agency. However, he can
confirm that he spent two years at a small Silicon Valley startup, developing a security-
related product. For the past dozen years, Mark has been employed as a Professor of
Computer Science at San Jose State University, where he teaches courses in information
security, conducts research on topics in security and machine learning, writes security-
related textbooks, and supervises ridiculously large numbers of Masters student projects.
Perhaps not surprisingly, most of his students projects are security-related.

	 Corresponding Associate Professor, Department of Computer Science, San Jose State
University, One Washington Square, San Jose, CA 95192. Tel: 408-492-5094. E-mail
address: mark.stamp@sjsu.edu

	MIS Review 21-1-2_全文_部分23
	MIS Review 21-1-2_全文_部分24
	MIS Review 21-1-2_全文_部分25
	MIS Review 21-1-2_全文_部分26
	MIS Review 21-1-2_全文_部分27
	MIS Review 21-1-2_全文_部分28
	MIS Review 21-1-2_全文_部分29
	MIS Review 21-1-2_全文_部分30
	MIS Review 21-1-2_全文_部分31
	MIS Review 21-1-2_全文_部分32
	MIS Review 21-1-2_全文_部分33
	MIS Review 21-1-2_全文_部分34
	MIS Review 21-1-2_全文_部分35
	MIS Review 21-1-2_全文_部分36
	MIS Review 21-1-2_全文_部分37
	MIS Review 21-1-2_全文_部分38
	MIS Review 21-1-2_全文_部分39
	MIS Review 21-1-2_全文_部分40
	MIS Review 21-1-2_全文_部分41
	MIS Review 21-1-2_全文_部分42

