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ABSTRACT:	 Previous work has shown that well-designed metamorphicmalware can evade many 
commonly-used malware detection techniques, including signature scanning. In this 
paper, we consider a previously developed score which is based on function call 
graph analysis. We test this score on challenging classes of metamorphic malware 
and we show that the resulting detection rates yield an improvement over other 
comparable techniques. These results indicate that the function call graph score is 
among the stronger malware scores developed to date.
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1. Introduction

Malware is a software that is designed to perform malicious activity (Panda Security, 
2011). Examples of such malicious activity range from crashing a system to collecting and 
infiltrating sensitive data. There are many different categories of malware, including virus, 
worm, trojan horse, logic bomb, back door, and spyware (Aycock, 2006). In this paper, we 
use the term virus generically to refer to any type of malware.

According to Symantec (2011), the number of unique malware variants increased 
from about 286 million to more than 403 million between 2010 and 2011. Also, in 2011, 
Symantec claimed to have blocked more than 5.5 billion attacks (Symantec, 2011). These 
numbers give some indication of the scope and prevalence of the malware threat--a 
massive threat that shows no sign of abating anytime soon. 

Code obfuscation is used to obscure the characteristics of code (Xu et al., 2013). 
Virus writers have developed a variety of code obfuscation techniques, many of which 
are designed to evade signature detection. Arguably, the most potent such technique 
is metamorphism, that is, code morphing that changes the internal structure with each 
infection, while maintaining the essentials of its original function (Shang et al., 2010). 
Metamorphic generators are readily available, so that even a novice attacker can easily 
take advantage of this powerful technique. Examples of notable metamorphic generators 
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include

•	 NGVCK (Next Generation Virus Creation Kit) (Snakebyte, 2000)

•	 MPCGEN (Mass Code Generator) (Tips Trik Dan Berbagi Informasi, n.d.)

•	 G2 (Second Generation Virus Generator) (VX Heavens, n.d.)

•	 VCL32 (Virus Creation Lab for Win32) (Attaluri et al., 2009)

•	 MetaPHOR (The Mental Driller, 2002)

•	 NRLG (NuKE’s Random Life Generator) (Symantec, n.d.)

•	 NEG (NoMercy Excel Generator) (Symantec, n.d.)

Function call graphs have been previously applied to the malware detection problem. 
For example, Bilar (2007) propose and analyze a mechanism to generate call graphs for 
malware detection. The paper Shang et al. (2010) proposes an algorithm to determine 
similarity between function call graphs, while Karnik et al. (2007) uses a cosine similarity 
metric to measure the overall similarity between code samples, based on call graphs. In 
Christodorescu et al. (2007), a data mining algorithm is used to construct call graphs via 
dynamic analysis. 

In this paper, we apply a call graph-based score to several challenging classes of 
metamorphic malware. We compare the results obtained using this call graph approach 
to previous results obtained using hidden Markov model (HMM) analysis (Wong & 
Stamp, 2006). These HMM results have previously served as a benchmark for comparing 
the effectiveness of a wide variety of detection techniques (Attaluri et al., 2009; Kazi 
& Stamp, 2013; Lin & Stamp, 2011; Runwal et al., 2012; Shanmugam et al., 2013; 
Sridhara & Stamp, 2012; Tamboli et al., 2014). We show that call graph analysis can yield 
improved results over many of these previous techniques in these particularly challenging 
cases. 

This paper is the first to test call graph based scoring on such challenging classes 
of malware. Our results indicate that function call graphs are a powerful technique for 
scoring malware, and such scores are relatively immune to many common obfuscation 
techniques. 

This paper is organized as follows. Section 2 provides background information on 
malware and detection techniques, including a discussion of Hidden Markov Models. We 
also briefly discuss various metamorphic techniques. In Section 3 we discuss call graph 
analysis and its application to malware detection and, of course, we emphasize the specific 
implementation that we have chosen. Section 4 contains our experimental results. Finally, 
Section 5 has our conclusion and suggestions for possible future work. 
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2. Background 

In this section, we first discuss metamorphic malware and various code morphing 
techniques. Then we briefly discuss Hidden Markov Models (HMMs) and their use in 
malware detection. HMMs will serve as a benchmark for comparing the call graph scores 
analyzed in this paper. 

2.1 Metamorphic techniques

A metamorphic generator can produce a large number of different generations of 
code, where the functionality remains the same, but the internal structure differs. Such 
code obfuscation can alter instructions as well as program data and control flow (Borello 
& Mé, 2008; You & Kim, 2010). These techniques can be used to evade signature 
detection, as well as to evade statistical analysis. Next, we briefly consider some code 
morphing techniques. 

2.1.1 Register swap

Register swapping is one of the easiest metamorphic techniques to implement, but 
it is also one of the least effective. RegSwap, which was arguably the first metamorphic 
viruses, used this technique exclusively (Szor, 2005). Table 1 shows code fragment from 
different generation of W95/RegSwap virus.

2.1.2 Transposition

Subroutine permutation is another elementary code morphing technique. If there 
are n subroutines, then it is trivial to generate n! different metamorphic copies by simply 
permuting the order of the subroutines. BadBoy and W32/Ghost are two viruses that 
employ subroutine permutation (Szor, 2005). BadBoy has 8 subroutines, so it can generate 
8! = 40320 different variants. 

Table 1   Two Generations of RegSwap
pop edx pop edx

mov edi, 0004h mov ebx, 0004h
mov esi, ebp mov edx, ebp
mov eax, 000Ch mov edi, 000Ch
add edx, 0088h add eax, 0088h
mov ebx, [edx] mov esi, [eax]
mov [esi+eax*4+00001118], ebx mov [edx+edi*4+00001118], esi
Source: Szor, 2005
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More generally, if two instructions (or groups of instructions) are independent of 
each other then their order can be changed. Even more general transposition can be used, 
provided jump instructions are inserted to preserve the order of code execution. 

2.1.3 Dead code insertion 

Dead code insertion can be a highly effective morphing strategy. Dead code may or 
may not be executed; if such code is executed, care must be taken so that it has no effect 
on the functioning of the program. Examples of dead code insertions are given Table 2 
Note that none of the instructions in Table 2 change the value of the register.

Dead code insertion is useful for evading signature detection and can also aid in 
evading statistical-based detection. Dead code insertion is used, for example, in Win95/
Zperm (Szor, 2005) and also in the experimental metamorphic worm MWOR, which is 
analyzed in Sridhara and Stamp (2012).

2.1.4 Instruction substitution 

An instruction or group of instructions can be substituted for another equivalent 
instruction or group of instructions. For example, the instruction xor eax, eax can be 
replaced by sub eax, eax. Instruction substitution can be highly effective, but is relatively 
difficult to implement. Instruction substitution is used extensively in W32/MetaPHOR 
(Szor, 2005) and also to some extent in the MWOR worm Sridhara and Stamp (2012). 

2.1.5 Formal grammar mutation 

A code morphing engine can be viewed as nondeterministic automata, where 
transitions are possible from every symbol to every other symbol (Zbitskiy, 2009). Here, 
the set of symbols consists of the set of possible instructions. By formalizing mutation 
techniques in this way, we can apply formal grammar rules and create malicious copies 
with large variation; see Zbitskiy (2009) for an example. 

Table 2   Example of Dead Code
Instruction Description
add Reg,0 Add value 0 to register
mov Reg,Reg Transfer register value to itself
or Reg, 0 Logical OR operation of register with 0
nop No operation

Source: Szor and Ferrie (2001)
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2.1.6 Host code mutation 

Some viruses mutate the code of the host along with their own code (Konstantinou 
& Wolthusen, 2008). Win95/Bistro is an example of malware that uses this concept of host 
code mutation Szor (2000). 

2.1.7 Code integration 

Win95/Zmist implements a “code integration” technique. Specifically, Zmist 
decompiles a portable executable (PE) file, inserts itself into the code of the file, 
regenerates the code and data references, and recompiles the executable (Szor & Ferrie, 
2001). 

2.2 Hidden Markov model based detection 

Hidden Markov Model (HMM) analysis has proven useful in a wide array of fields, 
ranging from speech recognition (Rabiner, 1989) to software piracy detection (Kazi & 
Stamp, 2013). Previous research has shown that HMMs can be a highly effective tool 
for detecting metamorphic malware (Attaluri et al., 2009; Lin & Stamp, 2011; Wong & 
Stamp, 2006). Since HMMs have been widely studied, we use an HMM-based score as 
the benchmark for comparison with the call graph score considered in this paper. 

An HMM includes a “hidden” Markov process, and a sequence of observations 
that are probabilistically related to this hidden process. We can train an HMM for a given 
sequence of observations. Then we can score a sequence against this trained model to 
determine how closely it matches the training data. The relevant notation commonly used 
in HMMs appears in Table 3. 

A generic HMM is illustrated in Figure 1, where Xt and 𝒪t represent the (hidden) 
state sequence and the observation sequence, respectively. The underlying Markov process 
is driven by the A matrix. The observations 𝒪t are related to the current state of the Markov 

Table 3   HMM Notation
Symbol Description 

T length of the observed sequence 
N number of (hidden) states in the model 
M number of distinct observation symbols 
𝒪 observation sequence (𝒪0, 𝒪1, . . . , 𝒪T −1) 
A N × N state transition probability matrix 
B N × M observation probability matrix 
π 1 × N initial state distribution matrix 

Source: Stamp (2015).
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process by probability distributions contained in the B matrix. The matrices A, B, and π 
are row stochastic, that is, the elements of each row satisfy the conditions of a probability 
distribution. 

For the metamorphic malware detection problem considered in Wong and Stamp 
(2006), opcodes are extracted from several members of a given metamorphic family. 
These opcode sequences are concatenated to form a sequence 𝒪, and an HMM is trained 
on 𝒪. To score a given file, its opcode sequence is extracted and scored against the trained 
HMM. The results in Wong and Stamp (2006) indicate that this technique is highly 
effective at detecting hacker-produced metamorphic code. 

These results have been confirmed and further analyzed in a substantial body of 
subsequent research, including Attaluri et al. (2009), Kazi and Stamp (2013), Lin and 
Stamp (2011), Runwal et al. (2012), Shanmugam et al. (2013), Sridhara and Stamp (2012) 
and Tamboli et al. (2014). Consequently, we use HMM scoring as a benchmark to measure 
the effectiveness of the call graph technique considered here. 

3. Call Graph Analysis 

In this section, we first discuss previous malware detection work based on using call 
graph analysis. Then we discuss function call graphs in general, and explain in detail the 
scoring algorithm used in this research. 

3.1 Previous work 

Malware writers have developed a variety of techniques for evading signature 
detection (Aycock, 2006). In contrast to signature detection, functional call graph analysis 
relies on higher-level structure, that should be more difficult to obfuscate. The purpose 

Figure 1   Generic Hidden Markov Model (Stamp, 2015)
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of this research is to determine the effectiveness of call graph-based techniques when 
confronted with advanced metamorphic malware. Such malware easily defeats signature 
scanning and, if properly constructed, can also evade statistical-based detection (Sridhara 
& Stamp, 2012). 

A function call graph is created from the disassembled code of an executable as 
follows. Each function is represented by a vertex, with directed edges represent the caller-
callee relationships between functions (Xu et al., 2013). In addition, edge “weights” can 
be considered, which can be based on opcode analysis and graph coloring techniques. 
Once such graphs have been constructed, determining the similarity between programs 
reduces to determining the similarity between their function call graphs. 

We implemented the technique given in (Xu et al., 2013). We apply this technique to 
several advanced metamorphic generators. Our test results are given in Section 4. But first 
we discuss the process used to construct function call graphs and to measure the similarity 
of such graphs. 

3.2 Function Call Graph Construction 

An graph can be represented as G = (V, E), where V is the set of vertices and E is 
the set of edges. For a function call graph, the vertices represent functions while the edges 
represent caller-callee relationships between functions (Xu et al., 2013). The functions 
in V are classified as one of two types, namely, local functions or external functions. 
Local functions are contained within the executable, while external functions are system 
or library functions. After disassembling an exe, functions begin with sub_xxxxxx and 
end with sub_xxxxxx where “xxxxxx” represents the name of the function. For local 
functions, the name of the called function is also found within the executable, while 
external functions names are not. 

Given an executable, we first disassemble it using IDA Pro (Hex-Ray, n.d.). From 
the resulting assembly code, we search for functions and extract relevant information for 
each. Once the relevant information has been extracted for all functions, the function call 
graph is constructed. Figure 2 shows part of the function call graph for the virus Win32.
Bolzano. As can be seen in Figure 2, the graph consists of local functions (those with 
names of the form sub_xxxxxx) and external functions, such as GetVersion. Note that 
local functions can call external functions, but an external function cannot call a local 
function.

As in Shang et al. (2010), we use a breadth first search (BFS) to determine caller-
callee relationships between functions. In a BFS, we start from a root node and process 
successive levels. For our experiments, the entry point function serves as the root node 
and the the algorithm used is a straightforward BFS; for additional details, see Shang et al. 
(2010) or Deshpande (2013). 
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3.3 Function call graph similarity 

Once function call graphs have been constructed, we then determine the simi-larity 
of the corresponding programs by measuring the similarity of their graphs. External 
functions are matched using their symbolic names, since these will be the same across 
different programs. However, the symbolic names used for local functions need not be the 
same across metamorphic code variants. Consequently, we must analyze local functions to 
determine their similarity across different programs. We use three different techniques to 
match local functions. 

3.3.1 Matching external functions 

External functions have the same name across all executables and make no further 
calls within the call graph (Carrera & Erdelyi, 2004). Hence, in terms of the call graph, 
external functions have in-degree 1 and out-degree 0, and these functions can be matched 
based simply on their symbolic names. For example, the GetVersion function in one 
function call graph can be matched with same function in any other call graph. 

Given function call graphs G1 and G2, we extract the external functions from each. 
As noted above, these functions are easily determined. Then both sets of external functions 
are compared, and for any common symbolic names, the corresponding vertex is saved 
to a common external vertex set, which will be used for scoring. Details of the scoring 
process are given in Section 3.3, below. 

3.3.2 Local function similarity based on external functions 

The first method that we use to find matching local functions consists of match-ing 
common external function calls. All local functions in the graphs G1 and G2 are compared 
and we simply tabulate matches in the external functions called. If the number of such 
matches is two or greater, the corresponding local functions are considered to match by 
this criteria, so they are saved to a common local set. 

Figure 2   Function Call Graph in Win32.Bolzano (Xu et al., 2013).



Metamorphic Malware Detection Using Function Call Graph Analysi   23

3.3.3 Local function similarity based on opcode sequences 

Local functions that do not match based on external functions are compared based 
on their opcode sequences. There are many different opcode-based similarity techniques 
(Attaluri et al., 2009; Runwal et al., 2012; Shanmugam et al., 2013; Wong & Stamp., 2006). 
So that our results will be consistent with previous work on call graph similarity, here we 
use the opcode similarity technique in Xu et al. (2013), which we now describe in detail. 

Each vertex in the call graph is “colored” depending on the instructions used. 
Functions are considered to match provided their “colors” match. In case of matches, the 
score is computed using cosine similarity. 

To make this score more robust against morphing techniques such as code sub-
stitution, we classify all X86 instructions into one of 15 categories, according to their 
function (Xu et al., 2013). These categories are listed in Table 4. 

A 15-bit color variable is associated with each vertex corresponding to a local 
function in the graph. If an opcode of type Ci appears in the function, bit i of the color 
variable is set -- if no such opcode exists in the function, color bit i is 0. There is also a 
corresponding vector that holds the count of the number of instructions in each class. For 
example, the first column in Table 5 contains a function from Win32.DarkMoon. The 

Table 4   x86 Instruction Classification
Class Type Description 

C1 Data data transfer such as mov 
C2 Stack stack operation 
C3 Port in and out 
C4 Lea destination address transmit 
C5 Flag flag transmit 
C6 Arithmetic shift, rotate, etc. 
C7 Logic bitbyte operation 
C8 String string operation 
C9 Jump unconditional transfer 
C10 Branch conditional transfer 
C11 Loop loop control 
C12 Halt stop instruction 
C13 Bit bit test and bit scan 
C14 Processor processor control 
C15 Float floating point operation 

Source: Xu et al. (2013).
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second column in Table 5 lists the opcode, while the third column is the category of the 
opcode, as found in Table 4. 

The color variable and vector of counts from Table 5 appear in Table 6. These are 
used for computing a score based on cosine similarity, which we now discuss.

Table 5   Local Function from Win32.DarkMoon
Assembly code Opcode Category

sub 4059DC proc near — —
push ebx push C2

mov ebx,eax mov C1

cmp ds:byte 4146C1, 0 cmp C6

jz short loc 405A04 jz C10

push 0 push C2

call SwapMouseButton call C9

mov ds:byte 4146C1, 0 mov C1

mov eax,ebx mov C1

mov edx,offset dword 405A28 mov C1

call sub 403DEC call C9

pop ebx pop C2

retn retn C9

push 0FFFFFFFFh push C2

call SwapMouseButton call C9

mov ds:byte 4146C1, 1 mov C1

mov eax,ebx mov C1

mov edx,offset dword 405A28 mov C1

call sub 403DEC call C9

pop ebx pop C2

retn retn C9

sub 4059DC endp — —
Source: Xu et al. (2013).

Table 6   Color Vector of Win32.DarkMoon
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

color 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 
count 7 5 0 0 0 1 0 0 6 1 0 0 0 0 0 

Source: Xu et al. (2013).
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Let X = (x1, x2, . . . , x15) and Y = (y1, y2, . . . , y15) be the vectors of counts from two 
functions. Then the cosine similarity between these two vectors is computed as

� (1)

If the color vectors match exactly, and the cosine similarity between the corre-
sponding count vectors is greater than a predetermined threshold, then the functions are 
considered a match. In our experiments, we use the same parameters for scoring as in Xu 
et al. (2013). 

3.3.4 Local Function Similarity Based on Matched Neighbors 

If two functions match, then it is more likely that functions corresponding to 
neighboring vertices in the function call graphs should match. For example, suppose that 
in Figure 3, vertex A has been matched with vertex B. Then there is a higher likelihood 
that one or more of vertices U, V will match with one or more of the vertices X, Y, Z. 

Because of this higher likelihood of a match, we alter the score computation for such 
neighboring vertices. Successors and predecessors of previously matched functions are 
scored using a slightly relaxed version of the color-based score discussed in the previous 
section. The difference here is that there is no requirement that the color vectors match, 
that is, we compute the cosine similarity score in (1), regardless of the color vectors. In 
addition, we use a slightly different threshold for the similarity score.

3.3.5 Similarity Score 

Given two function call graphs G1 and G2, we determine all common vertices using 
the function matching algorithms outlined in Sections 3.3 through 3.3, above. Once we 
have found all common vertices, we determine the common edges. Suppose vertices A 
and B from G1 have been matched to vertices C and D from G2, respec-tively. If there is 

Figure 3   Successors Functions of Matched A and B
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an edge between A and B in G1 and an edge between C and D in G2, then G1 and G2 are 
said to have a common edge. Let common edge (G1, G2) be the set of such common edges. 
Then the similarity between two function call graphs is calculated as Xu et al. (2013).

� (2)

where E(Gi) is the edge set of the graph Gi.

4. Experiments 

In this section, we analyze the performance of the similarity scoring algorithm 
discussed in Section 3. We test the technique on two families of metamorphic malware, 
namely, the Next Generation Virus Generation Kit (NGVCK) Snake-byte (2000) and the 
experimental MWOR worms developed and analyzed in Sridhara and Stamp (2012). The 
NGVCK viruses have previously been shown to be highly metamorphic, but detectable 
using statistical-based techniques (Runwal et al., 2012; Shanmugam et al., 2013; Toderici 
& Stamp, 2013; Wong & Stamp, 2006). The MWOR worms were designed to be highly 
metamorphic and to evade statistical-based detection -- and they do successfully evade 
such detection (Sridhara & Stamp, 2012). Both of these metamorphic families have been 
used in studies of several other malware scoring techniques (Attaluri et al., 2009; Baysa 
et al., 2013; Lin & Stamp, 2011; Runwal et al., 2012; Shanmugam et al., 2013; Toderici 
& Stamp, 2013; Wong & Stamp, 2006), and hence they provide a basis for judging the 
effectiveness of the call graph similarity score considered here. 

4.1 Test Data

Our test data consists of 50 NGVCK virus files and a total of 120 MWOR files. The 
MWOR worms have an adjustable “padding ratio” parameter that specifies the fraction 
of dead code to worm code. For example, a padding ratio of 2.0 means that each worm 
has twice as much dead code as actual functioning worm code. The dead code is selected 
from benign files and, at higher ratios; it serves to effectively defeat statistical-based 
detection techniques (Sridhara & Stamp, 2012). We consider distinct sets of MWOR 
worms with padding ratios of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. For the NGVCK viruses we 
use 50 Cygwin utility files as representative examples of benign files. Since MWOR is a 
Linux worm, we use a set of 20 Linux library files for the representative benign set for the 
MWOR experiments. These data sets are consistent with those used in previous related 
research (Baysa et al., 2013; Runwal et al., 2012; Shanmugam et al., 2013; Wong & 
Stamp, 2006). In all experiments, we score all pairs of malware samples with each other, 
and we score all pairs consisting of one malware sample and one benign file. 
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4.2 Evaluation Criteria 

To evaluate our results, we use Receiver Operating Characteristic (ROC) curves. To 
construct an ROC curve, we plot the fraction of true positives versus the fraction of false 
positives as the threshold varies through the range of scores. The area under the curve 
(AUC) provides a single measure that enables us to directly compare experimental results. 
An AUC of 1.0 indicates ideal separation, that is, we can set a threshold for which no false 
positives of false negatives occur. At the other extreme, an AUC of 0.5 indicates that the 
binary classifier performs no better than flipping a coin. 

4.3 Test Results 

4.3.1 NGVCK

First, we tested the call graph based scoring technique on NGVCK viruses. A 
scatterplot of the resulting scores is given in Figure 4 (a), and the corresponding ROC 
curve appears in Figure 4 (b). In this case, the AUC is clearly 1.0, as we have ideal 
detection. 

4.3.2 MWOR

Next, we tested the call graph score on MWOR worms, using a wide range of 
padding ratios. Recall that the MWOR padding ratio is the fraction of dead code to 
functional worm code. Figure 5 shows the similarity scores for MWOR worms, where the 
padding ratio ranges from 0.5 to 3.0. These results show that for padding ratios of 2.0 or 
less, we obtain ideal classification in each case. However, for padding ratios of 2.5 and 
above, there will be some misclassifications, regardless of the threshold. 

(a) Similarity scores (b) ROC curve

Figure 4   Call Graph Similarity for NGVCK Virus Family
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(a) Padding ratio 1.0 (b) Padding ratio 1.5

(c) Padding ratio 2.0 (d) Padding ratio 2.5

(e) Padding ratio 3.0 (f) Padding ratio 4.0

Figure 5   MWOR Similarity Scores
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ROC curves corresponding to the scores in Figure 5 were constructed, and the AUC 
for each computed. The first column of Table 7 contains the AUC statistic for each of the 
resulting ROC curves. 

4.3.3 Comparison with Previous Work 

Next, we compare the results obtained using the call graph score to an HMM-based 
score. As previously mentioned, this HMM score has served as a benchmark for several 
previous studies on malware detection and hence provides a useful measure of the success 
of the call graph score, relative to previous work. 

For the MWOR worms, a direct comparison (in terms of the AUC statistic) is 
provided in Table 7, where the HMM results are taken from Sridhara and Stamp (2012) 
and the “simple substitution” results are from Shanmugam et al. (2013) (which itself 
improved on the HMM score for the MWOR family). From these results, we see that the 
call graph technique is superior to both of these other techniques for padding ratios of 
1.5 or greater. In Figure 6, we have plotted the results from Table 7 in the form of a bar 
graph, which clearly shows the robustness of the call graph score with respect to common 
morphing techniques.

5. Conclusion and future work 

We implemented a function call graph technique and applied it to the malware 
detection problem. Opcode analysis and graph coloring techniques are employed to 
compute this score. 

We tested this similarity score on two challenging metamorphic malware families. 
The results show that the function call graph score outperforms a straightforward HMM-

Table 7   MWOR AUC Comparison

Padding ratio
Area under the ROC curve (AUC)

call graph HMM simple substitution
0.5 1.0000 1.0000 1.0000
1.0 1.0000 0.9900 1.0000
1.5 1.0000 0.9625 0.9980
2.0 1.0000 0.9725 0.9985
2.5 0.9999 0.8325 0.9859
3.0 0.9989 0.8575 0.9725
4.0 0.9979 0.8225 0.9565
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based score and a “simple substitution” score. This is impressive, since the HMM score 
has served as a benchmark in several previous studies, and it has proven difficult to 
significantly improve on the HMM results. 

Future work could focus on possible improvements to call graph score technique 
considered in this paper. Specifically, the step where we match similar functions is worth 
reconsidering. Possible alternatives to the graph coloring approach used here include any 
of a variety of additional statistical techniques, such as HMM analysis (Wong & Stamp, 
2006), chi-squared statistics (Toderici & Stamp, 2013), and the “simple substitution” 
distance in Shanmugam et al. (2013). In addition, structural techniques such as the 
entropy-based score in Baysa et al. (2013) and Sorokin (2011) or the compression-based 
score in Lee et al. (2015) could prove more robust than scores that rely directly on opcode-
based analysis.
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