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ABSTRACT: Previous work has shown that well-designed metamorphicmalware can evade many 
commonly-used malware detection techniques, including signature scanning. In this 
paper, we consider a previously developed score which is based on function call 
graph analysis. We test this score on challenging classes of metamorphic malware 
and we show that the resulting detection rates yield an improvement over other 
comparable techniques. These results indicate that the function call graph score is 
among the stronger malware scores developed to date.

KEYWORDS: Malware, Function Call Graph, Metamorphic Software

1. Introduction

Malware is a software that is designed to perform malicious activity (Panda Security, 
2011). Examples of such malicious activity range from crashing a system to collecting and 
infiltrating sensitive data. There are many different categories of malware, including virus, 
worm, trojan horse, logic bomb, back door, and spyware (Aycock, 2006). In this paper, we 
use the term virus generically to refer to any type of malware.

According to Symantec (2011), the number of unique malware variants increased 
from about 286 million to more than 403 million between 2010 and 2011. Also, in 2011, 
Symantec claimed to have blocked more than 5.5 billion attacks (Symantec, 2011). These 
numbers give some indication of the scope and prevalence of the malware threat--a 
massive threat that shows no sign of abating anytime soon. 

Code obfuscation is used to obscure the characteristics of code (Xu et al., 2013). 
Virus writers have developed a variety of code obfuscation techniques, many of which 
are designed to evade signature detection. Arguably, the most potent such technique 
is metamorphism, that is, code morphing that changes the internal structure with each 
infection, while maintaining the essentials of its original function (Shang et al., 2010). 
Metamorphic generators are readily available, so that even a novice attacker can easily 
take advantage of this powerful technique. Examples of notable metamorphic generators 
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include

•	 NGVCK	(Next	Generation	Virus	Creation	Kit)	(Snakebyte,	2000)

•	 MPCGEN	(Mass	Code	Generator)	(Tips	Trik	Dan	Berbagi	Informasi,	n.d.)

•	 G2	(Second	Generation	Virus	Generator)	(VX	Heavens,	n.d.)

•	 VCL32	(Virus	Creation	Lab	for	Win32)	(Attaluri	et	al.,	2009)

•	 MetaPHOR	(The	Mental	Driller,	2002)

•	 NRLG	(NuKE’s	Random	Life	Generator)	(Symantec,	n.d.)

•	 NEG	(NoMercy	Excel	Generator)	(Symantec,	n.d.)

Function call graphs have been previously applied to the malware detection problem. 
For	example,	Bilar	(2007)	propose	and	analyze	a	mechanism	to	generate	call	graphs	for	
malware detection. The paper Shang et al. (2010) proposes an algorithm to determine 
similarity	between	function	call	graphs,	while	Karnik	et	al.	(2007)	uses	a	cosine	similarity	
metric to measure the overall similarity between code samples, based on call graphs. In 
Christodorescu	et	al.	(2007),	a	data	mining	algorithm	is	used	to	construct	call	graphs	via	
dynamic analysis. 

In this paper, we apply a call graph-based score to several challenging classes of 
metamorphic	malware.	We	compare	the	results	obtained	using	this	call	graph	approach	
to	previous	 results	obtained	using	hidden	Markov	model	 (HMM)	analysis	 (Wong	&	
Stamp,	2006).	These	HMM	results	have	previously	served	as	a	benchmark	for	comparing	
the	effectiveness	of	a	wide	variety	of	detection	 techniques	(Attaluri	et	al.,	2009;	Kazi	
&	Stamp,	2013;	Lin	&	Stamp,	2011;	Runwal	et	al.,	2012;	Shanmugam	et	al.,	2013;	
Sridhara	&	Stamp,	2012;	Tamboli	et	al.,	2014).	We	show	that	call	graph	analysis	can	yield	
improved results over many of these previous techniques in these particularly challenging 
cases. 

This paper is the first to test call graph based scoring on such challenging classes 
of	malware.	Our	results	 indicate	 that	function	call	graphs	are	a	powerful	 technique	for	
scoring malware, and such scores are relatively immune to many common obfuscation 
techniques. 

This	paper	is	organized	as	follows.	Section	2	provides	background	information	on	
malware	and	detection	techniques,	including	a	discussion	of	Hidden	Markov	Models.	We	
also	briefly	discuss	various	metamorphic	techniques.	In	Section	3	we	discuss	call	graph	
analysis	and	its	application	to	malware	detection	and,	of	course,	we	emphasize	the	specific	
implementation that we have chosen. Section 4 contains our experimental results. Finally, 
Section 5 has our conclusion and suggestions for possible future work. 
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2. Background 

In this section, we first discuss metamorphic malware and various code morphing 
techniques.	Then	we	briefly	discuss	Hidden	Markov	Models	(HMMs)	and	their	use	 in	
malware	detection.	HMMs	will	serve	as	a	benchmark	for	comparing	the	call	graph	scores	
analyzed	in	this	paper.	

2.1 Metamorphic techniques

A metamorphic generator can produce a large number of different generations of 
code, where the functionality remains the same, but the internal structure differs. Such 
code	obfuscation	can	alter	instructions	as	well	as	program	data	and	control	flow	(Borello	
&	Mé,	2008;	You	&	Kim,	2010).	These	 techniques	can	be	used	 to	evade	 signature	
detection,	as	well	as	 to	evade	statistical	analysis.	Next,	we	briefly	consider	some	code	
morphing techniques. 

2.1.1 Register swap

Register	swapping	is	one	of	the	easiest	metamorphic	techniques	to	implement,	but	
it	 is	also	one	of	the	least	effective.	RegSwap,	which	was	arguably	the	first	metamorphic	
viruses,	used	this	technique	exclusively	(Szor,	2005).	Table	1	shows	code	fragment	from	
different	generation	of	W95/RegSwap	virus.

2.1.2 Transposition

Subroutine permutation is another elementary code morphing technique. If there 
are n subroutines, then it is trivial to generate n! different metamorphic copies by simply 
permuting	 the	order	of	 the	subroutines.	BadBoy	and	W32/Ghost	are	 two	viruses	 that	
employ	subroutine	permutation	(Szor,	2005).	BadBoy	has	8	subroutines,	so	it	can	generate	
8! = 40320 different variants. 

Table 1   Two Generations of RegSwap
pop edx pop edx

mov edi, 0004h mov ebx, 0004h
mov esi, ebp mov edx, ebp
mov eax, 000Ch mov edi, 000Ch
add edx, 0088h add eax, 0088h
mov ebx, [edx] mov esi, [eax]
mov [esi+eax*4+00001118], ebx mov [edx+edi*4+00001118], esi
Source:	Szor,	2005



Prasad Deshpande, Mark Stamp

More generally, if two instructions (or groups of instructions) are independent of 
each other then their order can be changed. Even more general transposition can be used, 
provided jump instructions are inserted to preserve the order of code execution. 

2.1.3 Dead code insertion 

Dead	code	insertion	can	be	a	highly	effective	morphing	strategy.	Dead	code	may	or	
may	not	be	executed;	if	such	code	is	executed,	care	must	be	taken	so	that	it	has	no	effect	
on the functioning of the program. Examples of dead code insertions are given Table 2 
Note	that	none	of	the	instructions	in	Table	2	change	the	value	of	the	register.

Dead	code	 insertion	 is	useful	for	evading	signature	detection	and	can	also	aid	 in	
evading	statistical-based	detection.	Dead	code	insertion	is	used,	for	example,	 in	Win95/
Zperm	(Szor,	2005)	and	also	in	the	experimental	metamorphic	worm	MWOR,	which	is	
analyzed	in	Sridhara	and	Stamp	(2012).

2.1.4 Instruction substitution 

An instruction or group of instructions can be substituted for another equivalent 
instruction or group of instructions. For example, the instruction xor eax, eax can be 
replaced by sub eax, eax. Instruction substitution can be highly effective, but is relatively 
difficult	 to	 implement.	 Instruction	substitution	is	used	extensively	 in	W32/MetaPHOR	
(Szor,	2005)	and	also	to	some	extent	in	the	MWOR	worm	Sridhara	and	Stamp	(2012).	

2.1.5 Formal grammar mutation 

A code morphing engine can be viewed as nondeterministic automata, where 
transitions	are	possible	from	every	symbol	to	every	other	symbol	(Zbitskiy,	2009).	Here,	
the	set	of	symbols	consists	of	 the	set	of	possible	instructions.	By	formalizing	mutation	
techniques in this way, we can apply formal grammar rules and create malicious copies 
with	large	variation;	see	Zbitskiy	(2009)	for	an	example.	

Table 2   Example of Dead Code
Instruction Description
add	Reg,0 Add value 0 to register
mov	Reg,Reg Transfer register value to itself
or	Reg,	0 Logical	OR	operation	of	register	with	0
nop No	operation

Source:	Szor	and	Ferrie	(2001)
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2.1.6 Host code mutation 

Some	viruses	mutate	the	code	of	the	host	along	with	their	own	code	(Konstantinou	
&	Wolthusen,	2008).	Win95/Bistro	is	an	example	of	malware	that	uses	this	concept	of	host	
code	mutation	Szor	(2000).	

2.1.7 Code integration 

Win95/Zmist	 implements	 a	 “code	 integration”	 technique.	Specifically,	Zmist	
decompiles	 a	portable	 executable	 (PE)	file,	 inserts	 itself	 into	 the	 code	of	 the	 file,	
regenerates	the	code	and	data	references,	and	recompiles	the	executable	(Szor	&	Ferrie,	
2001). 

2.2 Hidden Markov model based detection 

Hidden	Markov	Model	(HMM)	analysis	has	proven	useful	in	a	wide	array	of	fields,	
ranging	from	speech	recognition	(Rabiner,	1989)	 to	software	piracy	detection	(Kazi	&	
Stamp,	2013).	Previous	research	has	shown	that	HMMs	can	be	a	highly	effective	 tool	
for	detecting	metamorphic	malware	(Attaluri	et	al.,	2009;	Lin	&	Stamp,	2011;	Wong	&	
Stamp,	2006).	Since	HMMs	have	been	widely	studied,	we	use	an	HMM-based	score	as	
the benchmark for comparison with the call graph score considered in this paper. 

An	HMM	includes	a	“hidden”	Markov	process,	and	a	sequence	of	observations	
that	are	probabilistically	related	to	this	hidden	process.	We	can	train	an	HMM	for	a	given	
sequence of observations. Then we can score a sequence against this trained model to 
determine how closely it matches the training data. The relevant notation commonly used 
in	HMMs	appears	in	Table	3.	

A	generic	HMM	is	 illustrated	in	Figure	1,	where	Xt and 𝒪t represent the (hidden) 
state sequence and the observation sequence, respectively. The underlying Markov process 
is driven by the A matrix. The observations 𝒪t are related to the current state of the Markov 

Table 3   HMM Notation
Symbol Description 

T length of the observed sequence 
N number of (hidden) states in the model 
M number of distinct observation symbols 
𝒪 observation sequence (𝒪0, 𝒪1, . . . , 𝒪T	−1)	
A N × N state transition probability matrix 
B N × M observation probability matrix 
π 1 × N initial state distribution matrix 

Source: Stamp (2015).
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process by probability distributions contained in the B matrix. The matrices A, B, and π 
are row stochastic, that is, the elements of each row satisfy the conditions of a probability 
distribution. 

For	 the	metamorphic	malware	detection	problem	considered	 in	Wong	and	Stamp	
(2006), opcodes are extracted from several members of a given metamorphic family. 
These opcode sequences are concatenated to form a sequence 𝒪,	and	an	HMM	is	trained	
on 𝒪.	To	score	a	given	file,	its	opcode	sequence	is	extracted	and	scored	against	the	trained	
HMM.	The	 results	 in	Wong	and	Stamp	(2006)	 indicate	 that	 this	 technique	 is	highly	
effective at detecting hacker-produced metamorphic code. 

These	results	have	been	confirmed	and	further	analyzed	in	a	substantial	body	of	
subsequent	research,	 including	Attaluri	et	al.	 (2009),	Kazi	and	Stamp	(2013),	Lin	and	
Stamp	(2011),	Runwal	et	al.	(2012),	Shanmugam	et	al.	(2013),	Sridhara	and	Stamp	(2012)	
and	Tamboli	et	al.	(2014).	Consequently,	we	use	HMM	scoring	as	a	benchmark	to	measure	
the effectiveness of the call graph technique considered here. 

3. Call Graph Analysis 

In this section, we first discuss previous malware detection work based on using call 
graph analysis. Then we discuss function call graphs in general, and explain in detail the 
scoring algorithm used in this research. 

3.1 Previous work 

Malware writers have developed a variety of techniques for evading signature 
detection (Aycock, 2006). In contrast to signature detection, functional call graph analysis 
relies on higher-level structure, that should be more difficult to obfuscate. The purpose 

Figure 1   Generic Hidden Markov Model (Stamp, 2015)
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of this research is to determine the effectiveness of call graph-based techniques when 
confronted with advanced metamorphic malware. Such malware easily defeats signature 
scanning and, if properly constructed, can also evade statistical-based detection (Sridhara 
&	Stamp,	2012).	

A function call graph is created from the disassembled code of an executable as 
follows. Each function is represented by a vertex, with directed edges represent the caller-
callee	relationships	between	functions	(Xu	et	al.,	2013).	In	addition,	edge	“weights”	can	
be considered, which can be based on opcode analysis and graph coloring techniques. 
Once	such	graphs	have	been	constructed,	determining	the	similarity	between	programs	
reduces to determining the similarity between their function call graphs. 

We	implemented	the	technique	given	in	(Xu	et	al.,	2013).	We	apply	this	technique	to	
several	advanced	metamorphic	generators.	Our	test	results	are	given	in	Section	4.	But	first	
we discuss the process used to construct function call graphs and to measure the similarity 
of such graphs. 

3.2 Function Call Graph Construction 

An graph can be represented as G = (V, E), where V is the set of vertices and E is 
the set of edges. For a function call graph, the vertices represent functions while the edges 
represent caller-callee relationships between functions (Xu et al., 2013). The functions 
in V are classified as one of two types, namely, local functions or external functions. 
Local	functions	are	contained	within	the	executable,	while	external	functions	are	system	
or library functions. After disassembling an exe, functions begin with sub_xxxxxx and 
end	with	sub_xxxxxx	where	“xxxxxx”	represents	 the	name	of	 the	function.	For	 local	
functions, the name of the called function is also found within the executable, while 
external functions names are not. 

Given	an	executable,	we	first	disassemble	it	using	IDA	Pro	(Hex-Ray,	n.d.).	From	
the resulting assembly code, we search for functions and extract relevant information for 
each.	Once	the	relevant	information	has	been	extracted	for	all	functions,	the	function	call	
graph	is	constructed.	Figure	2	shows	part	of	the	function	call	graph	for	the	virus	Win32.
Bolzano.	As	can	be	seen	in	Figure	2,	 the	graph	consists	of	 local	functions	(those	with	
names	of	 the	form	sub_xxxxxx)	and	external	functions,	such	as	GetVersion.	Note	 that	
local functions can call external functions, but an external function cannot call a local 
function.

As	in	Shang	et	al.	(2010),	we	use	a	breadth	first	search	(BFS)	to	determine	caller-
callee	relationships	between	functions.	In	a	BFS,	we	start	from	a	root	node	and	process	
successive levels. For our experiments, the entry point function serves as the root node 
and	the	the	algorithm	used	is	a	straightforward	BFS;	for	additional	details,	see	Shang	et	al.	
(2010)	or	Deshpande	(2013).	
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3.3 Function call graph similarity 

Once	function	call	graphs	have	been	constructed,	we	then	determine	the	simi-larity	
of the corresponding programs by measuring the similarity of their graphs. External 
functions are matched using their symbolic names, since these will be the same across 
different	programs.	However,	the	symbolic	names	used	for	local	functions	need	not	be	the	
same	across	metamorphic	code	variants.	Consequently,	we	must	analyze	local	functions	to	
determine	their	similarity	across	different	programs.	We	use	three	different	techniques	to	
match local functions. 

3.3.1 Matching external functions 

External functions have the same name across all executables and make no further 
calls within the call graph (Carrera	&	Erdelyi,	2004).	Hence,	in	terms	of	the	call	graph,	
external functions have in-degree 1 and out-degree 0, and these functions can be matched 
based	simply	on	 their	symbolic	names.	For	example,	 the	GetVersion	function	 in	one	
function call graph can be matched with same function in any other call graph. 

Given	function	call	graphs	G1 and G2, we extract the external functions from each. 
As noted above, these functions are easily determined. Then both sets of external functions 
are compared, and for any common symbolic names, the corresponding vertex is saved 
to a common external vertex set,	which	will	be	used	for	scoring.	Details	of	 the	scoring	
process are given in Section 3.3, below. 

3.3.2 Local function similarity based on external functions 

The	first	method	that	we	use	to	find	matching	local	functions	consists	of	match-ing	
common external function calls. All local functions in the graphs G1 and G2 are compared 
and we simply tabulate matches in the external functions called. If the number of such 
matches is two or greater, the corresponding local functions are considered to match by 
this criteria, so they are saved to a common local set. 

Figure 2   Function Call Graph in Win32.Bolzano (Xu et al., 2013).
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3.3.3 Local function similarity based on opcode sequences 

Local	functions	that	do	not	match	based	on	external	functions	are	compared	based	
on their opcode sequences. There are many different opcode-based similarity techniques 
(Attaluri	et	al.,	2009;	Runwal	et	al.,	2012;	Shanmugam	et	al.,	2013;	Wong	&	Stamp.,	2006).	
So that our results will be consistent with previous work on call graph similarity, here we 
use the opcode similarity technique in Xu et al. (2013), which we now describe in detail. 

Each	vertex	 in	 the	call	graph	 is	“colored”	depending	on	 the	 instructions	used.	
Functions	are	considered	to	match	provided	their	“colors”	match.	In	case	of	matches,	the	
score is computed using cosine similarity. 

To make this score more robust against morphing techniques such as code sub-
stitution, we classify all X86 instructions into one of 15 categories, according to their 
function (Xu et al., 2013). These categories are listed in Table 4. 

A 15-bit color variable is associated with each vertex corresponding to a local 
function in the graph. If an opcode of type Ci appears in the function, bit i of the color 
variable is set -- if no such opcode exists in the function, color bit i is 0. There is also a 
corresponding vector that holds the count of the number of instructions in each class. For 
example,	 the	first	column	in	Table	5	contains	a	function	from	Win32.DarkMoon.	The	

Table 4   x86 Instruction Classification
Class Type Description 

C1 Data	 data transfer such as mov 
C2 Stack stack operation 
C3 Port in and out 
C4 Lea	 destination address transmit 
C5 Flag flag transmit 
C6 Arithmetic shift, rotate, etc. 
C7	 Logic	 bitbyte operation 
C8 String string operation 
C9	 Jump unconditional transfer 
C10 Branch	 conditional transfer 
C11 Loop	 loop control 
C12 Halt	 stop instruction 
C13 Bit	 bit test and bit scan 
C14 Processor processor control 
C15 Float floating point operation 

Source: Xu et al. (2013).
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second column in Table 5 lists the opcode, while the third column is the category of the 
opcode, as found in Table 4. 

The color variable and vector of counts from Table 5 appear in Table 6. These are 
used for computing a score based on cosine similarity, which we now discuss.

Table 5   Local Function from Win32.DarkMoon
Assembly code Opcode Category

sub	4059DC	proc	near — —
push ebx push C2

mov ebx,eax mov C1

cmp ds:byte 4146C1, 0 cmp C6

jz	short	loc	405A04 jz C10

push 0 push C2

call	SwapMouseButton call C9

mov ds:byte 4146C1, 0 mov C1

mov eax,ebx mov C1

mov edx,offset dword 405A28 mov C1

call	sub	403DEC call C9

pop ebx pop C2

retn retn C9

push 0FFFFFFFFh push C2

call	SwapMouseButton call C9

mov ds:byte 4146C1, 1 mov C1

mov eax,ebx mov C1

mov edx,offset dword 405A28 mov C1

call	sub	403DEC call C9

pop ebx pop C2

retn retn C9

sub	4059DC	endp — —
Source: Xu et al. (2013).

Table 6   Color Vector of Win32.DarkMoon
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

color 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 
count 7	 5 0 0 0 1 0 0 6 1 0 0 0 0 0 

Source: Xu et al. (2013).
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Let	X = (x1, x2, . . . , x15) and Y = (y1, y2, . . . , y15) be the vectors of counts from two 
functions. Then the cosine similarity between these two vectors is computed as

 (1)

If the color vectors match exactly, and the cosine similarity between the corre-
sponding count vectors is greater than a predetermined threshold, then the functions are 
considered a match. In our experiments, we use the same parameters for scoring as in Xu 
et al. (2013). 

3.3.4 Local Function Similarity Based on Matched Neighbors 

If two functions match, then it is more likely that functions corresponding to 
neighboring vertices in the function call graphs should match. For example, suppose that 
in Figure 3, vertex A has been matched with vertex B. Then there is a higher likelihood 
that one or more of vertices U, V will match with one or more of the vertices X, Y, Z. 

Because	of	this	higher	likelihood	of	a	match,	we	alter	the	score	computation	for	such	
neighboring vertices. Successors and predecessors of previously matched functions are 
scored using a slightly relaxed version of the color-based score discussed in the previous 
section. The difference here is that there is no requirement that the color vectors match, 
that is, we compute the cosine similarity score in (1), regardless of the color vectors. In 
addition, we use a slightly different threshold for the similarity score.

3.3.5 Similarity Score 

Given	two	function	call	graphs	G1 and G2, we determine all common vertices using 
the	function	matching	algorithms	outlined	in	Sections	3.3	through	3.3,	above.	Once	we	
have found all common vertices, we determine the common edges. Suppose vertices A 
and B from G1 have been matched to vertices C and D from G2, respec-tively. If there is 

Figure 3   Successors Functions of Matched A and B
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an edge between A and B in G1 and an edge between C and D in G2, then G1 and G2 are 
said	to	have	a	common	edge.	Let	common	edge	(G1, G2) be the set of such common edges. 
Then the similarity between two function call graphs is calculated as Xu et al. (2013).

 (2)

where E(Gi) is the edge set of the graph Gi.

4. Experiments 

In	 this	 section,	we	analyze	 the	performance	of	 the	similarity	scoring	algorithm	
discussed	in	Section	3.	We	test	the	technique	on	two	families	of	metamorphic	malware,	
namely,	the	Next	Generation	Virus	Generation	Kit	(NGVCK)	Snake-byte	(2000)	and	the	
experimental	MWOR	worms	developed	and	analyzed	in	Sridhara	and	Stamp	(2012).	The	
NGVCK	viruses	have	previously	been	shown	to	be	highly	metamorphic,	but	detectable	
using	statistical-based	techniques	(Runwal	et	al.,	2012;	Shanmugam	et	al.,	2013;	Toderici	
&	Stamp,	2013;	Wong	&	Stamp,	2006).	The	MWOR	worms	were	designed	to	be	highly	
metamorphic and to evade statistical-based detection -- and they do successfully evade 
such	detection	(Sridhara	&	Stamp,	2012).	Both	of	these	metamorphic	families	have	been	
used	in	studies	of	several	other	malware	scoring	techniques	(Attaluri	et	al.,	2009;	Baysa	
et	al.,	2013;	Lin	&	Stamp,	2011;	Runwal	et	al.,	2012;	Shanmugam	et	al.,	2013;	Toderici	
&	Stamp,	2013;	Wong	&	Stamp,	2006),	and	hence	they	provide	a	basis	for	judging	the	
effectiveness of the call graph similarity score considered here. 

4.1 Test Data

Our	test	data	consists	of	50	NGVCK	virus	files	and	a	total	of	120	MWOR	files.	The	
MWOR	worms	have	an	adjustable	“padding	ratio”	parameter	that	specifies	the	fraction	
of dead code to worm code. For example, a padding ratio of 2.0 means that each worm 
has twice as much dead code as actual functioning worm code. The dead code is selected 
from	benign	files	and,	at	higher	ratios;	 it	 serves	 to	effectively	defeat	statistical-based	
detection	 techniques	 (Sridhara	&	Stamp,	2012).	We	consider	distinct	sets	of	MWOR	
worms	with	padding	ratios	of	0.5,	1.0,	1.5,	2.0,	2.5,	and	3.0.	For	the	NGVCK	viruses	we	
use	50	Cygwin	utility	files	as	representative	examples	of	benign	files.	Since	MWOR	is	a	
Linux	worm,	we	use	a	set	of	20	Linux	library	files	for	the	representative	benign	set	for	the	
MWOR	experiments.	These	data	sets	are	consistent	with	those	used	in	previous	related	
research	(Baysa	et	al.,	2013;	Runwal	et	al.,	2012;	Shanmugam	et	al.,	2013;	Wong	&	
Stamp, 2006). In all experiments, we score all pairs of malware samples with each other, 
and	we	score	all	pairs	consisting	of	one	malware	sample	and	one	benign	file.	
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4.2 Evaluation Criteria 

To	evaluate	our	results,	we	use	Receiver	Operating	Characteristic	(ROC)	curves.	To	
construct	an	ROC	curve,	we	plot	the	fraction	of	true	positives	versus	the	fraction	of	false	
positives as the threshold varies through the range of scores. The area under the curve 
(AUC) provides a single measure that enables us to directly compare experimental results. 
An AUC of 1.0 indicates ideal separation, that is, we can set a threshold for which no false 
positives of false negatives occur. At the other extreme, an AUC of 0.5 indicates that the 
binary classifier performs no better than flipping a coin. 

4.3 Test Results 

4.3.1 NGVCK

First,	we	 tested	 the	call	graph	based	scoring	 technique	on	NGVCK	viruses.	A	
scatterplot	of	 the	resulting	scores	 is	given	in	Figure	4	(a),	and	the	corresponding	ROC	
curve appears in Figure 4 (b). In this case, the AUC is clearly 1.0, as we have ideal 
detection. 

4.3.2 MWOR

Next,	we	 tested	 the	call	graph	score	on	MWOR	worms,	using	a	wide	 range	of	
padding	 ratios.	Recall	 that	 the	MWOR	padding	 ratio	 is	 the	 fraction	of	dead	code	 to	
functional	worm	code.	Figure	5	shows	the	similarity	scores	for	MWOR	worms,	where	the	
padding ratio ranges from 0.5 to 3.0. These results show that for padding ratios of 2.0 or 
less,	we	obtain	ideal	classification	in	each	case.	However,	for	padding	ratios	of	2.5	and	
above, there will be some misclassifications, regardless of the threshold. 

(a) Similarity scores (b)	ROC	curve

Figure 4   Call Graph Similarity for NGVCK Virus Family
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(a) Padding ratio 1.0 (b) Padding ratio 1.5

(c) Padding ratio 2.0 (d) Padding ratio 2.5

(e) Padding ratio 3.0 (f) Padding ratio 4.0

Figure 5   MWOR Similarity Scores
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ROC	curves	corresponding	to	the	scores	in	Figure	5	were	constructed,	and	the	AUC	
for	each	computed.	The	first	column	of	Table	7	contains	the	AUC	statistic	for	each	of	the	
resulting	ROC	curves.	

4.3.3 Comparison with Previous Work 

Next,	we	compare	the	results	obtained	using	the	call	graph	score	to	an	HMM-based	
score.	As	previously	mentioned,	this	HMM	score	has	served	as	a	benchmark	for	several	
previous studies on malware detection and hence provides a useful measure of the success 
of the call graph score, relative to previous work. 

For	 the	MWOR	worms,	a	direct	comparison	 (in	 terms	of	 the	AUC	statistic)	 is	
provided	in	Table	7,	where	the	HMM	results	are	taken	from	Sridhara	and	Stamp	(2012)	
and	 the	“simple	substitution”	results	are	 from	Shanmugam	et	al.	 (2013)	(which	 itself	
improved	on	the	HMM	score	for	the	MWOR	family).	From	these	results,	we	see	that	the	
call graph technique is superior to both of these other techniques for padding ratios of 
1.5	or	greater.	In	Figure	6,	we	have	plotted	the	results	from	Table	7	in	the	form	of	a	bar	
graph, which clearly shows the robustness of the call graph score with respect to common 
morphing techniques.

5. Conclusion and future work 

We	implemented	a	 function	call	graph	 technique	and	applied	 it	 to	 the	malware	
detection	problem.	Opcode	analysis	and	graph	coloring	 techniques	are	employed	 to	
compute this score. 

We	tested	this	similarity	score	on	two	challenging	metamorphic	malware	families.	
The	results	show	that	the	function	call	graph	score	outperforms	a	straightforward	HMM-

Table 7   MWOR AUC Comparison

Padding ratio
Area under the ROC curve (AUC)

call graph HMM simple substitution
0.5 1.0000 1.0000 1.0000
1.0 1.0000 0.9900 1.0000
1.5 1.0000 0.9625 0.9980
2.0 1.0000 0.9725 0.9985
2.5 0.9999 0.8325 0.9859
3.0 0.9989 0.8575 0.9725
4.0 0.9979 0.8225 0.9565
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based	score	and	a	“simple	substitution”	score.	This	is	impressive,	since	the	HMM	score	
has served as a benchmark in several previous studies, and it has proven difficult to 
significantly	improve	on	the	HMM	results.	

Future work could focus on possible improvements to call graph score technique 
considered in this paper. Specifically, the step where we match similar functions is worth 
reconsidering. Possible alternatives to the graph coloring approach used here include any 
of	a	variety	of	additional	statistical	techniques,	such	as	HMM	analysis	(Wong	&	Stamp,	
2006),	chi-squared	statistics	 (Toderici	&	Stamp,	2013),	and	 the	“simple	substitution”	
distance in Shanmugam et al. (2013). In addition, structural techniques such as the 
entropy-based	score	in	Baysa	et	al.	(2013)	and	Sorokin	(2011)	or	the	compression-based	
score	in	Lee	et	al.	(2015)	could	prove	more	robust	than	scores	that	rely	directly	on	opcode-
based analysis.
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