
Neural Networks: Proposed Methodology for Applications Development

Thomas A. Bodnovich1)

1)Department of Computer Science and Information Systems, Youngstown State University
Youngstown, OH  44555, USA

1)Department of Administrative Sciences, Kent State University
Kent, OH  44242, USA

tom@cis.ysu.edu

Abstract

 A review of published business neural network applications research is conducted to determine what parts of
development methodologies were used or could have been used in designing, constructing, and deploying the
networks. This review is limited to articles describing either the development of a prototype or an actual neural
network application. Based upon this review and upon accepted development processes for creating NNs, a
methodology for the complete development of neural network applications is proposed. The methodology
provides a systematic view of the steps involved in the development of a successful NN business application
which will allow for (1) better analysis of existing NN applications,  (2) identification and development of new
applications that can benefit from NN technology,  and (3) development of improved NN applications.

1. Introduction

In recent years many great advances have been made in computer artificial neural networks (NNs). These advances
extend the pioneering work of David Rumelhart and James McLelland [54] on back propagation NNs, Teuvo Kohonen
[41] on self-organizing map NNs, and John Hopfield [31,32] on the use of NN as associative memory. This progress
has contributed to the development of numerous scientific as well as business applications [77]. Furthermore, a process
for developing NNs has become accepted and it is somewhat analogous to the structured design methodoloies used in
designing other types of information systems [67]. The goal of this paper is to propose a methodology which expands
upon this existing process of NN development. This methodology can then be used to facilitate the development of NN
business applications. Hopefully, such a methodology can lead to greater successes in these applications and provide
insights about the development process. This paper first discusses the importance of this research and the methodology
used to conduct this study, and then it presents a methodology for implementing NN solutions.

2. Value of Research

NNs have been constructed for solving problems in a wide variety of business application areas such as accounting,
auditing, finance, human resources, information systems, marketing/distribution, and production/operations. It has been
demonstrated that many of these NNs improve the accuracy, consistency, effectiveness, efficiency, and/or flexibility of
these applications [78]. This project will increase our understanding NNs in business problem solving by examining
past research from the perspective of a NN development methodology. This will provide a systematic view of the steps
involved in the development of a successful NN business application which will allow for (1) better analysis of existing
NN applications, (2) identification and development of new applications that can benefit from NN technology, and (3)
development of improved NN applications.

3. Prior Research

Villegas and Eberts [70] identified five steps for developing a NN. Chu and Widjaja [11] demonstrated how technical
design decisions could be determined for creating a forecasting NN. Hwarng [34] investigated training strategies and
data selection for recognizing cyclic data. Rangwala and Dornfield [52] and Knapp and Wang [40] investigated
strategies for reducing training time. Lee and Jhee [42] investigated adding noise to input data sets. Bahrami et al. [2],
Chu and Holm [12], Cui and Shin [16], Oh et al. [49], and Taha et al. [64] proposed a new NN framework or
architecture for an application. While many researchers have proposed and investigated various steps in designing,
constructing, and deploying a specific neural network, none have investigated or proposed expanding upon a current
development process to create a more complete or comprehensive development methodology for neural network
applications.



  

4. Research Methodology

The research methodology is based upon the technique employed by Wong et. al. [77,78] in earlier NN studies. The
ABI/INFORM database was searched back to 1971 to access abstracts of articles from 800 different business-related
journals using the descriptors �neural network� and �neural networks�. Similarly, the Business Periodical Index (BPI)
was searched back to 1971 with the same search argument. The BPI indexes 340 business-related journals. There is
some overlap between the BPI and ABI/INFORM, so only articles not included in the ABI database will be considered
for further review at this step.

Although the ABI and BPI searches provided access to a very diverse collection of journals, some additional
journals were also searched. These supplementary journals were selected for review if they are known to publish articles
on neural networks, artificial intelligence, or if they are important to the field of MIS [23,28,77]. These additional
journals include AI Expert, Artificial Intelligence, Communications of the ACM, DATABASE, Expert Systems: The
International Journal of Knowledge Engineering and Neural Networks, IEEE Expert, IEEE Transactions on Neural
Networks, IEEE Transactions on Software Engineering, IEEE Transactions on Systems, Man, and Cybernetics,
Information Systems Research, International Journal of Man Machine Studies, International Journal of Production
Research, Journal of Management Information Systems, Journal of Management Systems, and Omega: The
International Journal of Management Science.

Articles from ABI, BPI, and the additional journals were then reviewed to determine if they describe either the
development of a prototype or an actual neural network application. References from these articles are also examined.
Those articles which satisfied this criteria were then examined to determine what parts (if any) of a development
methodology was used (or could have been used) in creating the NN.

5. Neural Network Development Methodology

The design, construction, and implementation of over 200 business neural networks were examined to gain an
understanding of how a development methodology may assist practitioners and researchers in the creation of neural
networks. Applying the results of this examination to a conventional NN development process presented by Turban [67],
the following methodology is proposed.

5.1 Identify problem as suitable for a neural network solution
All problems are not equally good candidates for neural network solutions. Obviously well structured problems with

explicit solution steps are better suited for traditional computer program solutions. But when reasoning or inference is
required, then some type of artificial intelligence solution may be appropriate. Several possible choices include expert
systems, genetic algorithms, and neural networks. For problems which have no sample solutions and no well-defined
rules, but which have known characteristics of good solutions, genetic algorithms may be a suitable technology[25].
Other problems which require reasoning and for which rules may be well-defined are probably better suited for expert
system solutions [60]. Lastly, problems which are suited for intuitive decision making for which rules do not or can not
be identified may be appropriate for neural network solutions [60]. NNs can uncover relationships when provided with
sufficient data and thereby provide new insights for problems [5]. They can also continue to learn after being deployed
in a production environment. In a dynamic environment, this continual learning may make NNs superior to causal
models or static techniques (i.e., linear regression or discriminant analysis).

Applying the well established decision processing phase model of Simon [59], NNs seem better suited to the
intelligence and choice phases. Schocken and Ariav [57] reveal NNs are very well suited for the intelligence phase of
the decision process. In this phase, many NN applications have successfully identified problems, such as operations
process fault diagnosis [62], machine fault diagnosis [7], computer vision inspection [9], and bankruptcy prediction [65].
Wong et al. [78] report that almost one third of NN applications support the choice phase of decision making. Such
applications include selecting optimal or near optimal job shop schedules [56,58] and LIFO/FIFO accounting choice
[43]. Whereas there are many examples in the literature of NNs supporting the intelligence and choice phases of
decision making, there are relatively few examples of NNs supporting the design phase.

NN learning algorithms are inductive, and therefore require masses of data and repetitive examples [57]. Valasco
and Rowe [68] used 2000 values for training a BP NN for analyzing quality control charts, while Jain and Nag [35]
used 552 new issues to train a NN for pricing IPOs. Villegas and Eberts [70] used 4182 training patterns, Wong and
Long [79] used 400 training patterns, and Altman et al. [1] used 808 examples. Because of the need for large amounts
of data, some problems which appear to be potential candidates for NN based solutions must be eliminated because of
an insufficient amount of data.

Lastly, sometimes simpler is better. Barr and Mani [3] report that a NN becomes more effective as it becomes more
task specific. They investigate the use of NNs to manage investments and suggest that a NN which predicts a market�s
trend and amplitude will be less effective than one which only predicts its trend.



  

5.2 Identify relevant input fields
Wang et al. [72] use linear regression to identify relevant input fields. But since NNs can model nonlinear

relationships [53,22], linear regression may not be an appropriate technique for identifying all inputs. Other techniques
for recognizing appropriate input fields are genetic algorithm preprocessing [47] and non-parametric regression.

5.3 Collect and prepare the data
NNs require numeric quantities as inputs. Values such as greater, less, yes, no, A, B, or C must therefore be

converted to numbers. Numeric input data may also require some type of transformation. Many researchers suggest
normalizing input data [80].

Kaastra and Boyd [37] use mean/standard deviation scaling to scale all variables between 0 and 1. Any observations
which are at least two standard deviations less than the mean are mapped to 0, similarly any of those observations which
are at least two standard deviations greater than the mean are mapped to 1. This scaling reduces outlier effects and
provides a more uniform distribution. Wong and Long [79] achieve optimal performance by pre-processing input data
to remove linear trends, seasonal variations, and outliers.

5.4 Divide data into training, testing, and validation sets
Input data for developing a NN is divided into two or three sets. A training set is used to train the NN. The weights of

the NN are adjusted as it learns or discovers the relationships in this data. Later, the NN is presented with the testing set.
The data in this set is used to evaluate how well the NN will perform with new or unseen data. Lastly, some developers
create a validation set. This set is the combination of the training and testing sets. It may also be used to measure the
performance of the network.

There is no single procedure for determining the proportion of data that should be placed in the training and testing
sets. Many researchers use 50 percent of the data for training the NN and 50 percent for testing [83,24,35], although
Jensen [36] used 60% for training and 40% for testing, and Wong and Long [79] reported using 93% for training and
only 7% for testing. Based upon published NN research, a good rule of thumb would be to include at least 50% of the
data in the training set.

Data in the testing set should be representative of the population. Data in the training set, however, should be
selected so each concept has roughly an equal number of examples, regardless of the distribution of each concept in the
population. Wilson and Sharda [76] demonstrated that such equal weighting of concepts resulted in NNs with superior
differentiation. They suggest smoothing the training set distribution, regardless of the population distribution to obtain a
better model.

5.5 Select a paradigm for the NN
Three components determine a NN�s paradigm: the architecture, the transfer function, and the learning rule [8}. The

architecture specifies the structure of a NN. It is characterized by the number of hidden layers, the number of processing
elements in each layer, and the way that the processing elements are interconnected. The transfer function governs the
production of an output by a processing element. Lastly, the learning rule specifies how the weights of a NN are updated.

A commonly used transfer function is the sigmoid defined as equation (1)

1
g(a) = --------- (1)

1 + e-a

Cybenko [17}, Funahashi [21], White [75] and Barron [4] have proved that NNs with at least one hidden layer using
this transfer function can fit any function and its derivative. Another common transfer function is the hyperbolic tangent
defined as equation (2)

ea - e-a

g(a) = --------- (2)
ea + e-a

Bishop [6] shows that both of these functions are essentially equivalent with the application of a linear transformation,
but notes that the hyperbolic tangent converges faster with many training algorithms.

The learning algorithm greatly affects the performance of the network [1] and more than 100 different learning rules
are available [67]. For a taxonomy of these algorithms, consult Lippman [45]. The learning rules can be classified into
two broad classes: supervised learning and unsupervised learning. Supervised learning is used when the desired outputs
are known. The most frequently used supervised learning rule is backpropagation (BP) [37,2]. Altman et al. [1] and
Coats and Fant [13] used BP for financial distress forecasting and Pugh [50,51], Smith and Dagli [61], and Velasco and
Rowe [68] used BP for process control. This learning rule allows a NN with a sufficient number of hidden neurons to



  

satisfactorily approximate any measurable function [33] by minimizing the squared error between the computed and
desired outputs.

When the desired outputs are unknown, unsupervised learning is used. This type of learning rule lets the NN
organize itself to identify different groupings of inputs. Commonly used unsupervised learning rules are adaptive
resonance theory (ART) and Kohonen self-organizing maps (SOM). ART has frequently been used for problems such
as part family machine grouping [38,44,69]. SOM has been shown to be superior to non-NN clustering techniques [10].

5.6 Design the NN
The final step in selecting the NN paradigm is determining an appropriate number of hidden layers and hidden nodes

for the network structure. There is no single procedure for determining the optimal number of hidden nodes. Several
researchers report selecting the number of hidden nodes based upon systematic experimentation [35,81,83] with Yoon
et al. [83] reporting that NN performance improves with the addition of each hidden node up to a certain limit, and then
performance begins to degrade. Other researchers suggest a rule of thumb for determining the number of hidden nodes.
Some of these heuristics are based upon a ratio of hidden nodes to input and/or output nodes. Salchenberger et al. [55]
recommends that the hidden layer should contain 75% as many nodes as the input layer, Jensen [36] suggests that the
hidden layer should have 50% of the total number of neurons in the input and output layers, Eberhat and Dobbins [19]
propose that the number of hidden units in a layer should be roughly the square root of the number of input and output
units, and Hecht-Nielson [29] suggests 2N + 1 hidden nodes for a single hidden-layer network with N inputs. Other
heuristics use a ratio of the number of connections, which increase with additional hidden units, to the number of
training patterns. Villegas and Eberts [70] suggest that the number of training patterns should be at least four times the
number of connections between input and hidden units, while Kaastra and Boyd [37] report that overfitting is likely
when the number of training patterns is not greater than two times the number of weights in a NN.

Table 1 shows the tradeoffs to be made when considering an appropriate number of hidden nodes.

Table 1   Number of Hidden Node Tradeoffs
Fewer hidden nodes many hidden nodes
<  ������������������������������  >
High training error
Less training data required

increased training time
poor generalization

overfitting

Just as there is no single rule for selecting the number of hidden nodes, there is also no one procedure for
determining the number of hidden layers. Jensen [36] reports that a two hidden layer NN converged faster than a single
hidden-layer NN for a credit scoring application. Altman et al. [1] achieves an overall classification accuracy between
92% and 98% with multiple hidden layer NNs. These networks are constructed of simpler neural networks and
interestingly these simpler networks have only moderate success on their own. But while some researchers recommend
multiple hidden layers, many others suggest that only one hidden layer should be used [18,20,55].

5.7 Select the implementation environment and construct the NN
Neural networks can be developed with either a general purpose programming language, such as C or Pascal, or with

a neural network development tool, such as NeuralWorks Professional Plus or BrainMaker. A special purpose tool will
ease the development process, but may place some constraints on the developer. For example, Predict by NeuralWare
completely automates the development and implementation of a NN, but does not allow modifications to the finished
network. On the other hand, using a programming language will allow greater flexibility at the expense of automation
and time.

In an effort to compare the overall success of NNs developed with programming languages with those developed
with NN tools, the research articles reported in a comprehensive bibliography of NN business applications by Wong et
al. [77] are examined. The bibliography includes 25 articles reporting the development of NNs with some type of
programming language and 29 articles reporting the development of NNs with a NN development tool. Only 55% of the
networks developed with a tool result in improved decision making or an improved technique, while 72% of the
networks developed with a traditional programming language yield improved decision making or an improved
technique. Based upon these results, programming languages are recommended over NN development tools,
particularly when the developer has sufficient time and programming expertise.

5.8 Train the NN with the training set
There is no universal rule for determining when NN training is complete, but NN training should proceed until some

type of performance criterion is satisfied. Velasco and Rowe [68] trained a quality control analsysis BP NN until its root
mean square error value was .01. Villegas and Eberts [70], Yih et al. [81], and Yoon et al. [83] trained a NN until there
was no significant additional decrease in the error. Altman et al. [1] trained for exactly 1000 learning cycles, although
they believe that further improvement is likely with additional training.



  

Sometimes the NN may learn the training data too well. This condition is called overfitting and results in poor
generalization with new/unseen data. It is caused by having too many connections, which can be caused by having too
many hidden nodes. Several solutions have been proposed for overfitting. These include weight elimination [73] and
pruning [48]. Weight elimination eliminates non-significant weights in a NN by utilizing a complexity term which
penalizes networks with excessive numbers of small weights. Pruning, on the other hand, eliminates those weights
which are below some minimum threshold. Another way to reduce complexity other than eliminating weights is to
remove nodes. Yamashina et al. [80] suggest that hidden neurons which are associated with irrelevant output can be
removed without affecting performance.

An alternative to reducing the complexity of a NN by removing unnecessary or unimportant weights is to start with a
simple network and gradually increase its complexity. Wang [71] uses a dynamic training procedure for a feedforward
NN with one hidden layer. Starting with a small number of hidden nodes, additional nodes are added during training
whenever the training error exceeds a certain threshold and the decreasing rate of error is lower than another threshold.
Wang et al. [72] use another dynamic training procedure, reporting that a decreasing learning rate outperforms a
constant rate in their BP NN.

5.9 Test and validate the NN
Some type of testing or validation is required to measure the performance of the NN in terms of making predictions,

classifications, clusters, etc. This testing may be performed with only a hold-out test set or it may be performed with a
validation set comprised of testing and training data.

Each NN should be tested or validated according to some criteria such as most correct (or fewest incorrect)
classifications or closest predictions. Depending upon their importance, some types of outcomes might be weighted
more heavily. For example, in a lending decision it would probably be more important to a bank to have very few
financially distressed firms improperly classified as good credit risks, even if it means that some strong companies are
incorrectly classified as poor credit risks. Rather than evaluating NNs solely as a function of correct or incorrect
classifications, developers can also use sensitivity analysis to get a better understanding of their NNs [3].

In addition to testing for the successful outcome of a NN, the developer may also want to test the importance of the
inputs. Yoon et al. [82] propose a method for ranking the relative importance of input variables in a NN. For a single-
hidden layer NN, the following relative strength, RSji , between the ith input and jth output variables is computed as
equation (3)

RSji = Σ(WkiUjk)/(ΣABS{Σ(WkiUjk)}) (3)

where Wki is the weight between the kth hidden unit and the ith input unit and Ujk is the weight between the kth hidden
unit and the jth output unit. The developer might consider creating a revised version of the NN without an unimportant
input.

5.10 Repeat from steps 5 or 6, creating alternative models
It may be advantageous to create additional NNs since it will allow the developer flexibility in selecting a good

solution. Collins and Evans [14] created five models for predicting property values and Creese and Li [15] constructed
three models for an engineering cost estimation application. Additional models should also be created when there are
large differences between the predicted and expected outputs. Guiver and Klimasauskas [27] report that it is not unusual
to have correlations near .90 between predicted and actual values of a NN, although this may be high for many
applications.

For constructing additional NNs, the developer may (1) alter part of the existing NN paradigm and retrain and retest
with existing data, (2) alter the training (and possibly testing) data and retrain with the existing NN paradigm, or both
(1) and (2). As an example, if the network generalizes poorly with the test data, reducing the number of hidden nodes
may be appropriate. Alternatively, the training data may need revised to ensure that all important concepts are equally
represented or to ensure that there are sufficient amounts of all concepts.

5.11 Select the best model and deploy
One or more of the NN models is deployed. A single best NN may be selected by ranking all NNs according to some

criteria such as most correct (or fewest incorrect) classifications or closest predictions. The criteria used for testing and
validating each NN can be used as the selection criteria for determining the best NN.

Sometimes a single best NN is not the best solution; a combination of multiple models may provide better results
than any given model. Multiple NNs may be combined through averaging or rule synthesis. For predicting the TOPIX
index, Kimota et al. [39] increased the correlation with the training data by averaging the outputs of several networks.
Trippi and DeSieno [66] used rule synthesis, combining the outputs of five NNs with boolean operators, and thereby
increased the expected return in a trading decision system.



  

After the NN has been implemented, its performance should be monitored. If the performance decreases below some
level, then a new NN should be built and trained on data typifying the present conditions.

6. Contribution to Knowledge

This study provides a methodology which may be used by both academicians and practitioners to guide the
systematic development of NN applications. It synthesizes this methodology by examining the reported results of
hundreds of neural network researchers. The methodology can be used by developers to plan and justify the necessary
steps for creating a NN application and to gauge their progress in the development process. Hopefully, this
methodology will lead to increased NN development and improve the likelihood of developing successful NN
applications.

7. Limitations and Key Assumptions

The methodology proposed in this study is derived from business NNs presented in academic/professional journal
articles. It therefore does not consider all NN applications. Conference proceedings and doctoral dissertations are
excluded, assuming that high quality research is eventually published in academic/professional journals.

8. Future Research

The proposed methodology must now be used and evaluated by NN developers. Refinements in the methodology
should also be explored. Although this study proposes a methodology for all NN development, methodologies tailored
to specific NN paradigms or application areas should also be investigated.
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