
APDSI 2000 Full Paper (July, 2000)

Solving Nonlinear Integer Programs with Large-Scale Oftimization
Software

Herman Mawengkang1)

1) University of Sumatera Utara, Faculty of Matematics and Natural Sciences

Abstract

This paper describes recent experience in tackling large nonlinear integer progrmming problems
using the MINOS large-scale optimization software. A technique is presented for extending the
constrained search approach used in MINOS to exploring integer-feasible solutions once a
continuous optimal solution is obtained. Computational experience with this approach is described
for two classes of problems: quadratic assignment and pipeline network design problems.

1. Introduction

This paper presents a technique for solving large nonlinear intger programming problems, and describes
computational experience on two classes of such problems. The framework for the approach is provided by
the MINOS large-scale optimization software developed by Murtagh and Saunders [8 – 11].

 There has been little reported evidence of previous attempts to solve large nonlinear integer programs.
Survey papers by Hansen [6] and Cooper [3] both point out that the paucity of computational testing on
algorithms that have been proposed. One of the more promising approaches to nonlinear (0-1) programs is
their reduction to a multilinear (0-1) program, followed by linearization to an equivalent set covering
problem. Balas and Mazzola [1] present a linearization technique without having to generate additional
variables and twenty constraints. The applicability of this approach to large problems needs further
investigation. Most recently, Vassilev and Enova [13] propose an approximate algorithm as a generlization
of the algorithm of internal feasible integer directions.

The size of the problem we wish to address in this paper can be very large; for example, a 36 x 36
quadratic assignment problem involves 1296 nonlinear (0-1) variables if it is treated as a quadratic program.
The proposition we have used a basis for our work is that even getting one (continuous) optimal solution is
sufficiently expensive that the effort involved in obtaining a solutions (for example, using the branch and
bound approach) is prohibitive. We do, however, wish to do better than simply rounding th non-integer
solution.

The approach we have adopted is to search a subset of integer variables in a similar fashion to the
treatment of superbasic variables in the MINOS code. Integer feasibility is maintained by allowing only
discrete changes in the integer variables.

A description of the algorithm employed in the MINOS code is given in the next section. Section 3
describes the technique we propose for extending the algorithm to handle nonlinear integer programs.
Section 4 and 5 present computational experience on two classes of large-scale nonlinear programs: the
quadratic assignment problem and pipeline network design.

2. The MINOS large-scale optimization code

The MINOS optimization code was designed to solve problems expressed in the following standard
form:

minimize ydxF T+)((1.1)

subject to 111)(mbyAxf =+ rows (1.2)

2232 mbyAxA =+ rows (1.3)

 () 21, mmmuyxl T +=≤≤ (1.4)

In this representation, two types of variables are distinguished:

x are the 1n ‘nonlinear’ variables that occur nonlinearly in either the objective function ()xF or

the first 1m constraints; () () ()[]Tm xfxfxf 11 ,,Λ=

y are the 2n ‘linear’ variables, 21 nnn += , that will generally include a full set of m slack

variables so that in equality constraints in (1.2) and (1.3) are represented by appropriate bounds
in (1.4).

The reason for the distinction is that in practice many large-scale optimization problems are linear in all but
a relatively small proportion of variables and/or constraints. Although MINOS was developed to exploit
this characteristic, it turns out that it is an efficient code even for large problems which are entirely
nonlinear.

The algorithm proceeds by conducting a sequence of ‘major iterations’, in which the constraints are

linearized at some base point kx and the nonlinearities are adjoined to the objective function with

Lagrange multiplier estimates

() () ()()kkkk xxxJxfxxf −+=,
~

, (2)

where ()[] j
i

ijkk xfxJJ ∂∂== is the Jacobian matrix of first partial derivatives of the constraint

functions. We solve the following linearly constrained sub-problem at the k th major iteration:

minimize () () () () ()ffffffydxFxyxL
TT

k
T

kk

~~~
,,,, 2

1 −−+−−+= ρλρλ (3.1)

   yx,

Subject to ( )kkkk xfxJbyAxJ −+=+ 11  (3.2)

232 byAxA =+ (3.3)

  ( ) ., uyxl T ≤≤

The objective function (3.1) is a modified augmented Lagrangian, where the penalty parameter ρ
enhances the convergence properties from initial estimates far removed from the optimum. The Lagrange

multiplier estimates kλ  are taken as the optimal values at the solution of the previous sub-problem. As the

sequence of major iterations approaches the optimum (as measured by the relative change in successive

estimates of kλ  and the degree to which nonlinear constraints are satisfied at kx ), the penalty parameter

ρ  is reduce to zero and a quadratic rate of convergence of the sub-problems is achieved.



Representing the linear constraints present in a particular sub-problem in the from bxA = , we

partition the variables into three sets: basic, superbasic, and nonbasic:

[ ] .b

x

x

x

BSNxA

N

S

B

=















= (4)

The nonbasic variables Nx  are of one or other of their bounds and stay there for next step x∆ . The

superbasic variables Sx  provide the driving force, and the basic variables Bx  must follow to satisfy the

equation

.0=∆+∆ SB xSxB (5)

We thus have

,SxZx ∆=∆
Where















−
=

−

0

1

I
SB

Z (6)

The matrix Z acts as a ‘reduction’ matrix and premultiplies the gradient vector to form a reduced gradient

gZh T= , where xLg ∂∂= , and also pre-and post-multiplies the Hessian matrix of second partial

derivatives to yield a Newton-like step in the reduced space of superbasic variables.

The implementation in MINOS uses a quasi-Newton approximation RRT  to reduced Hessian, where R
is an upper triangular matrix. Stable numerical procedures are used througtout, and sparsity in the
constraints is maintained by storing and updating a sparse LU factorization of B.

The use of such factorizations means that neither Z nor 1−B  are computed explicitly. The quasi-

Newton step x∆  isa calsulated in the following sequence:

(i) Solve 
B

TT gLU =π  for π , where the gradient vector g is partitioned into

( )T
NSB ggg ,, corresponding to the partitioning of A and x∆ .

(ii) Form .πT

S
Sgh −=

(iii) Solve hxRR S
T −=∆  for Sx∆ .

(iv) Solve SB xSxLU ∆−=∆ .

The size of superbasic set varies as the search algorithm proceeds; if the bound of a variable is
encountered, that varible is made nonbasic and removed from the superbasic (or basic) set, while if
convergence is achieved within a subspace, one or more nonbasic variables are made superbasic if the

corresponding elements of the reduced cost vector πT
N Ng −  are non-zero and appropriate sign.

The software includes a wide variety of option and tolerances which the user may set to enhance
convergence; in practice, the default values are usually adequate for all but badly conditioned problems.
Data specifying the constraint matrix is entered using the standart MPS format adopted by commercial Lp



codes. Most of the facilities in such codes are also included in MINOS, including partial pricing, revision
and restart, and also the ability to specify an initial starting point.

3. A procedure for searching integer-feasible solutions

While a starightforward branch-and-bound approch could be adopted, for many clasess of larges-scale
nonliniear problems such a procedure would be prohibimany expensive in terms of total computing time.
We have adopted the approach of examining a reduced problem in which moct od the integer variabels are
held constant and only a small subset allowed to vary in discrete steps.

This may be implemented within the structure of MINOS by marking all integer variabels at their
bounds at the continuous solution as nonbasic and solving a reduced problem with these maintained as
nonbasic.

The procedure may be summarized as follws :

Step 1   :    Solve the problem ignoring integrality requirements.
Step 2  :   Obtain a (sub-optimal) integer-feasible solution, using heuristic rounding of the continuos

solution.
Step 3  :     Devide the set   of integer variables into the set   at their bounds that were      nonbasic at the

continuous solution, and the set
 Step4  :    Perform a search on the objective function, maintaining the variables in   nonbasics and

allowing only discrete changes in the values of the variables in
Step 5  :    At the solution obtained in step 4, examine the reduced costs of the variables in. If any should

be released from their bounds, add them to the set and repeat from step 4, otherwise
terminate.

The above summary providers a framework for the development of specific strategies for particular
Classes of proclasses of problems. For example heuristic rounding in step 2 can be adapted to suit the
nature of the constrains, and step 5 may involve adding just one variables at a time to the set I 2

At practical level, implementation of the procedure requires the choice of some level of tolerance on the
bounds on the variables and also their integer infeasibility. The search in step 4 is affected by such
consideration, as adiscrete step in a superbasic integer variables may only occur if all of the basic integers
remain within the specified tolerance of integer feasibility. Thus, for example, in the quadratic assignment
problem discussed in the next section, the nature of the constraints ensure that integer feasibility is
maintained. However, this is not the case for the other class of problems examined, pipeline network design,
and tolerances are an important consideration. In general, unless the structure of the constraints maintains
integer feasibility in the integer basic variables for discrete changes in the superbasics, the integers in the
set I 2  must be made superbasic. This can always be achieved since it is assumed that a full set of slack

variables is included in the problem.

4. Computataional experience I : The quadratice assignment problem

this is a combinatorial problem which frequently accurs in such applications as facilities location, plant
layout and backboard wiring. Consider the problem of locating n facilites in n given locations. If f ik  is the

flow between facility i and facility k, and c jl  is the per unit transportation cost (or distance) between

locations j and l , then the problem may be



      minimize       φ =
====
∑∑∑∑1

2
1111

f ik
l

n

j

n

k

n

i

n

c jl x ij xkl (7)

      subject to xij
j

n

=
∑

1

=  1          i = 1, … ,n (8)

xij
i

n

=
∑

1

=  1           j = 1, … ,n (9)

0 ≤ x ij ≤ 1 (10)

x ij  integer

The constraints reflect the fact that each location can be assigned  to only  one facility, and each facility
can be assigned to only one location.

The quadratic form in eq. (7) is generally non-convex, so any solution obtained will necessarily be a
local optimum and not a global optimum. A simple heuristic [7] ranks the facilities in decreasing order of
frequency of use and the locations in increasing order of distance and makes an initial assignment by
pairing them off in this order. More generally, the approaches advocated by Elshafei [5] and gaschutz and
Ahrens [4] could be used as a starting point in applying the quadratic programming approach using MINOS.

Computational experience on large problems has been very successful. What is particulary striking is
that for this type of problem the solution obtained at the end of step 1 is very nearly integer feasible. For
example, consider the 36x36 problem cited by Steinberg [12]. The solutions obtained at step 1 are shown in
tables 2 and 3 using, respectively, the Euclidean metric for distance (case A) and the rectangular metric
(case B). For case A, only nine facilities (i = 1, 7, 10, 12, 15, 21, 22, 25) and nine locations (j = 2, 3, 5, 11,
14,24, 25, 33, 34) remain unpaired. The possible number of superbasics at the solution was 1224 (1296
nonlinear variables less 72 constraints), yet remarkably there were only three superbasics present at the
optimum. Case B did not have such an obvious pairing; in fact, three facilities (i = 1, 25, 33) had more than
two non-zero location assignments.

Step 2 is implemented for this class of problem by a relatively straightforward heuristic: rank the non-
integer variables x ij  in decreasing order of magnitude. Let the first in this order be x

ij
 Set x

ij
 = 1,

x
i j   = 0, j = 1, … , n, j ≠ j , and x

i j
 = 0, i =1, … , n, i ≠ i . Remove these variables from the list and

repeat until the list is empty.

Step 3, 4 and 5 benefit from the structure of the constraints. An integer step in one of the variables
results in an integer step in the other variables in the same GUB set (8), and also the corresponding
variables in the convexity rows (9). Thus, integer feasibility is maintained throughout and the search
proceeds by adjusting one variable at a time using the reduced gradient of the superbasics to decide which
variable to adjust in step 4.

The results of this procedure are shown in tables 4 and 5.

5. Computational experience II : Natural gas pipeline network design

At the other end of the spectrum, a type of problem which does not display any degree of integer
feasibility at the continuous optimum is the design of pipeline network. The layout of the network is
assumed known, so the design variables are the diameters of each section of the pipeline network. It would
be a straightfoward large-scale nonlinear programming problem if it were not for the fact that pipes are
available commercially only in certain discrete sizes.



The problem is to minimize the total cost of pipe. The cost per unit length is a linear function of weight
per unit length, which in turn is a linear function of diameter. The nonlinearities arise through pressure drop
equations which relate the change in pressure in a pipe section to its diameter. The tree network has
pressure limitations specified at all vertices, and the problem may be expressed in the form

Minimize       l j
j

n

=
∑

1

(e cd j+ )                                                   (11)

subjext to       k j
j R

n

i∈
∑ / d j

4 814, ≤ bi ’     i = 1, …., m                   (12)

d j   ≥   d j
min

, (13)

where l j  = length of section j, d j  = diameter of section j, e, c  and k j  are constants, and bi  represents the

allowable difference in the square of the pressures between the source and sink in path i. Ri  is the set of

pipe sections in path i.

It turns out that a dual formulation is more easily handled computationally. Defining x j =1/ d j
4 814,

j = 1, … , n and A = [ a ij ], where a ij  = k j , j ∈ Ri , or 0 otherwise, we may obtain a lagrangian function :

L( x ,u ) = l j
j

n

=
∑

1

( .e cx j+ −0 2077
) + ui

i

m

=
∑

1

( a ij
j

n

=
∑

1

x j - bi )

where ui ≥ 0, i =1, … , m are the Lagrange multipliers associated with the constraints (12).

The dual function w( u ), which exists and is countinuous for all u ≥ 0 is

w( u ) =
j xj

n

j= ≤
∑

1( max)

L j ( x j ,u ) - ui
i

m

=
∑

1

bi   , (14)

where

L j ( x j , u ) = l j ( e cx j+ −0 2077.
) + ui

i

m

=
∑

1

a ij x j (15)

and

x j
max

= 1/( d j
min ) .4 814 ,  j = 1, …. ,n.

The solution of the optimization problem L j ( x j ,u ) implied in eq. (14) is obtained analytically, as is

also the gradient of the dual function. The MINOS code is thus used to solve the dual problem

    maximize  w ( u)                                                                                         (16)

           subject to  .0≥u                                                                                                            (17)

      Step 2 can be accomplished by rounding up the diameters obtained at the solution of  the continous

problem to the next commercially available size. This ensures that the pressure  drop containts  (12) are

satisfied, but leaves scope for reducing the objectives function  (11)



in step 3-5. Step 3 does not result in a large number of  variables being  grouped in I1   ,  the set held  at

their bounds. Step 4 is accomplished for  this class of  problem by taking advantage of the fact that  the
objective function is separable. The function  (15) is minimized using discrete values of Xj , and u  is

adjusted  if necessary to ensure the constrains are satisfied to within a     specified  level tolerance.
                

Step 5 does not result in significant changes to the set I1  , as there is usually only one pipe section at

most in each path which is at its minimum diameter.
Result of this procedure on the three large problems are shown in table 1.

Table 1
Result for pipeline network problems

 problem no.
paths

no. pipe
sections

continuous
solution
( x  105  )

rounded
solution
( x 105 )

discrete
solution
( x 105 )

        1 65 168 4.613 4.768 4.681
        2 76 198 4.889 5.151 4.954

          3 78 205 4.929 5.178 5.081

The fourth column in table 1 gives the optimal solution obtained by MINOS (step1), while the next column
is the result of rounding up to the next commercially available pipe diameter (step 2).  The sixth column
shows the result of steps 3-5 and demonstrates a significant inprovement on rounding.

6. Conclusions

Computational testing of the procedure presented in this paper has demostrated that is a viable
approach for large problems. The two classes of problem tested are sufficiently diverse in structure to
suggest that the approach may be succecfully applied to a wide range of large-scale nonlinier integer
programming problems.
     

Table 2

Result for 36 36×  QAP

Case A : d ij  = ( ) ( )x x y yi j i j− + −
2 2

  Table 3

   Result for 36 36×  QAP

    Case B : d ij  = x x y yi j i j− + −

Variable                 Activity                  Final
                                                           adjusted
                                                               value

    Variable               Activity                   Final
                                                               adjusted
                                                                  value

   x1 24,                      0.03568                      0.0

   x1 33,                      0.96432                      1.0

   x2 18,                     1.0

   x3 8,                       1.0

   x4 16,                     1.0

   x5 7,                      1.0

   x6 6,                      1.0

   x7 24,                    0.962132                      1.0

      x1 24,                    0.38889                     0.0

      x1 25,                     0.30111                     1.0

      x1 26,                     0.31000                     0.0

      x2 18,                     1.0

      x3 8,                       1.0

      x4 16,                    1.0

      x5 7,                     1.0

      x6 6,                     1.0



   x7 25,                    0.03568                        0.0

   x8 17,                    1.0

   x9 35,                    1.0

   x10 25,                   0.96432                        1.0

   x10 34,                   0.03568                        0.0

   x11 5,                     0.51950                        1.0

   x11 14,                   0.48050                        0.0

   x12 5,                     0.48050                       0.0

   x12 14,                    0.51950                      1.0

  x13 15,                     1.0

  x14 13,                     1.0

  x15 33,                     0.03568                       0.0

  x15 34,                     0.96432                      1.0

  x16 36,                     1.0

  x17 27,                     1.0

  x18 26,                     1.0

  x19 22,                     1.0

  x20 23,                     1.0

  x21 3,                       0.67533                     1.0

  x21 11,                      0.32467                     0.0

  x22 2,                       0.67533                     1.0

  x22 3,                       0.32467                     0.0

  x23 12,                      1.0

  x24 1,                       1.0

   x25 2,                      0.32467                     0.0

   x25 11,                     0.67533                       1.0

  x26 10,                      1.0

   x27 4,                       1.0

   x28 34,                 1.0

   x29 31,                       1.0

   x30 30,                      1.0

  x31 29,                       1.0

      x7 24,                   0.61111                      1.0

      x7 25,                   0.38889                      0.0

      x8 17,                    1.0

      x9 34,                   1.0

      x10 25,                   0.31000                    0.0

      x10 26,                   0.69000                    1.0

      x11 5,                     0.60005                     1.0

      x11 14,                   0.39995                     0.0

      x12 5,                    0.39995                     0.0

      x12 14,                   0.60005                     1.0

      x13 15,                    1.0

     x14 32,                     1.0

     x15 33,                     1.0

     x16 35,                     0.86957                     1.0

     x16 36,                     0.13043                     0.0

     x17 27,                     0.13043                     0.0

     x17 36,                     0.86957                     1.0

     x18 27,                     0.86957                     1.0

     x18 35,                     0.13043                     0.0

     x19 21,                     0.82271                     1.0

     x19 22,                     0.17729                     0.0

     x20 23,                    1.0

     x21 3,                      0.25326                     0.0

     x21 12,                    0.25326                      0.0

     x22 3,                     0.25326                      0.0

     x22 12,                    0.74674                      1.0

     x23 13,                     1.0

      x24 2,                     0.78315                     1.0

      x24 10,
                     0.21685                      0.0

    x25 2,                      0.21685                     0.0

   x25 10,                      0.17212                     0.0

   x25 11,                       0.61103                     1.0



   x32 21,                      1.0

  x33 19,                       1.0

  x35 28,                       1.0

  x36 9,                        1.0

   x26 10,                      0.61103                     1.0

   x26 11,                      0.38897                     0.0

   x27 4,                       1.0

   x28 21,                      0.17729                     0.0

   x28 22,                      0.82271                     1.0

   x29 30,                      0.35704                     0.0

   x29 31,                      0.64296                     1.0

   x30 30,                      0.64296                     1.0

   x30 31,                      0.35704                     0.0

   x31 28,                      0.73684                     1.0

   x31 29,                      0.26316                     0.0

  x32 20,                       1.0

  x33 19,                       0.49211                     0.0

  x33 28,                       0.26316                     0.0

  x33 29,                       0.24474                     1.0

   x34 19,                      0.50789                     1.0

   x34 29,                      0.49211                     0.0

   x35 1,                        1.0

   x36 1,                        1.0

Table 4

Dimension: 36 case  A: ( ) ( )22

jijiij yyxxd −=−= . Recently published objective value: 7926 (ref.[2]).

Present method objective value: 7926. Solution:

                 i =
j = 1         24          22          21          27           11            6             5            3            -
j = 10       26          25          23          14           12           14            4            8            2
j = 19       34          32          19          28           20             7           10         18          17
j = 28         -           31          30          29           28             1           15           9          16

Table 5

Dimension: 36 case B: jijiij yyxxd −+−= . Recently published objective value: 4802 (ref. [2]).

Present method objective value: 4784. Solution:



                 i =
j = 1           -           24          22          27           11            6             5           3             -
j = 10       26          25          21          23           12           13            4            8            2
j = 19       34          32          19          28           20             7            1          10          18
j = 28       31          33          30          29           14           15            9          16          17

References

[1]  E. Balas and J.B. Mazzola, Nonlinear 0-1 programming: Linearization techniques, and II: Dominance
relations and algorithms, Math. Progr. 30(1984)1.

[2]  R.E Burkard and K.H. Stratman, Numerical investigations on quadratic assignment problems, Nav. Res.
Log. Quart. 25(1978)129.

[3]  M.W. Cooper, A survey of methods for pure nonlinear integer programming, Management Science
27(1981)353.

[4]  G.K. Gaschutz and  J.H. Ahrens, Suboptimal algorithms for the quadratic assignment problem, Nav.
Res. Log. Quart. 15(1968)49.

[5]   A.N. Elshafei, Hospital layout as a quadratic assignment problem, Oper. Res. Quart. 28(1977)167.
[6]   P. Hansen, Methods of nonlinear 0-1 programming, Ann. Discrete Math. 5(1979)53.
[7]   B.A. Murtagh and T.R. Jefferson and V. Sornprasit, A heuristic procedure for solving the quadratic

assignment problem, Eur.J. Oper. Res. 9(1982)71.
[8]  B.A. Murtagh and M.A. Saunders, MINOS, a large-scale nonlinear programming system, User’s

Manual, ReportSOL 77-9. Systems Optimization Laboratory, Stanford University (1977).
[9]  B.A. Murtagh and M.A. Saunders, Large-scale linearly constrained optimization, Math. Progr.

14(1978)41.
[10] B.A. Murtagh and M.A. Saunders, MINOS/AUGMENTED User’s Manual, Report SOL 80-14,

Systems Optimization Laboratory, Stanford University (1980).
[11]  B.A. Murtagh and M.A. Saunders, A projected Lagrangian algorithm and its implementation for

sparse nonlinear constraints. Math. Progr. Study 16(1982)84.
[12]  L. Steinberg, The backboard wiring problem: A placement algorithm, SIAM Review 3(1961)37.
[13]  Vassilev. V and K. Genova. An approximate algorithm for nonlinear integer programming, EJOR,

Vol.74, pp. 170-178, 1994.


