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Abstract

This paper describes recent experience in tackling large nonlinear integer progrmming problems
using the MINOS large-scale optimization software. A technique is presented for extending the
constrained search approach used in MINOS to exploring integer-feasible solutions once a
continuous optimal solution is obtained. Computational experience with this approach is described
for two classes of problems: quadratic assignment and pipeline network design problems.

1. Introduction

This paper presents atechnique for solving large nonlinear intger programming problems, and describes
computational experience on two classes of such problems. The framework for the approach is provided by
the MINOS large-scal e optimi zation software developed by Murtagh and Saunders [8 — 11].

There has been littlereported evidence of previous attempts to solve large nonlinear integer programs.
Survey papers by Hansen [6] and Cooper [3] both point out that the paucity of computational testing on
algorithms that have been proposed. One of the more promising approaches to nonlinear (0-1) programsis
their reduction to a multilinear (0-1) program, followed by linearization to an equivalent set covering
problem. Balas and Mazzola [1] present a linearization technique without having to generate additional
variables and twenty constraints. The applicability of this approach to large problems needs further
investigation. Most recently, Vassilev and Enova[13] propose an approximate algorithm as a generlization
of the algorithm of internal feasible integer directions.

The size of the problem we wish to address in this paper can be very large; for example, a 36 x 36
guadratic assignment problem involves 1296 nonlinear (0-1) variablesif it istreated as a quadratic program.
The proposition we have used a basis for our work is that even getting one (continuous) optimal solution is
sufficiently expensive that the effort involved in obtaining a solutions (for example, using the branch and
bound approach) is prohibitive. We do, however, wish to do better than simply rounding th non-integer
solution.

The approach we have adopted is to search a subset of integer variables in a similar fashion to the
treatment of superbasic variables in the MINOS code. Integer feasibility is maintained by allowing only
discrete changesin the integer variables.

A description of the algorithm employed in the MINOS code is given in the next section. Section 3
describes the technique we propose for extending the algorithm to handle nonlinear integer programs.
Section 4 and 5 present computational experience on two classes of large-scale nonlinear programs: the
quadratic assignment problem and pipeline network design.

2. The MINOS large-scale optimization code

The MINOS optimization code was designed to solve problems expressed in the following standard
form:



minimize F(x) +QTX ()]

subjectto  f(x)+ 4 y=b, m, rows 1.2
A,x+ 43y =0, m, rows (1.3
[E()_c,y)r£g m=m, +m, (1.4)

In this representation, two types of variables are distinguished:
X arethe n, ‘nonlinear’ variables that occur nonlinearly in either the objective function F()_c) or

the first m, constraints; f ()_c) = [fl ()_C),L S ml()_C)]T

arethe n, ‘linear’ variables, n = n, + n,, that will generally include afull set of m slack
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variables so that in equality constraintsin (1.2) and (1.3) are represented by appropriate bounds
in(1.4).

The reason for the distinction is that in practice many large-scale optimization problems are linear in al but
a relatively small proportion of variables and/or constraints. Although MINOS was developed to exploit
this characteristic, it turns out that it is an efficient code even for large problems which are entirely
nonlinear.

The algorithm proceeds by conducting a sequence of ‘major iterations’, in which the constraints are
linearized at some base point X, and the nonlinearities are adjoined to the objective function with
Lagrange multiplier estimates
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where J, = [J(gk)]y. = ﬂfi/ﬂxj is the Jacobian matrix of first partial derivatives of the constraint

functions. We solve the following linearly constrained sub-problem at the kth mgjor iteration:

minimize L(ﬂ,gk,l_k,r)ZF(ic)+dTX-I_Z(j:-z)+%r (/:-z)T(/:-z) (3.1)

Xy

Subject to Jk£+AlZ:él+Jk£k-f(£k) (3.2)
A,x+ A3y =b, (3.3)
£ (xy) £u

The objective function (3.1) is a modified augmented Lagrangian, where the penalty parameter I
enhances the convergence properties from initial estimates far removed from the optimum. The Lagrange
multiplier estimates I_k are taken as the optimal values at the solution of the previous sub-problem. Asthe
sequence of major iterations approaches the optimum (as measured by the relative change in successive
estimates of I_k and the degree to which nonlinear constraints are satisfied at x, ), the penalty parameter
I isreduceto zero and aquadratic rate of convergence of the sub-problemsis achieved.



Representing the Inear constraints present in a particular sub-problem in the from Ax =5, we
partition the variables into three sets: basic, superbasic, and nonbasic:

=b (4)

The nonbasic variables x, are of one or other of their bounds and stay there for next step Dx . The

superbasic variables x ¢ provide the driving force, and the basic variables x , must follow to satisfy the

equation
BDx, +SDx, =0. (5
We thus have
Dx = ZDx,
Where
6 551
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Z= e 1 G (6)
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Thematrix Z acts as a ‘reduction’ matrix and premultiplies the gradient vector to form a reduced gradient
h=2Z"g, where g = IL/9x, and also pre-and post-multiplies the Hessian matrix of second partial
derivativesto yield a Newton-like step in the reduced space of superbasic variables.

The implementation in MINOS uses a quasi-Newton approximation R"R toreduced Hessian, where R
is an upper triangular matrix. Stable numerical procedures are used througtout, and sparsity in the
constraintsis maintained by storing and updating a sparse LU factorization of B.

The use of such factorizations means that neither Znor B ' are computed explicitly. The quasi-
Newton step Dx isacalsulated in the following sequence:

0} Save U'L'p= g, for P, where the gradient vector gis partitioned into
(gB 18518y )T corresponding to the partitioning of 4 and Dx .
(ii) Form h = g, - S™p.
T —
(iii) Solve R" RDx g = - h for Dxj.
(iv) Solve LUDx , =- SDx;.
The size of superbasic set varies as the search algorithm proceeds; if the bound of a variable is

encountered, that varible is made nonbasic and removed from the superbasic (or basic) set, while if
convergence is achieved within a subspace, one or more nonbasic variables are made superbasic if the

corresponding elements of the reduced cost vector g, - N r [P arenon-zero and appropriate sign.

The software includes a wide variety of option and tolerances which the user may st to enhance
convergence; in practice, the default values are usually adequate for all but badly conditioned problems.
Data specifying the constraint matrix is entered using the standart MPS format adopted by commercia Lp



codes. Most of the facilities in such codes are also included in MINOS, including partial pricing, revision
and restart, and al so the ability to specify aninitial starting point.

3. A procedure for searching integer-feasible solutions

While a starightforward branch-and-bound approch could be adopted, for many clasess of larges-scale
nonliniear problems such a procedure would be prohibimany expensive in terms of total computing time.
We have adopted the approach of examining a reduced problem in which moct od the integer variabels are
held constant and only asmall subset allowed to vary in discrete steps.

This may be implemented within the structure of MINOS by marking all integer variabels at their
bounds at the continuous solution as nonbasic and solving a reduced problem with these maintained as
nonbasic.

The procedure may be summarized asfollws:

Stepl : Solvethe problem ignoring integrality requirements.

Step 2 : Obtain a (sub-optimal) integer-feasible solution, using heuristic rounding of the continuos
solution.

Step 3 : Devidetheset of integer variablesinto the set at their bounds that were  nonbasic at the
continuous solution, and the set

Stepd :  Perform a search on the objective function, maintaining the variables in nonbasics and
allowing only discrete changes in the values of the variablesin

Step5 : At the solution obtained in step 4, examine the reduced costs of the variablesin. If any should
be released from their bounds, add them to the set and repeat from step 4, otherwise
terminate.

The above summary providers a framework for the development of specific strategies for particular
Classes of proclasses of problems. For example heuristic rounding in step 2 can be adapted to suit the
nature of the constrains, and step 5 may involve adding just one variables at atimeto the set /,

At practical level, implementation of the procedure requires the choice of some level of tolerance on the
bounds on the variables and also their integer infeasibility. The search in step 4 is affected by such
consideration, as adiscrete step in a superbasic integer variables may only occur if all of the basic integers
remain within the specified tolerance of integer feasibility. Thus, for example, in the quadratic assignment
problem discussed in the next section, the nature of the constraints ensure that integer feasibility is
maintained. However, thisis not the case for the other class of problems examined, pipeline network design,
and tolerances are an important consideration. In general, unless the structure of the constraints maintains
integer feasibility in the integer basic variables for discrete changes in the superbasics, the integers in the
set [, must be made superbasic. This can always be achieved since it is assumed that a full set of slack

variablesisincluded in the problem.

4. Computataional experience I : The quadratice assignment problem

thisis a combinatorial problem which frequently accurs in such applications as facilities location, plant
layout and backboard wiring. Consider the problem of locating » facilitesinn given locations. If fik isthe

flow between facility i and facility &, and Ci is the per unit transportation cost (or distance) between

locationsj and [ , then the problem may be
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minimize f=saaaafic,x,x, ™

i=1 k=1 j=1 [=1
| g
subject to ax; =1 i=1,..n (8)
j=1
g
ax =1 j=1..n (9)
i=1
0L x, £1 (10)
X, integer

The constraintsreflect the fact that each location can be assigned to only one facility, and each facility
can be assigned to only one location.

The quadratic form in eq. (7) is generally non-convex, so any solution obtained will necessarily be a
local optimum and not a global optimum. A simple heuristic [7] ranks the facilities in decreasing order of
frequency of use and the locations in increasing order of distance and makes an initial assignment by
pairing them off in this order. More generally, the approaches advocated by Elshafei [5] and gaschutz and
Ahrens[4] could be used as a starting point in applying the quadratic programming approach using MINOS.

Computational experience on large problems has been very successful. What is particulary striking is
that for this type of problem the solution obtained at the end of step 1 is very nearly integer feasible. For
example, consider the 36x36 problem cited by Steinberg [12]. The solutions obtained at step 1 are shownin
tables 2 and 3 using, respectively, the Euclidean metric for distance (case A) and the rectangular metric
(case B). For case A, only ninefacilities (i = 1, 7, 10, 12, 15, 21, 22, 25) and nine locations (j = 2, 3, 5, 11,
14,24, 25, 33, 34) remain unpaired. The possible number of superbasics at the solution was 1224 (1296
nonlinear variables less 72 constraints), yet remarkably there were only three superbasics present at the
optimum. Case B did not have such an obvious pairing; in fact, three facilities ({ = 1, 25, 33) had more than
two non-zero location assignments.

Step 2 is implemented for this class of problem by arelatively straightforward heuristic: rank the non-
integer variables X, in decreasing order of magnitude. Let the first in this order be Xz Set X5 = 1,

X-, =0,j=1,..., nj?t j,and X =0,i=1,..,n, il i.Remove these variables from the list and

repeat until thelist is empty.

Step 3, 4 and 5 benefit from the structure of the constraints. An integer step in one of the variables
results in an integer step in the other variables in the same GUB set (8), and also the corresponding
variables in the convexity rows (9). Thus, integer feasibility is maintained throughout and the search
proceeds by adjusting one variable at a time using the reduced gradient of the superbasics to decide which
variable to adjust in step 4.

Theresults of this procedure are shown in tables 4 and 5.

5. Computational experience II : Natural gas pipeline network design

At the other end of the spectrum, a type of problem which does not display any degree of integer
feasibility at the continuous optimum is the design of pipeline network. The layout of the network is
assumed known, so the design variables are the diameters of each section of the pipeline network. It would
be a straightfoward large-scale nonlinear programming problem if it were not for the fact that pipes are
available commercially only in certain discrete sizes.



The problem is to minimize the total cost of pipe. The cost per unit length is alinear function of weight
per unit length, which in turn is alinear function of diameter. The nonlinearities arise through pressure drop
eguations which relate the change in pressure in a pipe section to its diameter. The tree network has
pressure limitations specified at all vertices, and the problem may be expressed in the form

Minimize é [, (e+cd)) (11
j=1

sjextto Ak, /dPEL i=1,...m (12)
AR ‘
d, 3 d", (13)

where /; =length of sectionj, d ; = diameter of sectionj, ¢,c and k; are constants, and b, represents the

alowable difference in the square of the pressures between the source and sink in path i. R, is the set of
pipe sectionsin pathi.

It turns out that a dual formulation is more easily handled computationally. Defining x ; =1/ d;."sm

j=1 ...,nand4 =[al.j],where a; = kj,jl R, , or 0 otherwise, we may obtain alagrangian function :

n m n

. - 0.2077 o 9

Lx.u)=al, (etex; "+ au (@ a, x;-b)
j=1 i=1 j=1

where u, 3 0,i =1, ..., m are the Lagrange multipliers associated with the constraints (12).

The dual function w( & ), which exists and is countinuous for all u 3 Ois

n

o I8
w(u)= a Lj(xj’z)_aui b, , (14
j:l(x]E;nax) i=1
where
-0.2077 611
L (x;,u)=1,(e+cx, rau a;x, (15)
i=1
and

max _ min \ 4814 . _
X, o=d;T )T j= N

The solution of the optimization problem Lj (xj ,u) implied in eq. (14) is obtained analytically, asis
also the gradient of the dual function. The MINOS code is thus used to solve the dual problem

maximize w () (16)
subjectto u 3 0. (17)

Step 2 can be accomplished by rounding up the diameters obtained at the solution of the continous

problem to the next commercially available size. This ensures that the pressure drop containts (12) are

satisfied, but leaves scope for reducing the objectives function (11)



in step 3-5. Step 3 does not result in alarge number of variables being grouped in I, , the set held at

their bounds. Step 4 is accomplished for this class of problem by taking advantage of the fact that the
objective function is separable. The function (15) is minimized using discrete values of Xj , and u is
adjusted if necessary to ensure the constrains are satisfied towithina  specified level tolerance.

Step 5 does not result in significant changes to the set 1, , as there is usually only one pipe section at

most in each path which is at its minimum diameter.
Result of this procedure on the three large problems are shown in table 1.

Tablel
Result for pipeline network problems

problem no. no. pipe continuous rounded discrete
paths sections solution solution solution

(x 10°) (x 1P (x10°)

1 65 168 4.613 4.768 4.681

2 76 198 4.889 5.151 4.954

3 78 205 4.929 5.178 5.081

The fourth column in table 1 gives the optimal solution obtained by MINOS (stepl), while the next column

is the result of rounding up to the next commercially available pipe diameter (step 2). The sixth column
shows the result of steps 3-5 and demonstrates a significant inprovement on rounding.

6. Conclusions

Computational testing of the procedure presented in this paper has demostrated that is a viable
approach for large problems. The two classes of problem tested are sufficiently diverse in structure to
suggest that the approach may be succecfully applied to a wide range of large-scale nonlinier integer
programming problems.

Table2 Table3
Resultfor 36~ 36 QAP Result for 36~ 36 QAP
2 2
CaseA:dij:(xi-xj) +(yi'yj) CaseB:dij:|xi'xj|+yi'yj|
Variable Activity Final Variable Activity Final
adjusted adjusted
value value
X0 0.03568 0.0 Xy o4 0.38889 0.0
X; 33 0.96432 1.0 X, 55 0.30111 1.0
X, 18 1.0 X 26 0.31000 0.0
X5 1.0 X, 1 1.0
X, 16 10 X3g 1.0
Xs5 ; 1.0 X, 16 1.0
Xge 1.0 X ; 1.0
X7 04 0.962132 1.0 Xe6 1.0




X725
Xg17
X935
X10,25
X10,34
X115
X1114
Xio5
X1214
X1315
X14,13
X15,33
X1534
X16,36
X17.27
X18,26
X19,22
X2023
X213
Xo111
X222
X223
X312
X241
X252
X511
X2610
X274
X834
X 29,31

X3030

X31,29

0.03568
1.0
1.0
0.96432
0.03568
0.51950
0.48050
0.48050
0.51950
1.0
1.0
0.03568
0.96432
1.0
1.0
1.0
1.0
1.0
0.67533
0.32467
0.67533
0.32467
1.0
1.0
0.32467
0.67533
1.0
1.0
1.0
1.0

1.0
1.0

0.0

1.0
0.0
1.0
0.0
0.0
1.0

0.0
1.0

1.0
0.0
1.0
0.0

0.0
1.0

X724
X725
Xg17
X934
X10,25
X10,26
X115
X114
X125
X1214
X315
X14,32
X15,33
X16,35
X16,36
X17,27
X17,36
X1g,27
X18,35
X19,21
X19,22
X023
X213
X112
X223
X212
X2313

X242

X24,10
X252
X2510

Xo511

0.61111
0.38889
1.0
1.0
0.31000
0.69000
0.60005
0.39995
0.39995
0.60005
1.0
1.0
1.0
0.86957
0.13043
0.13043
0.86957
0.86957
0.13043
0.82271
0.17729
1.0
0.25326
0.25326
0.25326
0.74674
1.0

0.78315
0.21685
0.21685
0.17212
0.61103

1.0
0.0

0.0
1.0
1.0
0.0
0.0

1.0

1.0
0.0
0.0
1.0
1.0
0.0
1.0

0.0

0.0
0.0
0.0
1.0

1.0

0.0
0.0
0.0
1.0




Xap 1 1.0 Xo610 0.61103 10
Xas1o 1.0 Xo611 0.38897 0.0
X 3528 1.0 X374 1.0
Xag6 1.0 Xs601 0.17729 0.0

X289 0.82271 1.0
X560 0.35704 0.0
Xpo51 0.64296 1.0
X303 0.64296 1.0
Xa01 0.35704 0.0
X328 0.73684 1.0
X326 0.26316 0.0
X32,20 10

Xas10 0.49211 0.0
X326 0.26316 0.0
X352 0.24474 1.0
Xau1o 0.50789 1.0
X396 0.49211 0.0
Xae1 10

Xag1 10

Table4

Dimension: 36 case A:dl.j = (xi - X, )2 = (yl. -, )2. Recently published objective value: 7926 (ref.[2]).
Present method objective value: 7926. Solution:

i=

j=1 24 22 21 27 11 6 5 3 -

j=10 26 25 23 14 12 14 4 8 2

j=19 34 32 19 28 20 7 10 18 17

j=28 - 31 30 29 28 1 15 9 16
Table5

Dimension: 36 case B: d,-,- =|x,. - x/.|+|yl. - y/.|. Recently published objective value: 4802 (ref. [2]).
Present method objective value: 4784. Solution:




j=1 - 24 22 27 11 6 5 3 -
j=10 26 25 21 23 12 13 4 8 2
j=19 34 32 19 28 20 7 1 10 18
j=28 31 33 30 29 14 15 9 16 17
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