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Abstract

Interest rates are one of the most closely watched variables in the economy. They have
been studied by a number of researchers since they strongly affect other economic and
financial parameters. Contrary to other chaotic financial data, the movement of interest rates
has a series of change points due to the monetary policy of the U.S. government. The basic
concept of this proposed model is to obtain intervals divided by change points, to identify
them as change-point groups, and to use them in interest rates forecasting. The proposed
model consists of three stages. The first stage is to detect successive change points in the
interest rates dataset. The second stage is to forecast the change-point group with the
backpropagation neural network (BPN). The final stage is to forecast the output with BPN.
This study then examines the predictability of the integrated neural network model for interest
rates forecasting using change-point detection.

1. Introduction

Interest rates are one of the most closely watched variables in the economy. Their movements are
reported almost daily by the news media since they directly affect our everyday lives and have important
consequences for the economy. There exist extensive studies in this area using statistical approaches, such
as term structure models, vector autoregressive (VAR) models, autoregressive conditionally
heteroskedastic (ARCH) - generalized autoregressive conditionally heteroskedastic (GARCH) models and
other time series analysis approaches.

Currently, several studies have demonstrated that artificial intelligence (AI) approaches, such as
fuzzy theory (Ju et al., 1997) and neural networks (Deboeck and Cader, 1994), can be alternative
methodologies for chaotic interest rates data (Larrain, 1991; Peters, 1991; Jaditz and Sayers, 1995).
Previous work in interest rates forecasting has tended to use statistical techniques and AI techniques in
isolation. However, an integrated approach, which makes full use of statistical approaches and AI
techniques, offers the promise of increasing performance over each method alone (Chatfield, 1993). It has
been proposed that the integrated neural network models combining two or more models have the
potential to achieve a high predictive performance in interest rates forecasting (Kim and Noh, 1997).

In general, interest rates data is controlled by government�s monetary policy more than other
financial data (Gordon and Leeper, 1994; Strongin, 1995; Christiano et al., 1996; Leeper et al, 1996;
Bagliano and Favero, 1999). Especially, banks play a very important role in determining the supply of
money. Much regulation of these financial intermediaries is intended to improve their control. One crucial
regulation is reserve requirements, which make it obligatory for all depository institutions to keep a
certain fraction of their deposits in accounts with the Federal Reserve System, the central bank in the
United States (Mishkin, 1995). The government takes intentional action to control the currency flow
which has direct influence upon interest rates. Therefore, we can conjecture that the movement of interest
rates has a series of change points which occur because of the monetary policy of the government.

Based on these inherent characteristics in interest rates, this study suggests the change-point
detection for interest rates forecasting. The proposed model consists of three stages. The first stage is to
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detect successive change points in the interest rates dataset. The second stage is to forecast the change-
point group with BPN. The final stage is to forecast the output with BPN. This study then examines the
predictability of the integrated neural network models for interest rates forecasting using change-point
detection.

Through the discovery of different patterns in the U.S. Treasury securities, the focus then shifts to
the change-point detection-assisted modeling of Treasury bill rates with 1 years� maturity and Treasury
bond rates with 30 years� maturity. Input variable selection is based on the causal model of interest rates
presented by the econometricians. To explore the predictability, we divided the interest data into the
training data over one period and the testing data over the next period. The predictability of interest rates
is examined using the metrics of the root mean squared error (RMSE), the mean absolute error (MAE)
and the mean absolute percentage error (MAPE).

In section 2, we outline the development of change-point detection and its application to the
financial economics. Section 3 describes the proposed integrated neural network model details. Section 4
and 5 report the processes and the results of the case study. Finally, the concluding remarks are presented
in Section 6.

2. Change-Point Detection

2.1. Application of Change-Point Detection in the Financial Economics
Financial analysts and econometricians have frequently used piecewise-linear models which also

include change-point models. They are known as models with structural breaks in economic literature. In
these models, the parameters are assumed to shift ― typically once ― during a given sample period
and the goal is to estimate the two sets of parameters as well as the change point or structural break.

This technique has been applied to macroeconomic time series. The first study in this field is
conducted by Rappoport and Reichlin (1989) and Perron (1989, 1990). From then on, several statistics
have been developed which work well in a change-point framework, all of which are considered in the
context of breaking the trend variables (Banerjee et al., 1992; Christiano, 1992; Zivot and Andrews, 1992;
Perron, 1995; Vogelsang and Perron, 1995). In those cases where only a shift in the mean is present, the
statistics proposed in the papers of Perron (1990) or Perron and Vogelsang (1992) stand out. However,
some variables do not show just one change point. Rather, it is common for them to exhibit the presence
of multiple change points. Thus, it may be necessary to introduce multiple change points in the
specifications of the models. For example, Lumsdaine and Papell (1997) considered the presence of two
or more change points in the trend variables. In this study, it is assumed that the Treasury security rates
can have two or more change points as well as just one change point.

There are few artificial intelligence models to consider the change-point detection problems. Most of
the previous research has a focus on the finding of unknown change points for the past, not the forecast
for the future (Wolkenhauer and Edmunds, 1997; Li and Yu, 1999). Our model obtains intervals divided
by change points in the training phase, identifies them as change-point groups in the training phase, and
forecasts to which group each sample is assigned in the testing phase. It will be tested whether the
introduction of change points to our model may improve the predictability of interest rates.

In this study, a series of change points will be detected by the Pettitt test, a nonparametric change-
point detection method, since nonparametric statistical property is a suitable match for a neural network
model that is a kind of nonparametric method (White, 1992). In addition, the Pettitt test is a kind of
Mann-Whitney type statistic, which has remarkably stable distribution and provides a robust test of the
change point resistant to outliers (Pettitt, 1980b). In this point, the introduction of the Pettitt test is fairly
appropriate to the analysis of chaotic interest rates data.

2.2. The Pettitt tests
The Pettitt tests assume that the observations form an ordered sequence and that initially the

distribution of responses has one median and at some point there is a shift in the median of the
distribution. 0H  is the null hypothesis that there is no change in the location parameter (i.e. the median)

of the sequence of observations, and 1H  is the alternative hypothesis that there is a change in the

location parameter of the sequence.
There are two kinds of change-point detection tests. One is appropriate when the data is binary and

consists of observations with some binomial process (Pettitt, 1980a). Another test assumes that the data
are continuous (Pettitt, 1979). The logic of the tests is similar although the computational formulas are
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different. We use the continuous type since we forecast the real value of interest rates. The Pettitt test is
explained as follows:

First, each of the observations NXXX ,...,, 21  must be ranked from 1 to N . Let ir  be the rank

associated with the observation iX . Then at each place j  in the series, we calculate

1,...,2,1,
1

−== ∑
=

NjrW
j

i
ij                        (1)

which is the sum of the ranks of the variables at or before point j . Next for each point in the sequence,

calculate )1(2 +− NjW j . Then set

1,...,2,1,|)1(2|max, −=+−= NjNjWK jnm               (2)

The value of j  where the maximum in Equation (2) occurs is the estimated change point in the sequence

and is denoted m . nmN =−  is the number of observations after the change point. Thus, nmK ,  is the

statistic which divides the sequence into m  and n  observations occurring before and after the change
respectively.

Whether this value of nmK ,  is larger than we would expect under 0H  can be tested by referring to

a table of the sampling distribution of jW , the sum of ranks. If W  exceeds the tabled value of W  at the

appropriate significance level, we may reject 0H  that there is no change in distribution.

If N  becomes large, W  is approximately normally distributed with mean 2/)1( +Nm  and

variance 12/)1( +Nmn  under 0H . Thus, when the series is long, the test for change may be done and

tested using the standard normal distribution table by transforming W  into Z :

12/)1(

2/)1(

+
+−+=

Nmn

NmhW
Z                              (3)

where 5.0−=h  if 2/)1( +> NmW  and 5.0+=h  if 2/)1( +< NmW .

    The Pettitt test detects a possible change point in the time sequence dataset. Once the change point is
detected through the test, then the dataset is divided into two intervals. The intervals before and after the
change point form homogeneous groups which take heterogeneous characteristics from each other. This
process becomes a fundamental part of the binary segmentation method explained in section 3.

3. Model Specification

Statistical techniques and neural network learning methods have been integrated to forecast the
Treasury security rates. The advantages of combining multiple techniques to yield synergism for
discovery and prediction have been widely recognized (Gottman, 1981; Kaufman et al., 1991). BPN is
applied to our model since BPN has been used successfully in many applications such as classification,
forecasting and pattern recognition (Patterson, 1996).

In this section, we discuss the architecture and the characteristics of our model to integrate the
change-point detection and the BPN. Fig. 1 shows the architecture of our model. Based on the Pettitt test,
the proposed model consists of three stages: (1) the change-point detection (CPD) stage, (2) the change-
point-assisted group detection (CPGD) stage and (3) the output forecasting neural network (OFNN) stage.
The BPN is used as a classification tool in CPGD and as a forecasting tool in OFNN.
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Fig. 1  Architecture of the proposed model using change-point detection

3.1. The CPD stage: Construction and analysis on homogeneous groups
The Pettitt test is a method to find a change-point in time series data (Pettitt, 1979). It is known that

interest rates at time t  are more important than fundamental economic variables in determining interest
rates at time 1+t  (Larrain, 1991). Thus, we apply the Pettitt test to interest rates at time t  in the training
phase. The interval made by the test is defined as the significant interval, labeled SI , which is identified
with a homogeneous group. Multiple change points are obtained under the binary segmentation method
(Vostrikova, 1981) which is explained as follows:

Step 1: Find a change point in N~1  intervals by the Pettitt test. If 1r  is a change point, 1~1 r  intervals

are regarded as 1SI  and Nr ~)1( 1 +  intervals are regarded as 2SI . Otherwise, it is concluded

that there does not exist a change point for N~1  intervals. )1( 1 Nr ≤≤
Step 2: Find a change point in 1~1 r  intervals by the Pettitt test. If 2r  is a change point, 2~1 r  intervals

are regarded as 11SI  and 12 ~)1( rr +  intervals are regarded as 12SI . Otherwise, 1~1 r

intervals are regarded as 1SI  like Step 1. )1( 12 rr ≤≤
Find a change point in Nr ~)1( 1 +  intervals by the Pettitt test. If 3r  is a change point,

31 ~)1( rr +  intervals are regarded as 21SI  and Nr ~)1( 3 +  intervals are regarded as 22SI .

Otherwise, Nr ~)1( 1 +  intervals are regarded as 2SI  like Step 1. )( 31 Nrr ≤≤
Step 3: By applying the same procedure of Step 1 and 2 to subsamples, we can obtain several significant

intervals under the dichotomy.

We, first of all, have to decide the number of change points. If just one change point is assumed to
occur in a given dataset, only the first step will be performed. Otherwise, all of the three steps will be
performed successively. This process plays a role of clustering which constructs groups as well as
maintains the time sequence. In this point, the CPD stage is distinguished from other clustering methods
such as the k-means nearest neighbor method and the hierarchical clustering method which classify data
samples by the Euclidean distance between cases without considering the time sequence. In addition, we
analyze the characteristics of groups according to descriptive statistics including the mean and the
variance, and also observe the density plot of groups since the classification accuracy is highly sensitive
to the density of the samples (Wang, 1995).

3.2. The CPGD stage: Forecast the group with BPN
The significant intervals in the CPD stage are grouped to detect the regularities hidden in interest

rates. Such groups represent a set of meaningful trends encompassing interest rates. Since those trends
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help to find regularity among the related output values more clearly, the neural network model can have a
better ability of generalization for the unknown data. This is indeed a very useful point for sample design.
In general, the error for forecasting may be reduced by making the subsampling units within groups
homogeneous and the variation between groups heterogeneous (Cochran, 1977). After the appropriate
groups hidden in interest rates are detected by the CPD stage, BPN is applied to the input data samples at
time t  with group outputs for 1+t  given by CPD. In this sense, CPGD is a model that is trained to find
an appropriate group for each given sample.

3.3. The OFNN stage: Forecast the output with BPN
OFNN is built by applying the BPN model to each group. OFNN is a mapping function between the

input sample and the corresponding desired output (i.e. Treasury security rates). Once OFNN is built, then
the sample can be used to forecast the Treasury security rates.

4. Data and Variables

 In this study, input variables are selected based on Fisher�s theory that nominal interest rates (i.e.
monthly U.S. Treasury security rates) consist of expected real interest rates and anticipated inflation:

Nominal Interest Rates = Expected Real Interest Rates + Anticipated Inflation

Many econometricians have conducted the research upon this Fisher-type interest rate equation (Mundell,
1963; Tobin, 1965; Darby, 1975; Feldstein, 1976; Tanzi, 1980; Makin, 1983). They have explained the
impact of anticipated inflation on nominal interest rates. Moreover, they have investigated the relationship
of money surprise and real GNP growth for the Fisher-type interest rate equation. These relationships are
summarized in Fig. 2. In Fig. 2, the straight line is meant to have more causal effects than the dotted line.
The causal model like Fig. 2 presents an explanation which would clarify the results (Kim and Park,
1996).

Anticipated
Inflation

Expected Real 
Interest Rates

Nominal Interest 
Rates

Money
Surprise

Real GNP
Growth

Fig. 2  The economic model under the Fisher-type interest rate equation

The input data sets in this study consist of the figures for the monthly rate of change. Given the data
sequence tddd ,...,, 21 , we form the rate of change at time 1+t  by dividing the first difference at that

time by the datum at time t :

t

tt

d

dd −+1                                    (4)

The input variables included in this model are anticipated inflation, expected real interest rates,
money surprise and real GNP growth which are appeared in Fig. 2. The rate of change of the consumer
price index is used as a measure for anticipated inflation while the expected real interest rates is
calculated as the difference between the nominal interest rates and the anticipated inflation at time t
according to the Fisher-type interest rate equation. M2 and industrial production index are added to input
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variables as a measure for money surprise and real GNP growth respectively. The list of input variables
used in this study is summarized in Table 1.

Table 1  Description of input variables
Variable Name Description

M2 Money Stock
CPI Consumer Price Index

ERIR Expected Real Interest Rates
IPI Industrial Production Index

The data used in this study is monthly yields on the U.S. Treasury securities from January 1977 to
May 1999. As a starting point, we compute descriptive statistics including basic statistics and Pearson
correlations among securities. Table 2 shows that the mean and the median change in proportion to
maturity. In Table 3, computation on the monthly yields shows that the Pearson correlation between one-
year T-bills and thirty-year T-bonds is relatively small except the Federal Funds; The correlation between
one-year T-bills and three-year T-notes is 0.97; between one-year T-bills and five-year T-notes, 0.95;
between one-year T-bills and ten-year T-notes, 0.92; and between one-year T-bills and thirty-year T-
bonds, 0.90. Thus, the forecast of the U.S. Treasury security rates had better not be based on the
equivalence alone, but should be performed through individual modeling. In this sense, we build two
integrated neural network models for one-year T-bills and thirty-year T-bonds, and establish the
experiment interval differently for each model. The motivation for this plan is to see the impact of
interval size on the performance and furthermore to demonstrate the generality of the proposed model.

Table 2  Descriptive statistics of the U.S. Treasury monthly yields
from January 1977 to May 1999

Statistics
Federal
Funds

1-year
T-bill

3-year
T-note

5-year
T-note

10-year
T-note

30-year
T-bond

Mean 7.68 7.11 8.17 8.39 8.64 8.78
Minimum 2.92 3.06 4.17 4.18 4.53 5.01
Maximum 19.10 14.70 16.22 15.93 15.32 14.68
Range 16.18 11.64 12.05 11.75 10.79 9.67
Median 6.85 6.58 7.73 7.85 8.11 8.27
Lower Quantile 5.40 5.23 6.07 6.40 6.80 7.27
Upper Quantile 9.35 8.58 9.47 9.76 10.28 10.33
Quantile Range 3.96 3.35 3.40 3.36 3.48 3.06
Variance 11.83 6.89 7.54 6.87 6.10 5.07
Standard Deviation 3.44 2.63 2.75 2.62 2.47 2.25
Standard Error 0.21 0.16 0.17 0.16 0.15 0.14
Skewness 1.23 0.82 0.84 0.82 0.74 0.73
Kurtosis 1.55 0.17 0.09 -0.03 -0.21 -0.25

*T-bill means Treasury bill rates; T-note, Treasury note rates; T-bond, Treasury bond rates

Table 3  Pearson correlation matrix of the U.S. Treasury monthly yields
form January 1977 to May 1999

Federal
Funds

1-year
T-bill

3-year
T-note

5-year
T-note

10-year
T-note

30-year
T-bond

Federal Funds 1.0000 　 　 　 　 　
1-year T-bill 0.9735 1.0000 　 　 　 　
3-year T-note 0.9314 0.9798 1.0000 　 　 　
5-year T-note 0.9021 0.9578 0.9951 1.0000 　 　
10-year T-note 0.8674 0.9286 0.9810 0.9949 1.0000 　
30-yearT-bond 0.8374 0.9015 0.9644 0.9849 0.9968 1.0000
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For one-year T-bills, the training phase involves observations from January 1961 to August 1991
and the testing phase runs from September 1991 to May 1999. For thirty-year T-bonds, the training phase
runs from January 1977 to December 1994 and the testing phase runs from January 1995 to May 1999.
The interest rates data is presented in Fig. 3. Fig. 3 shows that the movement of interest rates fluctuates
highly in both one-year T-bills and thirty-year T-bonds.

(a)

(b)

Fig. 3 (a) U.S. Treasury bills with a maturity of 1 year from Jan. 1960 to May 1999
(b) U.S. Treasury bonds with a maturity of 30 years from Jan. 1977 to May 1999

The study employs two neural network models. One model, labeled Pure_NN, involves four input
variables at time t  to generate a forecast for 1+t . The input variables are M2, CPI, ERIR and IPI. The
second type, labeled BPN_NN, is the two-step BPN model that consists of three stages mentioned in
section 3. The first step is the CPGD stage that forecasts the change-point group while the next step is the
OFNN stage that forecasts the output. For validation, two learning models are also compared.
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5. Empirical Results

The Pettitt test is applied to the interest rates dataset. Since the interest dataset is about forty years
long for one-year T-bills, it is considered that there exist three or more change points. It is further
assumed that there exist two change points because of the small size of data for thirty-year T-bonds. Table
4 shows these results for one-year T-bills and thirty-year T-bonds.

Table 4 (a) Period and descriptive statistics of groups for the training phase,
Jan. 1961 - Aug. 1991, in one-year T-bills

Group 1 Group 2 Group 3 Group 4

Periods
Jan. 61 �
Nov. 65

Dec. 65 �
Feb. 73

Mar. 73 �
May 78

Jun. 78 �
Aug. 91

Minimum 2.720 3.600 4.640 5.260
Maximum 4.230 7.610 8.880 14.700
Range 1.510 4.010 4.240 9.440
Mean 3.378 5.419 6.507 8.654
Variance 0.219 0.938 1.008 5.240
Standard
Deviation

0.468 0.969 1.004 2.289

Skewness 0.147 0.496 0.363 0.781
Kurtosis -1.544 -0.361 -0.575 -0.135

(b) Period and descriptive statistics of groups for the training phase,
Jan. 1961 � Dec. 1994, in thirty-year T-bonds

Group 1 Group 2
Periods Jan. 77 � Feb. 86 Mar. 86 � Dec. 94
Minimum 7.640 5.940
Maximum 14.680 9.610
Range 7.040 3.670
Mean 10.819 7.995
Variance 3.862 0.676
Standard
Deviation

1.965 0.822

Skewness 0.011 -0.365
Kurtosis -1.062 -0.262

For the case of one-year T-bills, Table 4(a) also presents descriptive statistics including the mean and
the variance. Group 1 is the stable interval that has small variance. Group 2 and 3 have more fluctuated
intervals than Group 1 in terms of the variance. Group 4 fluctuates highly. The values of skewness and
kurtosis indicate that the four groups have similar attributes in distribution. Fig. 4 depicts the density plot
for each group. By Fig. 4, Group 2 and 4 are considered to have similar distribution in terms of the shape.

In the case of thirty-year T-bonds, Table 4(b) shows that Group 2 is the stable interval with small
variance while Group 1 fluctuates heavily with a big range. Fig. 5 presents the density plot for each group.
Through Fig. 5, Group 1 and 2 are recognized to have the distinctive distribution.

To highlight the performance of the models, the actual values of interest rates and their predicted
values are shown in Fig. 6. For one-year T-bills, the predicted values of the pure BPN model (i.e.
Pure_NN) moves apart from the actual values in some intervals. In the case of thirty-year T-bonds, the
predictability of the two models falls down even though the predictive values of the proposed model (i.e.
BPN_NN) comes closer to the actual values than that of the pure BPN model. It is inferred that this
phenomenon is caused by the long-term maturity of T-bonds.
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Fig. 4  Density plot of four homogeneous groups for one-year T-bills
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Fig. 6  (a) Actual vs predicted values due to the models for one-year T-bills
(b) Actual vs predicted values due to the models for thirty-year T-bonds

Numerical values for the performance metrics by the predictive model are given in Table 5. Fig. 7
presents histograms of RMSE, MAE and MAPE for the forecast of each learning model in the cases of
one-year T-bills and thirty-year T-bonds. According to RMSE, MAE and MAPE, the outcomes indicate
that the proposed neural network model is superior to the pure BPN model for both of the interest rates.

Table 5 (a) Performance results of one-year Treasury bill rate forecasting based on
the root mean squared error (RMSE), the mean absolute error (MAE) and the mean

absolute percentage error (MAPE)
Model RMSE MAE MAPE

Pure_NN 0.0973 0.2506 5.969%
BPN_NN 0.0584 0.1745 3.746%

(b) Performance results of thirty-year Treasury bond rate forecasting based on the
RMSE, the MAE and the MAPE

Model RMSE MAE MAPE
Pure_NN 2.5462 1.4976 24.828%
BPN_NN 1.7553 1.2668 20.836%
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(a)

(b)

Fig. 7 (a) Histogram of RMSE, MAE and MAPE resulting from forecasts of
one-year T-bills (b) Histogram of RMSE, MAE and MAPE resulting

from forecasts of thirty-year T-bonds

We use the pairwise t-test to examine whether the differences exist in the predicted values of models
according to the absolute percentage error (APE). This metric is chosen since it is commonly used
(Carbone and Armstrong, 1982) and is highly robust (Armstrong and Collopy, 1992; Makridakis, 1993).
Since the forecasts are not statistically independent and not always normally distributed, we compare the
APEs of forecast using the pairwise t-test. Where sample sizes are reasonably large, this test is robust to
the distribution of the data, to nonhomogeneity of variances, and to statistical dependence (Iman and
Conover, 1983). Table 6 shows t-values and p-values. The neural network models using change-point
detection perform significantly better than the pure BPN model at a 1% significant level. Therefore, the
proposed model is demonstrated to obtain improved performance using the change-point detection
approach.

Table 6  Pairwise t-tests for the difference in residuals
between the pure BPN model and the proposed neural network model

for one-year T-bills and thirty-year T-bonds based on the absolute percentage error
(APE) with the significance level in parentheses.

Interest Rates Test Value
One-year T-bills 3.43 (0.000)***

Thirty-year T-bonds 5.85 (0.000)***
*** Significant at 1%
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In summary, the neural network models using the change-point detection turns out to have a high
potential in interest rates forecasting. This is attributable to the fact that it categorizes the interest rates
data into homogeneous groups and extracts regularities from each homogeneous group. Therefore, the
neural network models using change-point detection can cope with the noise or irregularities more
efficiently than the pure BPN model.

6. Concluding Remarks

This study has suggested change-point detection to support neural network models in interest rates
forecasting. The basic concept of this proposed model is to obtain significant intervals divided by the
change points, to identify them as change-point groups, and to use them in interest rates forecasting. We
propose the integrated neural network model which consists of three stages. In the first stage, we conduct
the nonparametric statistical test to construct the homogeneous groups. In the second stage, we apply
BPN to forecast the change-point group. In the final stage, we also apply BPN to forecast the output.

The neural network models using change-point detection perform significantly better than the pure
BPN model at a 1% significant level. These experimental results imply the change-point detection has a
high potential to improve the performance. Our integrated neural network model is demonstrated to be a
useful intelligent data analysis method with the concept of change-point detection. In conclusion, we have
shown that the proposed model improves the predictability of interest rates significantly.

The proposed model has the promising possibility of improving the performance if further studies
are to focus on the optimal decision of the number of change point and the various approaches in the
construction of change-point groups. In the OFNN stage, other intelligent techniques besides BPN can be
used to forecast the output. In addition, the proposed model may be applied to other chaotic time series
data such as stock market prediction and exchange rate prediction.
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