APDSI 2000 Full Paper (July, 2000)

Building A Model Query Language via SML
Yao-Chuan Tsai

Dept. of Business Administration, National Cheng Kung University
(tsaia@mail.ncku.edu.tw)

Abstract

Structured modeling language (SML) is modeling language for the structured modeling (SM)
framework, which is designed to represent a wide range of models. The lack of query (retrieval) capabilities
in most extant modeling systems constitutes one of the greatest anachronisms of contemporary practice. This
paper develops a model query language called SMQL for SM. While previous research requires users to
know the models are represented in a DBMS in order to perform queries, our approach does not. This has
been achieved through the use of SML as the Model Definition Language and develop SMQL on top of an
SQL-based DBMS. This approach will save tremendous effort and time for language development. Also,
since SML’s Natural Language Summary is a non-technical interface that enable the users easily learn the
“structure” of the data, but not its technical details, the users thus can use SML’s Natural Language Summary
(or SML schema) for performing data queries, and can free from having to know the details of data
representation.

1. Introduction

Model query is the task of retrieving information about models either before or after model manipulation [2].
Model query facilities allow users to understand their models thoroughly, to verify whether or not a model corresponds
to reality, and to make inferences from a model.

Traditionally, queries about Management Science/Operations Research (MS/OR) models are for sensitivity
analysis and optimization. Sensitivity analysis and optimization are applied to “what if” and “what’s best” queries in
management decision-making. While modeling systems provide support for the specification and computation of
MS/OR models, they lack flexible retrieval capability, as in the tradition of database management systems, for querying
about models themselves. The lack of such query capabilities in most extant modeling systems constitutes one of the
greatest anachronisms of contemporary practice. To quote Geoffrion [10],

“.. Data Management and flexible retrieval capability are just as important for most
MS/OR applications as the functions performed by the solvers toward which the models
usually are oriented.”

Structured modeling [10, 11] was developed to provide a very general approach to the problems and activities
associated with modeling. SML [16, 17] is a modeling language for the structured modeling framework, which
represents the semantics as well as mathematical structure of a model. This paper develops a model query language
SMQL for structured modeling (SMQL has two sub-languages of EDQL and ScQL.). A model query language which,
like a database query language, is a built-in facility in modeling systems that helps answer model queries on a more
customized basis. A model query language does not pretend to cope with the entire universe of possible model queries,
but serves as a convenient tool allowing users to easily construct their own queries. A query language has the task of
expressing queries as well as being easy to use. If a model query language can be created that is both easy to use and
powerful for retrieval, it would be among the most useful feature of modeling systems. However, ‘ease of use’” and ‘great
expressive power’ in a language might be contradictory. For practical reasons and usability considerations, we believe
that a simple and useful query language would be more acceptable than a powerful but complicated query language.
This paper, hence, emphasizes simplicity of the language over expressive power. It is worthy noting that ‘ease of use’ is
especially demanded in a today’s personal computing environment.

Our approach, which proposes using an external DBMS for creating a model query language, is different from
previous research that represents and queries MS/OR models within a DBMS. While previous research requires
managing models within a DBMS environment, our approach does not. Instead of viewing a DBMS as a modeling
system, our approach considers a model query system as a front end to a DBMS external to the system. We take two
steps in order to create a model query language. First, we use SML as the model definition language. Second, we
internally represent SML models in relations, and then build our model query language on top of the SQL [6] offered by
a relational DBMS, by using the semantics of the SML model definitions.

APDSI 2000 Full Paper (July, 2000)

By necessity, we presume that the reader is acquainted with the basic terms of SML. For example, the reader
should know that an SML model consists of a schema and elemental detail tables, that a schema represents a structured
model’s general structure, and that elemental detail tables instantiate a model schema to a specific model instance.
Figure 1 presents a model schema of the Happy Valley Food Cooerative (HVFC) example in [31]. Figure 2 presents the
model’s elemental detail tables.

The organization of this paper as follows. Section 2 reviews certain points about data models from the database
literature for the benefit of readers who may not be familiar with these ideas. SMQL has two sub-languages of EDQL
and ScQL. Section 3 develops the EDQL language for retrieving a model’s elemental detailed data. Section 4 develops
the ScQL language for retrieving a model’s general structure. Finally, Section 5 summarizes the contributions and future
research.

2. Selected Ideas from Data Models

We will borrow from the approaches of database query languages to create our model query language. Approaches
to creating a database query language can be considered in two ways, one semantic and the other syntactical. The
semantic aspect of a query language determines how the user imagines the data to be (e.g., network, table, etc.). The
various methods (e.g., text, graphics, menu, etc.) by which the users may specify queries based on this image make up
the syntactical aspect of a query language. Semantic approaches to a database query language use data models, which
play an integral part of our language development. A text-based method of using key words is also adopted to create our
model query language.

Semantic approaches to a query language interface use data models to represent data, and queries are phrased
based on the model used. Data models are classified into 3 categories: classical data models, semantic database models,
the universal relation model.

Classical Data Models

Classical data models (e.g., network, hierarchical, and relational models) have gained wide acceptance as efficient
data management tools since the 1970s. The use of classical data models in data management is a significant step
forward because it allows users to specify a navigational path among the abstract, ‘logical’ data structures when
performing queries and hence removed the need for specifying access paths in a database's ‘physical’ storage structure.
The term "logical navigation" is the process of following (or specifying) links, or more generally, relationships based on
a model schema [30].

By the criterion of easy use, the relational model is no doubt superior. It provides essentially only one concept, the
relation. Relational DBMSs have stressed high-level query languages, while DBMSs based on hierarchical and network
models have tended to have lower-level languages [32]. Although relational database query languages are claimed as
being easy to use, understanding the relational structures and supplying a logical navigational path still can be difficult
tasks for many users, especially in a complex database with dozens of relations. We cannot expect every user to know
the underlying relational database structure very well.

Semantic Data Models

Semantic data models (e.g., the Entity-Relationship Model [4], the Functional Data Model [27], and Hammer and
McLeod’s Semantic Database Model [22]) are a new generation of data models subsequent to the development of
classical data models. While classical data models offer appealing data management techniques, they are rather poor at
conveying the semantics of an application. For example, if information regarding an object is represented in several
relations, the relational data model requires the user to think of the object by traversing from one relation to another,
making it more difficult to form complex objects out of simple ones. Recognizing such limitations, semantic data models
were created to provide richer, more expressive concepts with which to capture more meaning than is possible with
classical data models. Because semantic data models allow users to think of data more directly than classical data
models do, users can construct navigational queries more easily through data relationships on a ‘semantic’ database
model schema than on a 'classical' data model schema [23]. Simple query languages are the natural by-products of most
semantic data modeling.

The Universal Relation Model

The universal relation model also attempts semantic enhancements for the purpose of freeing users from the
burdens of logical navigations among the relations of a database. The universal relation model proposed by Ullman [32]
allows the user to imagine that the data of an entire database are kept in a single relation, whose schema consists of all
the columns in any of the relations of the database. The user doesn't have to know the relational structure of the database,
and hence need not specify a logical navigational path among the relations in a database when posing a query. To

APDSI 2000 Full Paper (July, 2000)

support a universal relation user interface within a database system, a database designer has to define not only a
relational database itself, but also the additional "connections" of related columns in relations. Having done so, the
navigational path, not specified in a universal relation query by a user, can be specified automatically by the system. The
system must therefore work harder to interpret queries on the database.

3. Elemental Detail Query Language

This section discusses the Elemental Detail Query Language (EDQL) for retrieving a model’s detailed data. The
development of EDQL uses an idea of semantic data models.

3.1 Approach

We have mentioned in Section 2 that semantic data models are semantically richer than the relational model.
Semantic data models, therefore, enable users to think of data in ways that correlate more directly to how data arise in
the world than in a relational database. Naturally, users can specify a navigational path more easily on a semantic data
model schema than on a relational scheme.

An SML schema, like a semantic data model schema, is semantically richer than a relational scheme [9]. Rather
than phrasing queries (using SQL or QBE) on elemental detail tables, we propose to phrase EDQL queries on
‘imaginary’ primitive tables (discussed in the next section) that are directly determined by an SML schema. A translation
procedure would translate an EDQL query on “primitive tables” into an equivalent SQL query on “elemental detail
tables”. The translated SQL query can then be executed on the DBMS. Users can thus be relieved from having to know
the elemental detail tables when posing queries about a model's detailed data. As a result, users only need know an SML
schema of interest, not both an SML schema and the elemental detail tables.

3.2 Primitive Tables

According to Steps 1 and 2 of Geoffrion’s [13] Table Structuring Procedure, an SML schema directly determines
three kinds of primitive table structures. The primitive tables are genus tables, dependency tables, and symbolic
parameter tables. Conceptually, genus tables contain the elemental data of genera. Dependency tables contain the
detailed information of functional dependencies (FD) and multi-valued dependencies (MVD) defined in an SML schema.
Symbolic parameter tables describe the details of symbolic parameters that are defined in generic rules

Primitive tables have only three kinds of columns. The first kind, called an identifier (ID) column, is the column of
identifiers that corresponds to an index in SML. The second kind, called a VALUE column, holds the values of attribute,
function, test elements, or symbolic parameters. The third kind, called an interpretation (INTERP) column, holds the
interpretation of an identifier.

The possible forms of primitive table structures are listed below (we follow the column order convention of [13].

1. Genus tables:
(@) ID||
(b) ID || INTERP
(c) ID || VALUE, INTERP
(d) ID, .., ID|
(e) ID,..,ID|| VALUE
(H || VALUE

2. Dependency tables:
(a) ID|ID
(b) ID,..,ID||ID

3. Symbolic parameter tables:
(a) || VALUE
(b) ID| VALUE
(¢) 1D,..,ID| VALUE

If column names are attached to columns of a relation, then the order of the columns becomes unimportant.
However, for simplicity we intend that the primitive tables use the same column order convention as Geoffrion’s Table
Structuring Procedure. Hence, primitive tables are exactly the unjoined elemental detail tables (i.e., prior to Step 3 of the
Procedure), and genus tables, dependency tables and symbolic parameter tables are exactly Step 1 tables, Step 2A tables
and Step 2B tables, respectively in [13]

In order that the primitive table structures make sense as a conceptual tool, we propose the following mnemonic
EDQL Table Naming Conventions for primitive tables.

APDSI 2000 Full Paper (July, 2000)

Primitive Table Naming Conventions:

1. Genus Table Naming Convention Each genus table name coincides with the generic name associated with the
genus whence it derives. Each ID column name coincides with the corresponding index. The VALUE column name
is simply “value". The INTERP column name is simply “interp”.

2. Dependency Table Naming Convention Each dependency table name coincides with the functional or multi-
valued dependency (e.g., hl(j), k2*(i, j), etc.). Each independent ID column name coincides with the
corresponding independent index. The dependent ID column name coincides with the corresponding functional or
multi-valued dependency name (e.g., h1, k2*, etc.).

3. Symbolic Parameter Table Naming Convention Each symbolic parameter table name is the stem of the
symbolic parameter, to which is appended an underscore and the generic name of the associated genus whence it
derives. Each ID column name coincides with the corresponding index. The VALUE column name is simply
“value”.

The HVFC model's primitive tables using EDQL Table Naming Conventions are listed in Figure 3.

Primitive table structures are directly determined by an SML schema. One may speak without ambiguity of “the”
primitive table corresponding to any given genus, of “the” primitive table corresponding to any given functional
dependency or multi-valued dependency, and of “the” primitive table corresponding to any given symbolic parameter.
Figure 4 shows the correspondences of a model’s primitive tables to genera, functional/multi-valued dependencies or
symbolic parameters that are defined in an SML schema. For example, the primitive table MEMm corresponds to the
genus MEM defined in the HVFC model schema's second paragraph, the primitive table m1(o) corresponds to the
functional dependency m1 defined in the ORD paragraph, etc.

It should be noted that we are not proposing that the data should be stored in primitive tables; just that users
should be allowed to perceive the data as if they were stored that way. By Step 3 of the Table Structuring Procedure [13],
elemental detail tables are joined from primitive tables (Step 1 tables, Step 2A tables and Step 2B tables) without
changing any data. Hence, primitive tables are equivalent to elemental detail tables. If Step 3 is not performed, then
primitive tables are exactly elemental detail tables.

Because the structures of primitive tables are directly determined by an SML schema, primitive tables are easy to
imagine, and thus facilitate phrasing a query about a model's detailed data, whether Step 3 is performed or not.
Informally, data are stored in elemental detail tables. Primitive tables are imaginary and do not actually exist.
EDQL queries use primitive table structures, not elemental detail table structures. An EDQL query has this simple form:

SELECT table.column, ...
WHERE conditions

where ‘table.column’ uses Primitive Table Naming Conventions, and ‘conditions’ are the imposed constraints on the
information retrieved. EDQL queries are similar to SQL queries, but do not have a FROM clause. The information
regarding FROM tables is embedded in the associated SELECT clauses. An EDQL query will be translated into an
equivalent SQL query.

3.3 EDQL Query Translation

This section discusses a procedure for translating an EDQL query on primitive tables into an equivalent SQL
query on elemental detail tables. The translated SQL query can then be executed on the DBMS.

Note that each primitive table corresponds to exactly one elemental detail table, but not vice versa. Figure 5 lists
the correspondence between the HVFC model primitive tables and elemental detail tables. For example, the primitive
table

MEMm corresponds to the elemental detail table MEM,but the elemental detail table MEM corresponds to the
primitive tables MEMm, MNAMEm, MADDRm, and BALm.

Also, each column in the primitive tables corresponds to exactly one elemental detail table's column, but not vice
versa. Figure 6 lists the column correspondence between the HVFC model primitive tables and elemental detail tables.
For example, the m column of the primitive table MEMm corresponds to MEM column of the elemental detail table
MEM, but the MEM column of the elemental detail table MEM corresponds to four primitive tables' columns, which
are the m column of the primitive table MEMm, the m column of the primitive table MNAMEm, the m column of the
primitive table MADDRm, and the m column of the primitive table BALm.

Because each primitive table corresponds to exactly one elemental detail table and each column in the primitive

APDSI 2000 Full Paper (July, 2000)

tables corresponds to exactly one elemental detail table’s column, an EDQL query on primitive tables can be translated
into an SQL query on elemental detail tables without any ambiguity. We will show that the EDQL translation procedure
would unambiguously translate an EDQL query on primitive tables into an SQL query on elemental detail tables. The
translated SQL query could then be executed on the DBMS.

EDQL Translation Procedure:

Input: An EDQL query on primitive tables

Output: An SQL query on elemental detail tables

Procedure:

Step 1: (Change to the SELECT-FROM-WHERE pattern) Translate the query’s ‘SELECT-WHERE’ pattern into the
‘SELECT-FROM-WHERE’ pattern by creating a FROM clause right after each SELECT clause, but before the
SELECT command's WHERE clause. The SELECT and WHERE clauses do not change. Each newly created
FROM clause has the form of “FROM tl, t2, ...”. tl, t2, ... are primitive table names which are exactly the unique
collection of the ‘table' names in the associated SELECT clause's ‘table.column’ names of the EDQL query.

Step 2: (Change all ‘table.column’ names in SELECT and WHERE clauses) Replace each primitive table's
‘table.column’ name with a corresponding elemental detail table's ‘table.column’ name in all SELECT and
WHERE clauses.

Step 3: (Change all ‘table’ names in FROM clauses) Replace each primitive table name with a corresponding elemental
detail table name in all FROM clauses.

Step 4: (Delete duplicate elemental detail table names in each FROM clause) For each FROM clause, if there is a
duplicate elemental detail table name in the FROM clause after Step 3, delete it from the clause. Stop.

The following proposition shows that the EDQL translation procedure unambiguously translates an EDQL query
on primitive tables into an SQL query on elemental detail tables.

Proposition 1 The EDQL translation procedure uniquely translates to an SQL query on elemental detail tables from an
EDQL query on primitive tables.

Proof:

We shall prove that there is no ambiguity in translating an EDQL query on primitive tables into an SQL query on
elemental detail tables.

Remember that EDQL queries have no FROM clause, but SQL queries must have a FROM clause. Step 1
transforms the EDQL query's SELECT-WHERE pattern into the SQL’s SELECT-FROM-WHERE pattern. The
primitive table names of each FROM clause are unique and are exactly the collection of the ‘table’ names in the
associated SELECT clause’s ‘table.column’s of the EDQL query.

Since each column in the primitive tables identifies exactly one elemental detail table column, Step 2 would
uniquely translate each primitive table’s ‘table.column’ name in SELECT and WHERE clauses to a corresponding
elemental detail table's ‘table.column’ name. Furthermore, since each primitive table identifies exactly one elemental
detail table, Step 3 would uniquely translate each primitive table name in FROM clauses to a corresponding elemental
detail table name. Hence, the translated SQL query on elemental detail tables must be unique. [l

An example of the HVFC model queries in EDQL and SQL is given below.

Example 1 7o print suppliers, addresses, and offering prices of all suppliers that supply Granola (GR) in the HVFC
model, we write

SELECT SADDRs.s, SADDRs.value, PRICEsi.value
WHERE SADDRs.s = PRICEsi.s

AND

PRICEsi.i = ‘GR’

The EDQL Translation Procedure is applied below. Step 1 of the EDQL Translation Procedure creates the clause
‘FROM PRICEsi’ after the SELECT clause. Step 2 replaces the primitive table’s column names PRICEsi.s, PRICEsi.i,
and PRICEsi.value with the elemental detail table's column names OFFER.SUP, OFFER.ITEM, and OFFER.PRICE
respectively. Step 3 replaces the primitive table name PRICEsi with the corresponding elemental detail table name
OFFER. Step 4 is not applied because there is no duplicate table name in the query’s FROM clause after Step 3. As a
result, the EDQL query is translated into this SQL query by the EDQL translation procedure:

SELECT SUP.SUP, SUP.SADDR, OFFER.PRICE
FROM SUP, OFFER

APDSI 2000 Full Paper (July, 2000)

WHERE SUP.SUP = OFFER.SUP
AND
OFFER.ITEM =GR’

4. ScQL Query Language

This section discusses a universal relation query language, which we call Schema Query Language (ScQL), for
retrieving a model’s general structure. ScQL has similar functions to a data dictionary in databases. The ability of users
to ask questions about the general structure of a database is an important aspect of intelligent query systems [19].

4.1 Approach

Since we will use a relational DBMS for creating a MQL, we shall represent an SML schema in relations
(“schema tables”) in order to query general model structure. The query language of the adopted relational DBMS
would then be applicable. But it is possible to advance to an even simpler language interface by simulating a universal
relation [32]. This technique requires proper design of schema tables, a translation procedure, and some assumptions.
Schema tables contain the schema data for retrieval. The translation procedure would use our assumptions and would
translate a user's ScQL query (universal relation query) into an SQL query on schema tables. The translated SQL query
could then be executed on the DBMS.

4.2 Schema Tables

This section discusses the representation of an SML schema in relations (tables). Schema tables represent an SML
schema. The Internal Representation Tables (IRTs) in FW/SM [26] represent one kind of schema tables. IRTs, however,
are intended for storing the schema information for purposes other than for query processing. Instead of using IRTs, this
section proposes a different kind of schema tables that can achieve a simple query interface.

The first step in order to create schema tables is to define the column names of the tables. We propose the column
names shown in Figure 7. The meaning of those column names are obvious to anyone who knows SML.

Next, in order to create useful table structures, we investigate the relationships among the defined columns. From
the definitional semantics of an SML schema, the predicates listed below describe the relationships among the
“columns” specified in Figure 7. Each predicate defines a functional or multi-valued dependency relationship of the
involved columns. Let “X — Y” denote “an X value determines a Y value” and “X —>> Y” denote “an X value
determines a set of Y values”.

1. Each genus has a genus type. Also, consider a modular paragraph as a paragraph of type /m/.
The predicate is “TYPE is the type of NAME.”
NAME — TYPE.
2. Each non /pe/ genus has a calling sequence.
The predicate is “CALLING SEQUENCE is the calling sequence of NAME.”
NAME — CALLING SEQUENCE.
3. Each genus has an optional domain statement.
The predicate is “DOMAIN is the domain statement of NAME.”
NAME — DOMAIN.
4. Each /f/ or /t/ genus has a generic rule.
The predicate is “RULE is the generic rule of NAME.”
NAME — RULE.
5. Each/a/ or /va/ genus has an optional range statement.
The predicate is “RANGE is the range statement of NAME.”
NAME — RANGE.
6. Each genus has an optional index set statement.
The predicate is “ISS is the index set statement of NAME.”
NAME — ISS.
7. Each paragraph has an optional interpretation.
The predicate is “INTERPRETATION is the interpretation of NAME.”
NAME — INTERPRETATION.
8. Each paragraph has an indentation level.
The predicate is “INDENTATION is the indentation of NAME.”
NAME — INDENTATION.
9. Each paragraph has a sequence number.
The predicate is “PARAGRAPH# is the sequence number of NAME.”

APDSI 2000 Full Paper (July, 2000)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

NAME — PARAGRAPH#.
Each genus is either indexed or unindexed.
The predicate is “INDEXED? states whether NAME is indexed.”
NAME — INDEXED?.
Each indexed genus is either self-indexed or externally indexed.
The predicate is “SELF-INDEXED? states whether NAME is self-indexed.”
NAME — SELF-INDEXED?.
Each self-indexed genus introduces a new index.
The predicate is “NEW _INDEX is the index introduced by NAME.”
NAME — NEW_INDEX.
Each self-indexed genus may have an alias index.
The predicate is “ALIAS INDEX is the alias index for NAME.”
NAME — ALIAS INDEX.
Each indexed genus may have a symbolic index tuple.
The predicate is “INDEX TUPLE is the index tuple for NAME.”
NAME — INDEX TUPLE.
A non /pe/ genus calls some genera in the calling sequence.
The predicate is “NAME is a called genus of CALLING NAME.”
CALLING NAME —>> NAME.
A non /pe/ genus has a sequence of components in a calling sequence.
Two predicates are “COMPONENT is a called component of CALLING NAME” and “COMPONENT# is a
component’s sequence number of CALLING NAME”.
CALLING_NAME —>> COMPONENT.
CALLING NAME —>> COMPONENT#.
Each dependency is either a functional dependency or a multi-valued dependency.
The predicate is “FD? states whether DEPENDENCY NAME is a Sfunctional dependency.”
DEPENDENCY NAME — FD?.
Each dependency has a dependency name.
The predicate is “The name of DEPENDENCY is DEPENDENCY NAME.”
DEPENDENCY NAME — DEPENDENCY.
There are functional or multi-valued dependencies used for the first time in the generic calling sequence of some
genus paragraphs.
The predicate is “DEPENDENCY NAME is the dependency used for the first time in the genus paragraph
NAME.”
DEPENDENCY NAME — NAME.
There are distinct symbolic parameters used in the generic rule of a genus paragraph.
The predicate is “PARAMETER is the symbolic parameter used in the generic rule of genus paragraph NAME.”

PARAMETER — NAME.

21.

22.

23.

A module has a sequence of sons.
Two predicates are “SON is the son of NAME” and “SON# is the son's sequence number within NAME.”
NAME —>> SON,
NAME —>> SON#.
A module or genus can have defined key phrases.
The predicate is “KP is a defined key phrase of NAME.”
NAME —>>KP.
A module or genus paragraph can have referenced key phrases in its interpretation.
The predicate is “REFERENCED _KP is a referenced key phrase of NAME.”
NAME —>> REFERENCED KP.

Based on the dependency relationships established in the above predicates, we propose the following Schema

Table Structures for our ScQL development. We aggregate columns into the same table as much as possible in order to
avoid data redundancy. Aggregating columns also avoids unnecessary join operations when answering a question, and
hence can facilitate computing a query.

We follow the convention of drawing a double vertical line just to the right of each key in the schema table

structures. A key of a relation is a column or a set of columns whose values uniquely identify each tuple in the relation.

1.

Table Name: PARAGRAPH TBL
NAME || INDEXED?, INDEX TUPLE, SELF-INDEXED?, NEW¥ INDEX, ALIAS_INDEX,
CALLING_SEQUENCE, TYPE, ISS, DOMAIN, RANGE, RULE, INTERPRETATION, INDENTATION,
PARAGRAPH#

APDSI 2000 Full Paper (July, 2000)

When the data are loaded into the PARAGRAPH_TBL table, they should obey the following rules: (1) Each row
of the table corresponds to an SML schema's paragraph. (2) For a row of a NAME (i.e., genus or module), (2a) if a non-
NAME column is optional in SML (e.g., a range statement is optional for a /a/ genus), and is not specified in the SML
schema, then use “NULL” as data entry in the table, and (2b) if a non-NAME column is not allowed by SML (e.g., a
calling sequence is not allowed for a /pe/ genus), then use “NA” as the data entry in the table.

2. Table Name: CALL TBL

CALLING_NAME, NAME || COMPONENT, COMPONENT#
3. Table Name: DEP _TBL

DEPENDENCY_NAME || FD?, DEPENDENCY, NAME
4. Table Name: PARAMETER TBL

PARAMETER || NAME
5. Table Name: TREE TBL

NAME, SON || SON#
6. Table Name: KP TBL

NAME, KP ||
7. Table Name: KP REF TBL

NAME, REFERENCED_KP||

The above schema tables have two properties. First, all the column names, except NAME, are unique across all
schema tables. Second, the column name NAME is common among the schema tables and serves to join the different
tables for multiple table queries. We will use these two properties in translating queries in the next section.

ScQL supports the universal relation interface. This means that users need not know the structure of the schema
tables. Instead, for query purposes, users can imagine schema tables as a single table that contains all the columns listed
in Figure 7. As a result, users need not specify a navigational path (no nested queries) when posing a query about a
model schema.

An ScQL query has the following simple form:

SELECT column, ...
WHERE conditions

4.3 Query Computation and Confirmation

This section gives a procedure for translating an ScQL query on the universal relation into an equivalent SQL
query on schema tables. The translated SQL query could then be executed on the DBMS. We also discuss a
confirmation approach for resolving possible ambiguities.

Remember that our schema tables have two properties. First, all the column names, except NAME, are unique
across all schema tables. Second, the column name NAME is common among the schema tables and serves to join the
different tables for multiple table queries.

Further, when translating an ScQL query into an SQL query, the ScQL processor assumes that the user intends to
retrieve all genus/module names if an ScQL query has the form “SELECT NAME” without any imposed condition.

Because of its two properties and the assumption mentioned above, schema tables which are required for
answering a given ScQL query could be uniquely determined by the specified column names, except for column name
NAME. A universal relation view is then feasible for building ScQL. The user thus could imagine the schema tables as a
universal relation and could pose a simple ScQL query without the burden of having to know the structure of the schema
tables and specify a navigational path.

The following procedure will translate an ScQL query into an SQL query on schema tables.

ScQL Translation Procedure:

Input: An ScQL query on a universal relation which has the collection of all columns in Figure 7.
Output: An SQL query on schema tables
Procedure:
Step 1: If the query is “SELECT NAME?”, then the translated SQL query is
SELECT NAME
FROM PARAGRAPH_TBL
Otherwise, go to Step 2.
Step 2: If the query has a “WHERE conditions” clause, then translate the query into an SQL query of the following
form

APDSI 2000 Full Paper (July, 2000)

SELECT C1, C2, ...
FROM T1, T2, ...
WHERE conditions
Otherwise, the translated SQL query has the following form,
SELECT C1, C2, ...
FROM T1, T2, ...
The translations are subject to the following rules.
2.a. The SELECT and WHERE clauses of the translated SQL query are the same as those in the ScQL query.
2.b. The FROM clause is determined as follows:
For each column name Ci specified in the SELECT and WHERE clauses of an ScQL query,
2.b.1 If Ci is NAME then skip Ci.
2.b.2 If Ci is not NAME, then find table Tj that contains the column name Ci. (Remember, all the column
names except NAME are unique in the schema tables.)
Stop.

We shall prove that there is no ambiguity in translating an ScQL query into an equivalent SQL query on schema
tables.

Proposition 2 The ScQOL translation procedure uniquely translates an ScQL query into an SQL query on schema tables.

Proof:
We shall prove that there is no ambiguity in translating an ScQL query into an SQL query on schema tables. An
ScQL query has one of the following two forms.
SELECT Cil1,C2,...

or

SELECT C1,C2,...
WHERE conditions

If the query is “SELECT NAME”, Step 1 would create the SQL query:

SELECT NAME
FROM PARAGRAPH_TBL

Otherwise, Step 2 would create an SQL query of the form

SELECT C1,C2,...
FROM T1, T2, ...
WHERE conditions

or

SELECT C1,C2,...
FROM T1,T2,...

The SELECT and WHERE clauses are not changed by Step 2.a. The FROM clause is determined by Steps 2.b.1
and 2.b.2 as explained below.

Step 2.b.1 ignores the column name, NAME. Step 2.b.1 is safe because the query is not “SELECT NAME” and
the FROM table names can be determined by other column names in the query, using Step 2.b.2.

Since all column names except NAME are unique among schema tables, Step 2.b.2 must uniquely identify the
table name Tj that contains the column name Ci which is not ‘NAME’. W

We have shown that the ScQL Translation Procedure uniquely computes an SQL query on schema tables.
However, because ScQL uses a universal relation interface, and because the translation from an ScQL query into a query
on schema tables appears to be “black magic” to users, some users might be concerned that the navigation computed by
the ScQL translator might not match the one intended by the user [20]. We can use the confirmation approach to resolve
the possible ambiguities [30]. That is, in addition to giving a system-computed answer, the system should give an
explicit query interpretation in natural language for the user's confirmation. If the ScQL query computation does not
respond exactly as was intended, the user should use SQL to specify his intended, complicated query.

Note that each column name, except NAME, uniquely identifies a predicate in Section 4.2. If the query is
SELECT NAME, the query interpretation would be the default statement to “List all genus and module names" (i.e.,
the query assumed by the ScQL Translation Procedure); otherwise, the query interpretation would be a collection of the
predicates identified in the query by the specified column names, except NAME.

We present an illustrative example which shows the translation from an ScQL query to an SQL query, and the

APDSI 2000 Full Paper (July, 2000)

confirmation of the query.

Example 2 7o print all indexed entity genera and their key phrases in the Happy Valley Food Coop (HVFC) model
schema, we write the ScQL query below.

SELECT NAME, KP
WHERE (INDEXED? = ‘Y?)
AND
(TYPE = ‘pe’ OR “ce’)

We apply the ScQL Translation Procedure to translate the ScQL query into an SQL query on schema tables. The
translated SQL query can then be executed on a DBMS. Since the above query is not “SELECT NAME”, Step 2, not
Step 1, of the ScQL Translation Procedure is applied. Columns INDEXED?, TYPE, and KP correspondingly determine
tables PARAGRAPH_TBL and KP_TBL. The translated SQL query is listed below.

SELECT NAME, KP
FROM PARAGRAPH_TBL, KP_TBL
WHERE (INDEXED? = ‘Y?)
AND
(TYPE = ‘pe’ OR “ce’)

Besides the procedure's translation and the execution on a DBMS, the ScQL system would identify the following
predicates in the query interpretation, based on the column names KP, INDEXED?, and TYPE in the ScQL query.

“KP is a key phrase of NAME.”
“INDEXED? states whether NAME is indexed or not.”
“TYPE is the type of NAME.”

The user can confirm whether or not the ScQL query and the query interpretation match his intention to “print all
indexed entity genera and their key phrases”. The combination of the ScQL query and the query interpretation implies
“to print NAME and the associated KP, where NAME is indexed and has a type of /pe/ or /ce/, which matches the
intended query. W

5. Conclusion

We argue that there is a need for model queries in MS/OR as well as other fields. This paper develops a model
query languages SMQL. SMQL has two sublanguages of EDQL and ScQL. EDQL allows users to specify a query in
terms of a semantic SML schema. Because an SML schema is semantically richer than a relational scheme, users can
specify a navigation path more easily in terms of an SML schema than in terms of the relational structures of elemental
detail tables. The purpose of ScQL, like that of SEDQL, is to provide users with a very simple interface so that they can
easily retrieve information about a model's general structure without having to specify a navigational path. When users
cannot confirm the complicated queries using ScQL, they may either use SQL or simply browse the SML schema.

SMQL is an example of a useful model query language. Other model languages may well lend themselves to the
development of a useful model query language if they are semantic in nature and support representational independence
of general model structure and detailed data. Although text-based SMQL may be successful as a model query language,
the potential of graphics, menu, voice, mice and other user interface styles should also be examined.

SMQL is a retrieval language for structured modeling. Future research should also be done on a model
manipulation language that would allow users to edit a structured model's general structure and the detailed data in a
convenient way. One approach, in the context of structured modeling, would be to build such a language based on
schema operations [29] and a smart loader/editor [13].

References

[1] ANSI, American National Standards Institute: Database Language SQL, Document ANSI X3.135 (1986). Also
available as International Standards Organization Document ISO/TC97/SC21/WG3 N117.

[2] W.F. Burger, MLD: A Language and Data Base for Modeling, IBM Research Division, San Jose, Research Report
RC 9639 (#42311), (September 1982).

[3] S. Chari, Knowledge Representation Using Structured Modeling, Ph.D. Thesis, Anderson Graduate School of
Management, UCLA, (1988).

[4] P.P. Chen, The Entity-Relationship Model - Toward a Unified View of Data, ACM Transaction on Database
Systems, 1:1 (March 1976), 9-36.

[5] C. J. Date, An Introduction to Database Systems, Volume 1, Fourth Edition, Addison-Wesley, MA, (1986).
[6] C. J. Date, 4 Guide to the SQL Standard, Addison-Wesley, MA, (June 1987).

APDSI 2000 Full Paper (July, 2000)

[7] D. R. Dolk, Data as Models: An Approach to Implementing Model Management, Decision Support Systems, 2:1
(March, 1986), 73-80.

[8] D. R. Dolk, Model Management and Structured Modeling: The Role of an Information Resource Dictionary System,
Communications of the ACM, 31:6 (June, 1988), 704-718.

[9] C. K. Farn, An Integrated Information System Architecture Based on Structured Modeling, Ph.D. Thesis, Anderson
Graduate School of Management, UCLA, (1985).

[10] A. M. Geoffrion, An Introduction to Structured Modeling, Management Science, 33:5 (May, 1987), 547-588.

[11] A. M. Geoffrion, The Formal aspects of Structured Modeling, Operations Research, 37:1 (January-February,
1989), 30-51.

[12] A. M. Geoffrion, Model Queries, Informal Note, Western Management Science Institute, Anderson Graduate
School of Management, UCLA, (March, 1989).

[13] A. M. Geoffrion, SML: A Model Definition Language for Structured Modeling, Working Paper 360, Western
Management Science Institute, Anderson Graduate School of Management, UCLA, (August, 1990).

[14] A. M. Geoffrion, A Library of Structured Models, Informal Note, 275 pages, Anderson Graduate School of
Management, UCLA, (1990).

[15] A. M. Geoffrion, FW/SM: A Prototype Structured Modeling Environment, Management Science, 37:12
(December, 1991), 1513-1538.

[16] A. M. Geoffrion, The SML Language for Structured Modeling: Levels 1 and 2, Operations Research, 40:1
(January-February, 1992), 38-57.

[17] A. M. Geoffrion, The SML Language for Structured Modeling: Levels 3 and 4, Operations Research, 40:1,
(January-February 1992), 58-75.

[18] A. M. Geoffrion, Structured Modeling: Survey and Future Research Directions, ORSA CSTS Newsletter, 15:1
(Spring, 1994).

[19] M. Jarke and Y. Vassiliou, A Framework for Choosing a Database Query Language, ACM Comput. Surveys, 17:3
(September, 1985), 313-340.

[20] W. Kent, Consequences of Assuming a Universal Relation, ACM Transactions on Database Systems, 6:4
(December, 1981), 539-556.

[21] Greenblatt, D and J. Waxman, A Study of Three Database Query Languages in Database: Improving Usability
and Responsiveness, (B. Schneiderman, ed.) American Press, New York, (1978).

[22] Hammer, M. and D. McLeod, Database Description with SDM: A Semantic Database Model, ACM Trans.
Database Syst., 6:3 (September 1981), 351-386.

[23] Hull, R. and R. King , Semantic Database Modeling: Survey, Applications, and Research Issues, ACM Computing
Surveys, 19:3 (September 1987).

[24] R. Krishnan and D. A. Kendrick, A Knowledge-Based System for Production and Distribution Economics,
Computer Science in Economics and Management, (1988), 53-72.

[25] M. L. Lenard, Representing Models as Data, Journal of Management Information Systems, 2:4 (1986), 36-48.

[26] L. Neustadter, A. Geoffrion, S. Maturana, Y. Tsai and F. Vicufia, The Design and Implementation of a Prototype
Structured Modeling Environment, Annals of Operations Research, 38 (1992), 453-484.

[27] Shipman, D., The Functional Data Model and the Data Language DAPLEX, ACM Trans. Database Syst., 6:1
(March 1981), 140-173

[28] J. F. Sowa, Conceptual Graphs for a Database Interface, IBM J. Res. Develop., 20, (July, 1976), 336-357.
[29] Y. Tsai, Model Integration Using SML, Decision Support Systems, 22 (1998), 355-377.

[30] Y. Tsai, The UR Data Model Revisited, International Journal of Information and Management Sciences, 10:1
(March, 1999).

[31]J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume I: Classical Database Systems,
(Computer Science Press, Rockville, MD., 1988).

[32] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume II, (Computer Science Press,
Rockville, MD., 1989).

[33] W. M. Waite and G. Goos, Compiler Construction, Springer-Verlag, New York, (1984).

APDSI 2000 Full Paper (July, 2000)

&MEMBERS The MEMBER SECTION of the database.
MEM m /pe/ There is a list of current MEMBERS.

MNAME (MEM m) /a/ {MEM}: Char Every MEMBER has a MEMBER NAME.
MADDR (MEM m) /a/ {MEM}: Char Every MEMBER has a MEMBER ADDRESS.
BAL (MEM m) /a/ {(MEM} Every MEMBER has a BALANCE.

ITEM i/pe/ There is alist of ITEMS offered for sale.

&SUPPLIERS The SUPPLIER SECTION of the database.
SUP s /pe/ There is a list of current SUPPLIERS.
SNAME (SUP s) /a/ {SUP}: Char Every SUPPLIER has a SUPPLIER NAME.
SADDR (SUP s) /a/ {SUP}: Char Every SUPPLIER has a SUPPLIER ADDRESS.

OFFER (SUP s, ITEM i) /ce/ Select {SUP} X {ITEM} Each SUPPLIER offers to sell certain ITEMS; the list
of possibilities is known collectively as the OFFERINGS.

PRICE (OFFER si) /a/ {OFFER}: Real+ Each OFFERING has its PRICE in dollars per unit quantity.
&ORDERS The ORDER SECTION of the database.

ORD o (MEM ml(o), ITEMil(o)) /ce/ There is a list of ORDERS, each from one MEMBER for one ITEM.
(Use “order number” as the identifier.)

QTY (ORD o) /a/ {ORD}: Real+ Every ORDER has an ORDER QUANTITY.

Figure 1: HVFC Model Schema (from [17])

APDSI 2000 Full Paper (July, 2000)

MEM

ITEM

SUP

OFFER

ORD

MEM MNAME MADDR BAL

BB Brooks, B. 7 Apple Rd. 10.50
WF Field, W. 43 Cherry La. .00
RR Robin, R. 12 Heather St. -123.45
WH Hart, W. 65 Lark Rd. -43.00
ITEM INTERP

CU Curds

GR Granola

LE Lettuce

SS Sunflower Seeds

WH Whey

UF Unbleached Flour

SUP SNAME SADDR

SUN Sunshine Produce 16 River Street

PUR Purity Foodstuffs 180 Industrial Rd.

TAS Tasti Supply Co. 17 River Street

SUP ITEM PRICE

PUR CU .80

PUR GR 1.25

PUR UF .65

PUR WH .70

SUN GR 1.29

SUN LE .89

SUN SS 1.09

TAS LE .79

TAS SS 1.19

TAS WH .79

ORD MEM~m1 ITEM~il |QTY

1 BB GR 5

2 BB UF 10

3 RR GR 3

4 'WF WH 5

5 RR SS 2

6 RR LE 8

Figure 2: HVFC Model Elemental Detail Tables (from [17])

APDSI 2000 Full Paper (July, 2000)

MEMm m

BB

WF

RR

WH
MNAMEm m value

BB |Brooks, B.

WF |Field, W.

RR |Robin, R.

WH |Hart, W.
MADDRm |m value

BB |7 Apple Rd.

WF 43 Cherry La.

RR |12 Heather St.

WH |65 Lark Rd.
BALm m value

BB [10.50

WF .00

RR |-123.45

WH [-43.00
ITEMi i interp

CU |Gurds

GR |Granola

LE |Lettuce

SS |[Sunflower Seeds

WH |Whey

UF |Unbleached Flour
SUPs S

SUN

PUR

TAS

SNAMEs |s
SUN
PUR
TAS

value

Sunshine produce
Purity Foodstuffs
Tasti Supply Co.

SADDRs |s
SUN
PUR
TAS

value

16 River Street
180 Industrial Rd.
17 River Street

OFFERsi |s i

PUR |CU
PUR |GR
PUR |UF
PUR |WH
SUN |GR
SUN |LE
SUN |SS
TAS |LE
TAS |SS
TAS (WH

PRICEsi |s i value
PUR |CU .80
PUR |GR 1.25
PUR |UF .65
PUR |WH .70
SUN |GR 1.29
SUN |LE .89
SUN |SS 1.09
TAS |LE .79
TAS |SS 1.19
TAS (WH .79

Figure 3: The HVFC Model’s Primitive Tables Using EDQL Table Naming Conventions

ml(o)

il(o)

ORDo

QTYo

ml

BB

BB

NN |V~
51Z(E|5

il

GR

UF

GR

WH

SS

AN |~V [—|S

LE

AN | WIN[—=]|C

AN | (WIN[—=|C

Primitive Tables Genera, FDs/MVDs, Symbolic Parameters
MEMm Genus MEM

MNAMEm Genus MNAME
MADDRmM Genus MADDR

BALm Genus BAL

ITEMi Genus ITEM

SUPs Genus SUP

SNAMEs Genus SNAME

SADDRSs Genus SADDR

OFFERsi Genus OFFER

PRICEsi Genus PRICE

ml(o) Functional Dependency m1
il(0) Functional Dependency il
ORDo Genus ORD

QTYo Genus QTY

Figure 4: Correspondence Between HVFC Model Primitive Tables and Schema
Defined Genera, FD/MVDs, and Symbolic Parameters

APDSI 2000 Full Paper (July, 2000)

Primitive Tables Elemental Detail Tables
MEMm MEM
MNAMEm MEM
MADDRmM MEM
BALm MEM
ITEMi ITEM
SUPs SUP
SNAMEs SUP
SADDRSs SUP
OFFERsi OFFER
PRICEsi OFFER
ml(o) ORD
il(0) ORD
ORDo ORD
QTYo ORD

Figure 5: Correspondence Between HVFC Model Primitive Tables and Elemental Detail Tables

Primitive Table.Column Elemental Detail Table.Column
MEMm.m MEM.MEM
MNAMEm.m MEM.MEM
MNAMEm.value MEM.MNAME
MADDRmM.m MEM.MEM
MADDRmMm.value MEM.MADDR
BALm.m MEM.MEM
BALm.value MEM.BAL
ITEMi.i ITEM.MEM
ITEMi.interp ITEM.INTERP
SUPs.s SUP.SUP
SNAMEs.s SUP.SUP
SNAMEs.value SUP.SNAME
SADDRs.s SUP.SUP
SADDRs.value SUP.SADDR
OFFERsi.s OFFER.SUP
OFFERsi.i OFFER.ITEM
PRICEsi.s OFFER.SUP
PRICEsi.i OFFER.ITEM
PRICEsi.value OFFER.PRICE
ml(0).0 ORD.ORD
ml(o).ml ORD.MEM~ml
il(0).0 ORD.ORD
il(0).il ORD.ITEM~il
ORDo.o ORD.ORD
QTYo.0 ORD.ORD
QTYo.value ORD.QTY

the “Y” column in the “X” table)

Figure 6: Column Correspondence Between HVFC Model Primitive Tables and Elemental Detail Tables (“X.Y” means

APDSI 2000 Full Paper (July, 2000)

Column Meaning

NAME Genus/module name (paragraph name)
TYPE m, pe, ce, a, va, f, t

CALLING SEQUENCE Calling sequence

DOMAIN Domain statement

RULE Generic rule

RANGE Range statement

ISS Index set statement
INTERPRETATION Interpretation

INDENTATION Paragraph’s indentation level
PARAGRAPH# Sequence number of paragraphs
INDEXED? Is the genus indexed? (Y/N)
SELF INDEX? Is the genus self-indexed? (Y/N)
NEW_INDEX Introduces new index

ALTAS INDEX

Alias index

INDEX TUPLE

Generic index tuple

CALLING NAME

Calling genus name

COMPONENT Components in a calling sequence

COMPONENT# Component’s sequence position in a calling sequence
DEPENDENCY NAME Functional/Multi-valued dependency name

FD? Is the dependency a functional dependency? (Y/N)
DEPENDENCY A dependency (e.g., il(j), k2*(4, j))

SON The immediate descendents of a module

SON# Denotes the son’s sequence position of a module

KP Defined key phrase

REFERENCED KP Possible referenced key phrase

PARAMETER Symbolic parameter

Figure 7: Columns of Schema Tables

