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Abstract

This research uses a new analytical approach for baseball evaluation, referred to as "A Bench Mark
Approach," [1] by combining DEA (Data Envelopment Analysis) with OERA (Offensive Earned-Run
Average). An important feature of the approach is that it can select a best performer among many baseball
players and evaluate their ranking scores. The DEA is an evaluation technique of various entities in public
and private sectors, whose production activities are characterized by multiple inputs and outputs. The
evaluation technique has a shortcoming in examining baseball performance because it produces many
efficient baseball players. To overcome such a shortcoming of DEA baseball evaluation, a Slack-Adjusted
DEA (SA-DEA) is combined with OERA in [1]. As its real application, the benchmark approach is
applied to the evaluation of their offensive records of Japanese baseball players in Pacific League(1999).

1. Introduction

 This research uses a new analytical approach, referred to as "A Bench Mark Approach," for baseball evaluation that
DEA (Data Envelopment Analysis) is combined with OERA (Offensive Earned-Run Average) [6]. The DEA method,
first proposed by Charnes et al. [1], is now widely known as an evaluation technique for performance analysis of
various entities, whose production activities are characterized by multiple inputs and outputs.  Admitting DEA
contributions in performance analysis, however, this study needs to describe that it has a difficulty in evaluating
baseball performance. That is, DEA relatively compares the performance of each DMU (Decision Making Unit) with
others on an efficiency frontier, consequently having a difficulty in identifying a best performer because multiple DMUs
usually comprise the efficiency frontier. This DEA feature is not a serious problem for many decisional cases. However,
it produces a difficulty in ranking baseball's offensive records because the sport needs the best individual for its whole
performance evaluation. The benchmark approach is proposed to overcome this DEA shortcoming. This research fully
utilizes the benchmark approach for the evaluation of Japanese baseball players� offensive efforts.
   

The OERA, proposed in [2], was originally developed for baseball evaluation, using a Markov chain model. A
methodological strength of OERA is that it can incorporate stochastic features, expressing their offensive efforts of
baseball players, into its analytical structure. This methodological feature is very important in the evaluation of modern
baseball. However, the OERA method has a major drawback; it cannot incorporate several important offensive records
(e.g., base steals, double plays and sacrifices) in its analytical framework. The DEA/OERA approach can overcome
such an OERA shortcoming because DEA can incorporate these important performance measures into its evaluation.  

2. Data Envelopment Analysis

2.1  SA(Slack-Adjusted )-DEA model

To describe the analytical structure of our DEA model in detail, it is assumed that we can access information

regarding rjy = the thr output )h,,1r( Κ= and ijx = the thi input )m,,1i( Κ= of the thj DMU )n,,1j( Κ= . [The DMU

stands for a baseball player in this study.]  The Slack-Adjusted DEA is used to measure a DEA efficiency score of a

specific thk DMU by the following model:
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As formulated in the objective of (1), the influence of a slack is adjusted by the following data ranges:
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A SA-DEA efficiency score ( *η ) is measured by the following manner:
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where the superscript "*" indicates optimality.

To explain why (2) can avoid the occurrence of zero in multipliers, this article needs to present the following dual
model of (3):
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From the last two groups of constraints in (4), this research immediately knows that all the multipliers are always
positive on optimality, because they are all restricted by these lower bounds. Thus, (4) can avoid the examination
regarding whether zero occurs in multipliers.
 
2.2   DEA Strengths and Shortcomings

When applying DEA (including SA-DEA and other DEA models) to baseball's offensive evaluation, this article
needs to pay attention to the following methodological strengths and shortcomings:

Strengths:
(a) DEA can incorporate important features related to modern baseball (e.g., steals, sacrifices and double plays) into its

analytical framework.
(b) An offensive contribution needs to be evaluated from multi-objectives of baseball. In this sense, DEA becomes an

important methodological tool for baseball evaluation.
 
Shortcomings:
(a) DEA may often produce many efficient baseball players even though we search for a single player as the best

performer.
(b) DEA may yield multiple solutions on some multipliers.



The above two shortcomings are important in evaluating their offensive records of baseball players. Therefore, this
article needs to explore when multiple solutions occur on each multiplier, then presenting how to deal with such a DEA
difficulty. [The identification of the best player (the first difficulty of DEA) will be discussed in the proceeding section.]

2.3   When Multiple Solutions Occur on SA-DEA Multipliers

To identify when multiple solutions occur on each multiplier, this research needs to return to Complementary
Slackness Conditions (CSC), existing between (1) and (4), which may be mathematically expressed by the following
three groups of equations on optimality:
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The above CSC requirements indicate that for each component,
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From (6), this research obtains the following proposition:
 

Proposition 1: Using (1), measure the efficiency of the thk DMU and then compute the following numbers:
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Then, DEA multipliers of (7) have the following possible three cases on optimality:

)S(#)S(#1)RF(#   hm )a( y
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x
kk +++>+ , then multiple solutions occur on some multipliers ,

)S(#)S(#1)RF(#   hm )b( y
k

x
kk +++=+ , then a unique solution occurs on all the multipliers, or

)S(#)S(#1)RF(#   hm )c( y
k

x
kk +++<+ , then no solution is found on some multipliers .

[Proof]

Dual form (4) consists of n+1+m+h constraints and m+h unknown multipliers. Here, "1" indicates the number of the

constraint )1xv(
m

1i
iki =∑

=
in (4). It is true that all the m+h multipliers become positive on optimality of (4), but the

number of binding (equality) constraints may become less than n+1+m+h on its optimality. The CSC requirements of

(6) indicate the number of equality constrains used for optimality = )S(#)S(#1)RF(# y
k

x
kk +++ ,which is less than or

equal to n+1+m+h.  Consequently, the three cases of Proposition 1 are proved by comparing the number of positive

multipliers (m+h) with that of equality constraints, )S(#)S(#1)RF(# y
k

x
kk +++ , on optimality of (7)..

           Q.E.D.



2.4   Dealing with Multiple Solutions

In the preceding section, this article discusses when and why multiple solution(s) occur on DEA multipliers. Now, a
simple but important question may occur in our mind. How do we deal with such non-uniqueness when it occurs? To
answer the question, this article proposes a use of the following DEA formulation to obtain the upper and lower bounds

of )m,,1i(vi Κ== of the thk DMU:
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where its lower bound is determined by minimizing the objective of (11) and its upper bound is obtained by replacing

the objective from minimization to maximization. { })3(in 0 Jj RF *
jk >λ∈=  is a reference set of the thk DMU.

Similarly, the upper and lower bounds of )h,,1r(w r Κ==  are determined by
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along with an exchange between maximization and minimization. There are two important features associated with (8)

and (9), both need to be clearly specified here. One of the two is that these DEA models incorporate the level of *η  in

these formulations. A supporting rationale on this modification is due to the fact that all the DEA multipliers have

multiple solutions under the same efficiency score ( *η ). The other important feature is that the number of constraints

for 0ywxv
h
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rjr

m
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iji ≤+− ∑∑

==
 is reduced from "n" (the number of the whole DMUs) to the size of kRF in (8) and (9),

so that the two DEA models can considerably reduce these computational efforts, in particular dealing with a large
number of DMUs.

3. Offensive Earned-Run Average

The OERA is index measurement of offensive effectiveness of a certain batter. A unique feature of OERA is that the
approach can be formulated by a Markov chain model. The definition is as follows.

Definition:The OERA score is defined as "the number of earned runs per game that a batter could score if he batted in
all nine positions in the line-up" [2, p.731].
[See the research works [3, 4] in which a more detailed description can be found for the definition on OERA.]

OERA assumptions are established for mathematical convenience. When applying OERA to Japanese baseball
evaluation, which might be slightly different from American baseball, this research needs to restructure it from the
perspective of Japanese sport management. That is, when watching news in Japan, sport commentators and team



managers often speak about the importance of sacrifices in baseball games. Each sacrifice is considered as a symbol of
a team play effort in Japan, because a batter sacrifices his performance to improve a scoring position for his team.
Therefore, the first assumption (i.e., sacrifices are not counted at all in OERA) needs to be dropped in the evaluation of
offensive efforts.

In addition to the sacrifices, we need to incorporate the number of base steals, that make our baseball games more
exciting, into our offensive evaluation. As mentioned previously, the number of steals is usually excluded from OERA.
Hence, this research needs to include the number of base steals in our performance evaluation. Moreover, the fifth
assumption (i.e., no double plays in OERA) needs to be dropped in our baseball evaluation. It can be easily imagined
that there are many double plays in modern baseball games. The double play often destroys the chance of a scoring
position, so influencing a final result (win or loss) of many games. Therefore, it is easily thought that the number of
double plays needs to be incorporated into our baseball evaluation.

4. Benchmark Approach: A Combined Use of SA-DEA/OERA

To classify many efficient baseball players identified by SA-DEA, this study uses OERA as additional information
[6].  These SA-DEA efficient players are referred to as "benchmark batters" and the level of their current efficiency
scores (100% efficiency) is referred to as "a benchmark point".  Our benchmark approach consists of the following
three computations:

(a) OERA Indexes: To incorporate their resulting OERA scores into SA-DEA, the following OERA index ( *
ju ) is

computed:
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where jOERA is the OERA score of the thj player measured and E is a set of baseball players whose SA-DEA scores

are rated as efficiency. In (10), the OERA index of each SA-DEA efficient player is reevaluated on the range from
100% (bottom) to 200% (best). [Note that inefficient players belong to the range of less than 100%.]

(b) Benchmark Multipliers: To obtain final multiplier estimates of )h,,1r(w r Κ= and )m,,1i(vi Κ= in the manner
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close to *
ju  as much as possible. This type of multiplier estimation can be considered as a special form of the 1L -

metric estimation. An important feature of (11) is that all the multipliers are estimated under the restriction of these
upper and lower bounds. The resulting multiplier estimates measured by (11) are referred to as "benchmark multipliers,"
all of which can serve as a computational basis for the following benchmark indexes:
   
(c) Benchmark Indexes: Let rw� and iv� be benchmark multipliers of (11), then a new measure, or Benchmark Index (BI),

of the thj baseball player is measured by

Benchmark Index: .Ejfor        xv�yw�)j(BI
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The computation of the benchmark indexes for all efficient baseball players indicates the end of the whole computation
process of our benchmark approach.

5.  Evaluation of Japanese Baseball Players

The benchmark approach is applied to evaluate their offensive records of Japanese baseball players in Pacific League
(1999). Japanese professional baseball consists of two leagues: Central and Pacific Leagues. Each league has six teams,
so totaling twelve professional baseball teams in Japan.

A data set used in this study is 1999-Baseball Record Book (in Japanese) published by Baseball Magazine Inc.,
Tokyo (2000). Thirty-two batters are selected for our performance evaluation according to their batting averages. As
mentioned previously, there are six teams (Blue Wave, Marines, Lions, Fighters, Hawks, Buffaloes) in the Japanese
Pacific League. We must pay attention to the fact that we use "bats", "singles", "doubles", "triples", "homeruns", and
"walks" for OERA. Meanwhile, DEA utilizes "at bats" and "double plays" as input measures as well as "singles",
"doubles", "triples", "homeruns", "runs batted in", "steals", "sacrifices", and "walks" as output measures. DEA, SA-
DEA, OERA, and Benchmark index are documented of Table 1. Empirical findings in Table 1 may be summarized as
follows:
  
Finding 1:  As a result of our slack-adjustment, all the multipliers become positive and the number of DEA efficient

batters is reduced from eighteen (in Table 1) to nine players (in Table 1). Nine baseball players, Jojima
(Hawks), Ogasawara (Fighters), Pulliam (BlueWave), Yoshioka (Buffaloes), Kataoka (Fighters), Ozeki
(Lions), Hori (Marines), Nakamura (Buffaloes), Suzuki (Lions), change their DEA scores from 100%
efficiency (in Table 1) to some levels of inefficiency. For example, Jojima (Hawks) exhibits 100% in his DEA
efficiency score, but 93.16% in his SA-DEA, thus producing his efficiency decline (6.84% =100-93.16).

Finding 2:  A major shortcoming of OERA is that the Markov chain approach cannot incorporate the numbers of base
steals, double plays, and sacrifices into its computation process. Such a shortcoming can be found in Table 1,
as well. For example, Kosaka (Marines), who stole 31 bases, was the second base stealer in 1999. His effort is
neglected and ranked as the twenty-second in OERA. Furthermore, Ozeki (Lions) made 32 sacrifices for his
team in 1999. Even though his contribution is highly appreciated by his team (Lions), Ozeki is ranked as the
twenty-sixth offensive performer in OERA. Their empirical results clearly indicate a methodological
shortcoming of OERA.

As mentioned previously, the benchmark approach uses SA-DEA, as its preparatory treatment, which selects the
following nine efficient baseball players as benchmark batters from Table 1:



Table1: Comparison among Performance Evaluation Alternatives

Ichiro (BlueWave), Matsui (Lions), Rose (Buffaloes), Morozumi (Marines), Kosaka (Marines),
Oshima (BlueWave), Yoshinaga (Hawks), Matsunaka (Hawks), Furankurin (Fighters).
Using their OERA indexes listed in Table 1 and (6), this study estimates benchmark multipliers as follows:
      

1v� (At Bats) = 0.00053, 2v�  (Double Plays) = 0.00476, 1w�  (Singles) = 0.00077,

      2w�  (Doubles) = 0.00263, 3w�  (Triples) = 0.01000, 4w�  (Homeruns) = 0.00649,

      5w�  (Runs Batted In) = 0.00099, 6w�  (Steals) = 0.00313, 7w�  (Sacrifices) = 0.00238,

      and 8w�  (Walks) = 0.00146.

Using the above benchmark multipliers, we compute benchmark indexes of all the nine efficient players. The SA-DEA
scores of all the remaining inefficient players become their benchmark indexes without any change.

Finding 3: All the thirty batters are rated from 0 to 200(%) in the benchmark index, in which the half range between 0
and 100(%) is obtained from SA-DEA and the remaining range above 100 (%) is computed by (6) and (7).
      
Finding 4: Ichiro (BlueWave) the best offensive player in OERA, is now rated as the third performer in our benchmark
ranking. Meanwhile, Rose (Buffaloes) the second performer in OERA, becomes the best batter in our ranking order.
Their ranking changes are due to the fact that the magnitudes of the two benchmark multipliers, 2w�  (Doubles) =

0.00263, 4w�  (Homeruns) = 0.00649, are larger than those of the other benchmark multipliers. Rose (Buffaloes)

outperforms Ichiro (BlueWave) in terms of these performance measures (doubles, Homeruns) and therefore, Rose
(Buffaloes) becomes better than Ichiro (BlueWave) in our benchmark ranking. Consequently, such an evaluation change

DEA Efficiency SA-DEAEfficiency OERA Score
Benchmark Index
(SA-DEA/OERA)

Ichiro (BlueWave) 1         (1) 1         (1) 9.437  (1) 1.755   (3)
Matsui (Lions) 1         (1) 1         (1) 7.447  (3) 1.628   (4)
Jojima (Hawks) 1         (1) 0.932 (14) 6.407 (10) 0.932 (14)
Rose (Buffaloes) 1         (1) 1         (1) 9.020  (2) 1.925   (1)
Tani (BlueWave) 0.975 (21) 0.885 (20) 4.795 (22) 0.885 (20)
Clark (Buffaloes) 0.913 (29) 0.814 (28) 6.912  (6) 0.814 (28)
Ogasawara (Fighters) 1         (1) 0.911 (16) 6.417  (9) 0.911 (16)
Pulliam (BlueWave) 1         (1) 0.898 (18) 6.231 (11) 0.898 (18)
Morozumi (Marines) 1         (1) 1         (1) 4.094 (28) 1.267   (9)
Kosaka (Marines) 1         (1) 1         (1) 5.042 (21) 1.780   (2)
Oshima (BlueWave) 1         (1) 1         (1) 5.830 (16) 1.325   (8)
Yoshioka (Buffaloes) 1         (1) 0.939 (12) 6.084 (13) 0.939 (12)
Yoshinaga (Hawks) 1         (1) 1         (1) 7.180  (4) 1.361   (7)
Kataoka (Fighters) 1         (1) 0.927 (15) 6.168 (12) 0.927 (15)
Kaneko (Fighters) 0.968 (23) 0.821 (27) 4.259 (27) 0.821 (27)
Otomo (Lions) 0.989 (19) 0.938 (13) 5.157 (20) 0.938 (13)
Tanaka (Fighters) 0.884 (31) 0.791 (31) 5.422 (18) 0.791 (31)
Taguchi (BlueWave) 0.945 (27) 0.806 (30) 3.887 (29) 0.806 (30)
Matsunaka (Hawks) 1         (1) 1         (1) 6.827  (7) 1.578   (5)
Ozeki (Lions) 1         (1) 0.969 (10) 4.294 (26) 0.969 (10)
Hori (Marines) 1         (1) 0.910 (17) 5.460 (17) 0.910 (17)
Shibahara (Hawks) 0.982 (20) 0.897 (19) 4.443 (23) 0.897 (19)
Nakamura (Buffaloes) 1         (1) 0.879 (21) 6.651  (8) 0.879 (21)
Suzuki (Lions) 1         (1) 0.945 (11) 5.979 (15) 0.945 (11)
Hatsushiba (Marines) 0.960 (25) 0.873 (22) 6.038 (14) 0.873 (22)
Omura (Buffaloes) 0.971 (22) 0.810 (29) 2.966 (31) 0.810 (29)
Akiyama (Hawks) 0.819 (32) 0.747 (32) 4.376 (24) 0.747 (32)
Noguchi (Fighters) 0.965 (24) 0.846 (26) 3.263 (30) 0.846 (26)
Furankurin (Fighters) 1         (1) 1         (1) 6.933  (5) 1.531   (6)
Kokubo  (Hawks) 0.907 (30) 0.873 (22) 5.356 (19) 0.873 (22)
Hamana  (Hawks) 0.959 (26) 0.850 (25) 2.953 (32) 0.850 (25)
Iguchi (Hawks) 0.936 (28) 0.851 (24) 4.334 (25) 0.851 (24)

Evaluation Alternatives
Batter (Team)

Note：Each number within the parenthesis indicates a rank order.



occur between the two players.
   
Finding 5: Another interesting finding can be found in his rank change of Kosaka (Marines); he increases his rank from

the th21 in OERA to the th2  in our benchmark ranking, due to the number of his sacrifices. This study also finds the

remarkable rank change of Nakamura (Buffaloes) who is rated as the th8 performer in OERA, but rated as the th21
performer in our benchmark rating, because of his many (21) double plays. Thus, it may be easily confirmed that these
performance measures (such as steals, sacrifices and double plays) newly incorporated in SA-DEA influence our
benchmark ranking scores.

6.  Conclusion

A new analytical approach, referred to as a "benchmark approach," is fully utilized in our baseball evaluation. The
benchmark approach has the following four computation processes: First, SA-DEA classifies all baseball players into
either efficient or inefficient groups. Second, OERA is applied to all the players. The efficient batters are ranked and
their OERA indexes are computed on the basis of their OERA scores. Third, a goal programming model estimates
benchmark multipliers based upon the upper and lower bounds of SA-DEA multipliers and OERA indexes. Finally, the
benchmark indexes are determined by the benchmark multipliers.

In this study, the benchmark approach is applied to the performance evaluation of Japanese baseball players�
offensive efforts.  Such results are summarized in five empirical findings. As a future extension of our investigation,
we need to extend our research into the performance evaluation of their defensive efforts of baseball players [4].
Furthermore, the DEA model can be linked to a stochastic process of Chance-Constraint DEA (CC-DEA) [5]. Such is
another important future research direction.

Supplement

A data set used in this study is documented in table2. (The source of this data set is 1999-Baseball Record Book (in
Japanese) published by Baseball Magazine Inc., Tokyo (2000).)

Table2:Offensive records of 32 batters(Pacific League-1999)

Batter (Team)
Batting
Average

Bats At Bats
Double
Plays

Singles Doubles Triples Homeruns
Runs

Batted In
Steals Sacrifices Walks

Ichiro (BlueWave) 0.3430 411 468 5 91 27 2 21 68 12 0 52
Matsui (Lions) 0.3300 539 609 7 130 29 4 15 67 32 8 56
Jojima (Hawks) 0.3060 493 539 13 100 33 1 17 77 6 6 39
Rose (Buffaloes) 0.3010 491 565 7 69 38 1 40 101 5 0 71
Tani (BlueWave) 0.2910 532 594 13 123 17 4 11 62 24 8 50
Clark (Buffaloes) 0.2870 509 573 20 85 32 0 29 84 4 0 57
Ogasawara (Fighters) 0.2850 547 608 6 93 34 4 25 83 3 0 56
Pulliam (BlueWave) 0.2803 446 502 14 84 21 0 20 85 0 0 55
Morozumi (Marines) 0.2801 432 475 1 95 19 5 2 33 10 14 29
Kosaka (Marines) 0.2801 482 586 2 104 18 10 3 40 31 42 60
Oshima (BlueWave) 0.2798 361 462 2 84 15 1 1 33 5 28 70
Yoshioka (Buffaloes) 0.2760 420 486 9 74 28 1 13 57 12 9 56
Yoshinaga (Hawks) 0.2750 346 418 5 66 12 1 16 38 0 0 69
Kataoka (Fighters) 0.2742 423 489 8 78 19 4 15 63 1 0 62
Kaneko (Fighters) 0.2740 416 473 11 91 17 3 3 29 4 18 39
Otomo (Lions) 0.2699 415 510 8 90 14 4 4 26 13 26 67
Tanaka (Fighters) 0.2697 508 556 14 89 23 2 23 74 2 0 45
Taguchi (BlueWave) 0.2690 524 569 9 110 21 1 9 56 11 14 30
Matsunaka (Hawks) 0.2684 395 462 11 59 20 4 23 71 5 5 58
Ozeki (Lions) 0.2681 373 464 6 86 9 4 1 34 16 32 57
Hori (Marines) 0.2660 421 493 11 73 28 3 8 50 5 12 58
Shibahara (Hawks) 0.2630 464 539 3 98 15 4 5 26 22 15 60
Nakamura (Buffaloes) 0.2607 514 601 21 80 23 0 31 95 3 1 83
Suzuki (Lions) 0.2607 468 555 11 77 30 2 13 81 3 0 79
Hatsushiba (Marines) 0.2600 457 517 14 63 33 1 22 85 1 0 56
Omura (Buffaloes) 0.2590 494 533 6 104 19 3 2 36 7 19 19
Akiyama (Hawks) 0.2560 386 420 12 69 16 2 12 44 3 3 30
Noguchi (Fighters) 0.2400 391 420 11 64 22 1 7 46 5 11 16
Furankurin (Fighters) 0.2380 428 521 11 49 23 0 30 80 2 0 86
Kokubo  (Hawks) 0.2340 465 538 8 59 24 2 24 77 4 3 64
Hamana  (Hawks) 0.2260 354 422 4 64 10 4 2 27 5 29 38
Iguchi (Hawks) 0.2240 370 424 13 53 15 1 14 47 14 4 47
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