A Survey of Current Prototyping practices

Nancy Tsai1) and Russell K.H. Ching2)

1) California State University, USA (tsain@csus.edu)

2) California State University, USA (chingr@csus.edu)

Abstract

Over the years, the practice of developing computer information systems has seen many changes. In response to better understanding and meeting the information requirements of end-users, developers have applied different methods and methodologies, and have received mixed results. A survey conducted among organizations in the US found that many organizations have adopted prototyping, and use it in conjunction with other methods and tools. Greater user involvement, the discovery of changes early the development process, and better understanding of user requirements were rated as the three greatest benefits enjoyed by the surveyed organizations. However, end-user expectation of a shorter development period, an inadequate analysis, and poor documentation were the three shortcomings many of them frequency cited.

1.
Introduction

Business organizations have been using computerized information systems to increase their operating efficiency and productivity since the 1950s. In the early years, these systems focused on transaction-processing, and ushered in an attractive replacement to their inefficient, error-prone and tedious manual predecessors (systems) that were originally designed to support the daily business operations and large volumes of data.

These systems were appropriately named transaction processing systems (TPS) and were developed by the professional computer software and hardware engineers to primarily increase processing efficiency and productivity. The completed systems were very much technical-oriented and did not take (many) human and operational factors into the consideration. In many instances, these systems often proved to be inflexible and unresponsive to end-user’s operational requirements, and were subject to several systems re-developments. The consequences of these systems rework ranged from unhappy end-users, budget over runs, unmet schedule deadlines, high maintenance costs to simply unusable systems.

In the late 1970s, academic educators in schools of business noticed the serious of the problems and felt a need to fill the gap between the technical-oriented hardware and software engineers, and the functional-oriented end-users in the system development process. First, they created a new discipline, management information systems (MIS) to produce graduates who could understand end-user’s needs and business requirements, and recognize the power of information technology (IT). Secondly, they proposed and developed various systems analysis and design methodologies for the curriculum in order to equip MIS graduates with the proper tools to eliminate or reduce the existing information systems development problems.

There is no doubt that the systems development process poses several critical success issues during the implementation of new computer information systems. The purpose of this paper is to investigate the evolution of the analysis and design methodology for developing computer information systems over the years, explore the practice of the major analysis and design methodologies in building the computer information systems, and examine the use of prototyping as a computer information analysis and design method.

2.
Overview of Analysis and Design Methodology

Currently, five major system analysis and design methodologies are frequently used to develop computer information systems. They are structured development, system development life cycle, prototyping, data centered approach, and object-oriented analysis and design.

Structured Development

The structured development method adopted the top-down and progressive decomposition principals. It was initially used in programming to design program specifications in a manner that would allow its logic to be easily followed and subsequently reduce maintenance problems. After its overwhelmingly success in the programming area, the method was extended to the computer information system development process. Later, academic researchers incorporated the data flow diagrams (DFD), the data dictionary, structured English, and decision tables into the method to serve as vital communication and development tools [7]. This was the first structured analysis and design methodology for developing the specifications of a computer information system.

The DFD is a data analysis tool that examines the data flow in hierarchical form through a series of level diagrams. Each subsequent level reveals greater detail of the system. Thus, the highest level (context diagram) shows a general view of the system while the lowest a very detailed view of a particular aspect of the system. Diagrams consist of only four basic symbols to represent storage of data (data stores), data flows, data processes (data transformation), and external entities. DFDs graphically depict the data analysis portion of the system without consideration for software, hardware and/or control. This feature makes the DFD an excellent tool for documenting what the system does than how the system does it.

The data dictionary contains the formal descriptions of all data items and their properties (i.e., name, format, location, origin, uses, volume, access restriction, etc.) in the system, and projects a complete picture of the data currently in the organization's database. It can be used to gain a greater understanding of the weaknesses and deficiencies of the current database structure, and suggest improvements to more completely satisfy end-user information needs.

The Structured English technique helps define the functions that are represented in the lowest level processes of the DFD. It characteristically provides a concise and precise way of describing a function, and presents a more attractive alternative to the descriptive approach. It is a shorthand documentation method for developing a program function specification of a system.

The decision table (Figure 1) is composed of four sections: an upper section to describe the conditions, a lower section to identify the actions for each condition, a left-hand section to contain the descriptive stubs for the conditions or actions, and a right-hand section for the entries (rules). This technique is most suitable for documenting a computer program's processes that depend on the outcome of certain decisions.

[image: image1.wmf]Rules

Conditions

Actions

Descriptions

System Development Life Cycle

The most popular and widely used methodology for building computer information systems during the past forty years has been the systems development life cycle (SDLC). Its main objective is directed toward in making the system development process more efficient and effective by breaking the entire systems development project into predefined phases, activities, and tasks [12].

Different systems developers portray the systems development life cycle in different ways. In general, SDLC consists of four major phases:

[image: image2.wmf]Rules

Conditions

Actions

Descriptions

(1)
Analysis phase: Collecting facts to understand the current system’s problems, define end-user’s information needs, discover solutions to overcome the problems, and meet end-user’s information needs;

(2)
Design phase: Selecting and designing the most favorable solution in terms of hardware and software technology that meets the end-user’s information needs in a cost/effective manner;

(3)
Implementation phase: Installing and testing the software and hardware, and training and educating the end-users to use the newly developed computer information system; and

(4)
Maintenance phase: Keeping the operations of the newly developed system as efficient and effective as possible through minor adjustments and further fine tuning of the performance.

The complete systems development life cycle starts again from the analysis to maintenance phase when the system can no longer adapt to meeting the new requirements of end-users or the evolving goals of the organization as the time passes.

Prototyping

Prototyping is an iterative approach that stresses the interactions between the end-user and the developer of the computer information system. The end-user plays an active role in specifying the information requirements [9]. The developer uses the available hardware, software and database technologies to quickly construct a simplified model or prototype based on the end-user specified requirements. This first prototype, usually built in a fourth-generation language, tends to be an actual working but incomplete usable system. End-users evaluate and test functionality of the prototype, identify problems they encounter with using it, and suggest possible solutions or improvements to help better define it. The developer continuously works with end-user to construct successive versions of the prototype until all problems of the system has been resolved and the end-users are satisfied with the system's functions [8].

Prototypes can be classified into two major types: throwaway, and evolutionary. The throwaway prototype serves as a model for the actual system and a means for soliciting input from end-users. During its life, the prototype helps validate the requirements validation, analyze the system’s feasibility, design the user interfaces, test the functional specifications, design the processes, train end-users, identify error control and error handling, etc. After the final system has been coded in a more processing-efficient third generation languages, it is discarded. The major advantage of using the throwaway is the exceptional communication role it plays between the end-user and system developer in defining the finer detailed requirements of a complex system. However, its major disadvantage lies in the extra cost of building the prototype in additional to the final system [14].

The evolutionary prototype evolves into the final production system after the developer incorporates various technical features, implements performance improvements, and integrates the database into it. The evolutionary prototype lends itself well to developing systems, such as decision support systems (DSS) or executive information systems (EIS), where the end-users may have difficulty expressing their information needs [1]. A major advantage of this type of prototype is that no extra costs in developing the system (other than those related to the prototype) are incurred. Unfortunately, two major disadvantages of this approach are the poor documentation and slow response/performance time.

Data Centered
In contrast to focusing on the processes and data flows of the computer information system in the structured method or SDLC, the data centered method treats the organization’s data as the foundation on which every system is constructed. Advocates of this method understand the importance of the processes, but believe the processes must ultimately interact with the data stored in the database [5].

Technically, the processes of the system derive useful information from the database as a result of manipulative actions applied to the data, such as storing, updating, deleting, classifying, summarizing, calculating and retrieving. Only an accurate database will provide factual representations of the organization's performance at any point in time. Therefore, it is very important to have a well-designed database that can support the up-to-date information needs for different levels of management in the organization.

The data centered method begins with the identification of all entities or objects along with the associated attributes that are needed (actual and perceived) to support the information requirements of all end-users. A high-level conceptual data model, such as an Entity-Relationship (ER) diagram, is constructed to depict the collected entities. The (ER) model also describes the structure of the entire database, including the entities and the relationships that bind the entities. The data normalization process helps validate the accuracy of the organization and placement of the attributes in each entity (i.e., relation), the relationships, and the constraints imposed on the relations to eliminate or control data redundancy, insertion anomalies, deletion anomalies, and modification anomalies.

The advantages of this method include less data redundancy and data inconsistency, and lower data maintenance cost. The database also enables the end-users to use user-friendly high-level languages, such as Structured Query Language (SQL), and report generators (software) to retrieve their own information, and design and produce their own reports. This subsequently helps reduce the backlog of application programming requests made to information technology personnel.

A major disadvantage of this approach lies in its difficulty to design and build an accurate database, where data are collected, normalized, and stored in one single place. The database must not only be independent of various applications and functions, but also must meet all the information requirements for the entire organization. The creation of the database needs time, resources and top management’s commitment. In the practice, small and separate databases are created for different applications or departments that lead to other management problems involving data integrity.

Object-Oriented Analysis and Design

In addition to focusing on the definition and structure of the database as done with the data centered method, object-oriented analysis and design (OOAD) emphasizes data usage. OOAD involves defining data as objects along with a set of procedures and functions (methods) that define the interactions and communications between the objects.

The OOAD method is comprised of three basic elements: the definition of the object, the concept of class, and the theory of generalization/specialization hierarchy and inheritance [4]. An object represents an entity having properties represented by data values and containing operations represented by behaviors that can be performed on its properties. Therefore, an object encapsulates its data through its behaviors or methods. A class is a set of similar objects having the same properties and behaviors existing within a hierarchical network. Objects in a class may have a variety of states that can be changed by events. Relationships define the association between objects in a class. The theory of generalization/specialization hierarchy and inheritance permits a specialized subclass to share the properties of its generalized super classes in the hierarchical network. The main objective of inheritance is to simplify the definition of data and increase the consistency of related objects.

The OOAD method takes an object-oriented view of a system and views it (system) as a collection of interacting objects. The method defines and describes the processing and the data storage requirements of the system through a class diagram. The class diagram represents a class of objects through rectangles divided into three blocks. The name of the class appears in the top block while the attributes of the class are assigned to the middle block and the methods to the bottom block. The class diagram uses links to show the relationships among classes [6].

The OOAD method promotes abstraction, encapsulation, and modularity concepts for developing systems. Abstraction enables a developer to focus on the essential aspects of an application, not the details. Encapsulation allows a developer to concentrate on the internal implementation, not the external specification. Modularity permits a developer to group closely related objects of a class in terms of coherence and symmetry [10].

These fundamental concepts of OOAD provide the opportunities for reusing existing and pre-tested classes in the class library for developing new systems. Therefore, the advantages of the OOAD method are centered on the reusability of classes, and can be summarized as increasing development productivity, development flexibility, systems quality, systems maintainability, systems reliability, and system extendibility [13].

The OOAD method is not a complete remedy for all problems associated with systems development. If not used properly, it is still possible to design a system that is short on quality and difficult to maintain. Moreover, the OOAD method is still maturing toward the state of art. Thus, many of its aspects are still operationally developing. An organization does need a major commitment of time and resources to switch to this new systems development paradigm [2].

3.
The Current Usage of Prototyping
Every systems development method attempts to build a computer information system that will satisfy end-user requirements. The primary differences between the development methods lie in their utilization of concepts, approaches and procedure. Therefore, it is possible that two or more systems development methods could work together and achieve the same goal.

Among the five discussed computer information development methods, prototyping is the most suitable to couple with other development methods to define end-users’ systems requirements. The management information systems literature has provided many examples of why and how the prototyping should be used in developing computer information systems. Numerous advantages and disadvantages of the prototyping have also been reported. It will be interesting to revisit the topic and determine the usage of prototyping in terms of:

(1) What computer information systems development methods are most frequently being used in organizations?

(2) What other computer information systems development methods are being used in conjunction with the prototyping method?

(3) What systems development techniques are being used in the prototyping method?

(4) What automated tools are being used to support the prototyping method?

(5) What benefits being realized from the use of the prototyping method?

(6) What problems being encountered in the use of the prototyping method?

(7) What results being achieved in the use of the prototyping method?

Research Method

A 12-page questionnaire was developed and mailed to 1,100 executive/managers of organizations drawn from the Directory of Top Computer Executives in the US. Two selection criteria targeted organizations with 50 or more information systems employees, and organizations with major investments in computer resources. These selection criteria narrowed the list of survey recipients to large businesses, non-profit organizations, and government agencies. The survey was national in scope and conducted in the late 1990s. Of the 1,100-plus surveys mailed, 46 properly completed questionnaires were received. The data from these usable questionnaires provide the basis for the results.

Results

Table 1 summarizes the usage of different types of systems development methods for computer information systems. Of the organizations that responded to the survey, 34 indicated that they were using the prototyping method. It is not surprising that the prototyping method is the most widely used development method since it actively involves the end-user in the systems requirement process. With each iteration, greater details are added to the system's design and most problems are resolved before the final production system is finished.

	Method
	n
	Percent Using

	Structured Development
	22
	48%

	System Development Life Cycle
	30
	65%

	Prototyping
	34
	74%

	Data Centered
	9
	20%

	Object Oriented Analysis/Design
	14
	30%

Table 1: Development methods used for developing computer information systems

The survey results also indicate that the other development methods have been used in conjunction with prototyping. Table 2 presents some interesting insights to the concurrent usage of the prototyping method with the other development methods. It implies that most organizations have adopted a systems development policy that utilizes more than one method. It is interesting to note that prototyping has been used the most with the data centered method. This result might be due to the prototyping method being a very useful tool in supporting the creation of a more complete final database through the working models.

	Method
	n
	Percentage Using with Prototyping

	Structured Development
	17
	77%

	System Development Life Cycle
	23
	77%

	Data Centered
	8
	89%

	Object Oriented Analysis/Design
	11
	79%

Table 2: Development methods used with prototyping for developing computer information systems (organizations may use several methods)

In the questionnaire, organizations were asked to identify the types of system development tools that were used in developing computer information system when the prototyping method was adopted. Table 3 provides a summary of the types of system development tools used with prototyping. It appears that every system development tool has been used with prototyping, even those developed in the 1970s, such as stage transition diagrams and dialogue decision diagrams, which are still used by a few organizations. It also interesting to note that most of the popular system development tools, such as the data dictionary, data flow diagrams and entity relationship diagrams, are used very frequently with the prototyping method.

The organizations that used prototyping were asked to indicate the types of automated tools they used to develop their computer information systems. Table 4 presents the types of automated tools that organizations have used in the prototyping method. It appears that prototyping is used with a wide array of automated tools, although rapid applications tools are the most common due to their ability to enhance communication and demonstrations between the end-user and developer by quickly constructing and revising input form and output report.

	System Development Tools
	n
	Percentage Using

	Action Diagram
	15
	44%

	Data Dictionary
	30
	88%

	Data Flow Diagram
	30
	88%

	Decision Table
	21
	62%

	Dialogue Decision Diagram
	11
	32%

	Entity Relationship Diagram
	30
	88%

	Hierarchy Chart
	26
	76%

	Stage Transition Diagram
	8
	24%

	Structure Chart
	23
	68%

	Structure English
	13
	38%

	System Flow Chart
	29
	85%

Table 3: Development tools used with prototyping (an organization may use several)

	Automated Tools
	n
	Percentage Using

	Front-End Case Tool
	13
	38%

	Back-End Case Tool
	9
	26%

	Integrated Case Tool
	8
	24%

	Normalization Analysis Tool
	17
	50%

	Rapid Application Tool
	27
	79%

	On-line analytical Processing Tool
	15
	44%

	Project Management Aid
	24
	71%

	Object-Oriented Analysis Tool
	9
	26%

Table 4: Automated Tools Used by Prototyping Method

Organizations that used prototyping for systems analysis and design were asked to indicate the degree of their satisfaction on a 5-point Likert-type scale with the benefits that most other organizations have generally received with prototyping. The degrees ranged from a score of one for "not important" to five for "very important." Table 5 presents the mean satisfaction scores of the different types of benefits realized through prototyping as reported by the respondents. It indicates that the organizations have somewhat enjoyed every benefit that is claimed by the advocates of prototyping. It is not surprising that the top three benefits of the prototyping method are greater user involvement, changes discovered earlier and better user requirements since prototyping promotes better communication between the end-user and systems developer.

	Benefits
	n
	Mean

	Changes Discovered Earlier
	43
	4.42

	Less Development Time
	41
	3.59

	Greater User Involvement
	43
	4.49

	Lower system Costs
	40
	3.13

	Earlier Training
	41
	3.07

	Better user Requirements
	40
	4.12

Table 5: Benefits realized through using the prototype method

The organizations that participated in the survey were requested to indicate the problems they have encountered with the prototyping method. Table 6 provides a summary of the problems responding organizations experienced with prototyping. It is interesting to note that the conversion from the final end-user approved prototype to a third generation language is not serious problem. However, more than half of the responding organizations indicated that they had problems with inadequate systems analysis and users expecting a shorter systems development time. The capability to move quickly in producing a series working models can increase the end- user’s expectation and relax the efforts of the system developer to conduct a thorough systems analysis for the final operational system.

	Problems
	n
	Percentage Having

	Poor Documentation
	20
	44%

	Inadequate Systems Analysis
	22
	48%

	Conversion to 3 GL
	5
	11%

	User Expected Shorter System Development
	26
	57%

Table 6: Problems encountered from using prototyping

In the questionnaire, organizations that used prototyping to develop computer information system were also requested to indicate on a 5-point Likert-type scale the degree of their achievement associated with prototyping. The degrees ranged from one for “not at all” to five for “very well.” Table 7 presents the mean scores of the results being achieved through prototyping. The results suggest that the majority of the organizations believed the prototyping method provided a means for overcoming most of the problems they encountered during the development of a computer information system. The two highest achievements, user requirements are being met and communication with users and technical personnel, indicate a consistency between the two (i.e., better communication between end-users and technical personnel result in the end-user's requirements being better met).

However, “documentation is consistent and complete” is the only item with a mean score below the average score of 2.5. This result is consistent with the poor documentation problem reported by the same organizations and presented in Table 6. Apparently, documentation is not being updated with each (prototype) iteration.

4.
Conclusion and Summary
MIS researchers and practitioners are continuously seeking new methods and techniques for developing computer information systems. The newer methods are not necessarily meant to replace the more traditional approaches, such as SDLC and the structured development methodology. On the contrarily, the newer and traditional methods are frequently used together by organizations to improve the process for implementing systems. The results of this study's survey strongly indicate that prototyping has been adopted by many organizations, works well with other development methods, and is used in conjunction with other tools. As suggested by the respondents, its greatest assets appear to in its ability to better involve end-users in the development process, discover changes early during development and understand the end-user’s information requirements.

	Results Being Achieved
	n
	Mean

	User Requirement Are Being Meet
	45
	3.71

	System Are Developed On Time
	45
	3.13

	System Are Developed Within Budget
	45
	3.38

	Programming Time Has Been Reduced
	44
	2.98

	Systems Are Relatively Error Free
	45
	3.40

	Systems Are Relatively Easy To Maintain
	45
	3.27

	Systems Are Relatively Easy to Modify
	45
	3.31

	Documentation Is Consistent and Complete
	45
	2.40

	Communication Are Satisfactory With
	
	

	 Management
	44
	3.41

	 Users
	44
	3.55

	 Technical Personal
	44
	3.55

Table 7: Results being achieved through prototyping
References
1)
Bidgoli, Decision Support Systems: Principles & Practice, South-Western Publishing Co., 1996.

2)
Bruegge and Dutoit, Objecti-Oriented Software Engineering: Conquering Complex and Changing Systems, Prentice Hall, 2000.

3)
Burch and Grudnitshi, Information Systems: Theory and Practice, John Wiley & Sons, 1986.

4)
Coad and Yourdon, Object-Oriented Analysis, Prentice Hall, 1991.

5)
Connolly, Begg, and Strachan, Database Systems: A Practical Approach to Design, Implementation and Management, Addiso-Wesley, 1999.

6)
Dewitz, Systems Analysis and Design and the Transition to Objects, McGraw-Hill, 1996.

7)
Gane and Sarson, Structured Systems Analysis: Tools and Techniques, Prentice Hall, 1979.

8)
Hardgrave and Wilson, “An Investigation of Guideline for Selecting a Prototyping Strategy,” Journal of Systems Management, April 1994.

9)
Hershey and Kizzier, Planning and Implementing End-User Information Systems: Office and End-User Systems Management, South-Western Publishing Co., 1992.

10)
Lorenz, Object-Oriented Software Development: A Practice Guide, Prentice Hall, 1993.

11)
Martin, Recommended Diagramming Standards for Analyst & Programmers: A Basis for Automation, Prentice Hall, 1987.

12)
Martin and McClure, Structured Techniques: The Basis for CASE, Prentice Hall, 1988.

13)
Schneider and Perry, Electronic Commerce, Course Technology, 2000.

14)
Tozer, “Prototyping as a System Development Methodology: Opportunities and Pitfalls,” Information and Software Technology, June 87, Vol. 29, No.5.

� EMBED PowerPoint.Slide.8 ���

Figure � SEQ Figure * ARABIC �1� . Decision table

Figure 1. Decision table

PAGE
1

_1050672144.ppt

Rules

Conditions

Actions

Descriptions

