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Abstract


This study develops a validation procedure for stochastic project network models which is based on the multivariate entropy function from information theory.  The validation procedure employs multivariate entropy as a methodology to indicate actual reductions in uncertainty in simulation output (for a valid model) as the simulation model undergoes update and review in real time, with measurements taken at specified user-defined stages of the project.  The output measured can include random variables such as project completion time, critical path, costs, network structure, and resource allocation.  These variables would be of interest to project managers, and can be employed in established stochastic network protocols such as PERT and GERT.  

1.
Introduction

      A number of network simulation languages have been developed which are suitable for modeling nonrepetitive projects (e.g., projects consisting of the development or assembly of a single copy of some custom item) with PERT and GERT networks.  These include specialized languages for PERT and several versions of GERT [4;5;8] and VERT (Venture Evaluation and Review Technique) [3], and general purpose languages such as QUEUE-GERT [7] and SLAM (Simulation Language for Alternative Modeling) [6].  Studies on the use of these languages for stochastic project network modeling have focused on the modeling phase of the simulation effort, and relatively little attention has been given to procedures on validation.  Unless systematic procedures for validation are developed, the widespread acceptance by practitioners in project management for Monte Carlo simulation of stochastic network models is very unlikely. 

2.
Objective of Study

      The purpose of this study is to develop a validation procedure for simulation output from stochastic networks which model nonrepetitive project systems.  Validation is defined as a process of bringing to an acceptable level the decision maker's (or project manager's) confidence that inferences drawn from simulation output are true about the real system (this is based on definitions of validation in [9] and [10] which refer to queuing-based simulation models for repetitive or on-going systems). 

3.
Validation Framework

      This study proposes a validation framework which includes:

  1.  Validating the network model and the input database (content validity).  Do the elements in the network (nodes and arcs) and the node-logic relationships that govern these elements mirror the real system?  Are the activity-time distributions and branch probabilities based on assumptions that are acceptable (either intuitively, experiential-based, and/or analytically-based) to the decision maker?

  2.  Updating and review (operational validity).  Are the model and data undergoing continuous scrutiny as the project unfolds (this assumes that the project has started) and new information becomes available? 

  3.  Assuring the correct statistical interpretation of simulation output (output validity).  Is the output internally consistent in that the simulation experiment gives output distributions that are reasonable approximations of output from an analytical procedure, had such a procedure been available to avoid the need to use simulation?  Is the output externally consistent in that inferences drawn from simulation output correspond to outcomes expected from the real system?  

     The question of internal consistency refers to determining the number of simulation runs to assure that histograms generated by simulation are reasonable approximations of the true output of the given model.  This is easily accomplished with tests based on the binomial proportion distribution and/or Kolmogorov-Smirnov tables [11] and is of little interest in the proposed study.  The focus of the proposed study is external consistency as it applies to operational validity.  By assuming that the model undergoes an on-going process of updating and review, particularly after the completion of well-defined project stages (e.g., see Figure 1), it follows that as more time has passed, some elements (arcs [image: image1.jpg]Figure 1: Project with R Independent Stages
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and nodes) on the network have been realized.  This should add to the experience and intuition of the project manager in terms of updating the remaining unrealized network elements in a manner that should reduce the uncertainty of the updated network, when compared to the corresponding (or similar) elements of the original network (i.e., the remaining unrealized elements of the original network prior to updating).  This reduction in uncertainty can be measured by the multivariate entropy function from probabilistic information theory.  The multivariate analysis will include the mutual information or transinformation function (from information theory), which can contribute to further reductions in uncertainty by measuring information gains about the system as it goes from one stage to another.  Overall, it is the observed stage-by-stage reductions in uncertainty that enhance the project manager's confidence in the output, with the last stage representing project completion (i.e., when no uncertainty about the project exists because it is done).  A very crude interpretation of this process for output from metric random variables assumes that the variances of their output distributions decrease with each update on the network, until the variable becomes deterministic in the final stage.  However, if the uncertainty increases for updated networks when compared to networks prior to updating, the system becomes more uncertain, and the project manager becomes less confident in the output.  Examples of this process are discussed in the section on Operational Validity, which employs the methodology developed in the next section.  

4.
Methodology

      This section presents a methodology based on expressions from information theory.  Interpretations of these expressions are discussed with the use of Venn Diagrams, and of patterns of univariate probability distributions associated with multivariate systems.  

      Consider any multivariate system with N random variables such that Vn is the nth random variable (n=1,2,…,N) with variates vn,1,vn,2,…,vn,k(n),…,vn,K(n) [k(n)=1,2,…,K(n)].  In its most general form, the multivariate entropy function for the N variable system is given by  (e.g., [2])

    E(V1,V2,…,Vn,…VN) = 

            K(1)    K(2)    K(n)      K(N)

         - (…………(…………(………… ( {p(v1,k(1),v2,k(2),…,vn,k(n),…,vN,k(N))

           k(1)=1  k(2)=1  k(n)=1   k(N)=1    

                                     (log p(v1,k(1),v2,k(2),…,vn,k(n),…,vN,k(N))},        (1)

with marginal entropy of Vn given by 
                                K(n)=1      

                       E(Vn) = - ({p(vn,k(n))(log p(vn,k(n)},                         (2)
                                k(n)=1      

where E(V1,V2,…,Vn,…VN),E(Vn)(0.  Hence, Expressions (1) and (2) illustrate that the entropy is zero for a system with complete certainty, which represents a system with a single event having a probability of one (i.e., log(1)=0).  In Expression (2), it logically follows that for a system with K(n) events, the maximum entropy should occur when all events are equiproable, each having a probability of 1/K(n).  This represents a system with the greatest uncertainty for K(n) events.  Hence, the maximum entropy for Expression (2) is simply log[K(n)].  Applying the same arguments to Expression (1), the maximum entropy occurs when all probabilities of the multivariate system are equiprobable, which reduces Expression (2) to 

                                                                           N                

                     Max[E(V1,V2,…,Vn,…VN)] = log{П K(n)}.

                                                                           n=1
In this manner, entropy can be viewed as a continuous measure of uncertainty for any multivariate stochastic system.   

      The partial conditional and full conditional entropies of a multivariate system are

 given by

                                                        K(n)  

                       E(Vn(vn’,k(n’)) = - ({p(vn,k(n)(vn’,k(n’))(log p(vn,k(n)(vn’,k(n’))       (3)
                                       k(n)=1      

and

                                                   K(n’)  
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                       E(Vn(Vn’)=  ({p(vn’,k(n’))( E(Vn(vn’,k(n’)),                       (4)
                                 k(n’)=1 

where n≠n’ and E(Vn(vn’,k(n’)),E(Vn(Vn’)(0.  

        The above expressions are consistent with definitions of the entropy function found in communications theory (i.e., that the entropy of a probability set or probability distribution is simply the product of the probability and the logarithm of the probability, summed over all events with nonzero probability).  Generally, the base of the logarithm is e (the natural logarithmic function), and the dimensions assigned to entropy measurements are “nits.”

      A simplification of Expression (1) considers a bivariate system with random variabels, V1 and V2, given by  

                           K(1)   K(2)      

               E(V1,V2) = - (   (  {p(v1,k(1),v2,k(2))(log p(v1,k(1),v2,k(2))}             (5)

                           k(1)=1 k(2)=1    

Referring to the Venn diagram in Figure 2 with n=1 and n’=2, it follows that  

             E(V1,V2) = E(V1) + E(V2) - I(V1;V2),                                   (6)

or 

             I(V1;V2) = I(V2;V1) = E(V1) + E(V2) - E(V1,V2)                         (7a)

                                 = E(V1) - E(V1(V2),                               (7b) 

where I(V1;V2) is the mutual information function.  Likewise, for three random variables, 

we obtain   

                 K(1)   K(2)   K(3)   

   E(V1,V2,V3) = - (   (    ( {p(v1,k(1),v2,k(2),v3,k(3))(log p(v1,k(1),v2,k(2),v3,k(3))}.      (8)

                 k(1)=1 k(2)=1 k(3)=1    

[image: image3.jpg]Figure 3: Venn Diagram for E(Vn,Vn’,Vn’”)

E(vn) E(Vn)

I(Va; V?[Vi) =

I(Vn’; Vi [Vn) E(Vn”)



If we employ the Venn Diagram in Figure 3 with n=1, n’=2, and n’’=3, it follows that

              E(V1,V2,V3) = E(V1) + E(V2) + E(V3) – I(V2;V1) - I(V2;V3|V1),            (9)

or 

       I(V2;V3|V1) = I(V3;V2|V1) = = E(V1) + E(V2) + E(V3) - E(V1,V2,V3) - I(V1;V2).   (10)

Hence, various key measures from information theory can be derived for an N variable system with reference to a Venn Diagram consisting of N spheres.   

      The interpretation of the above expressions in this study is more straightforward if the discussion is limited to pairs of random variables.  To simplify the notation, we will refer to a hypothetical bivariate system represented by Figures 2 and 4, and we assume that n=1 and n’=2. 
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     In Figure 2, the mutual information function, I(V1;V2), can be interpreted as the reduction in uncertainty of V1  given V2 (e.g., [1]),              as illustrated by the difference in Expression 7b.  Referring to Figure 4a, Output Pattern I corresponds to the case with I(V1;V2)=I(V2;V1)≈0, where it follows from Expression 7b that E(V1)=E(V1(V2).  Hence, if we are given V2 (i.e., equivalent to saying that we are given any variate of V2), the information about V2 does little to reduce the uncertainty about V1, and the conditional distributions for the different variates almost coincide.  [Note that they do coincide if I(V1;V2)=0.]  At the [image: image5.jpg]Figure 4b: Output Pattern IT
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other extreme, when I(V1;V2)= MaxI(V1;V2)= E(V2) (see Venn Diagram in Figure 4c), the uncertainty about V1 is completely removed given any variate of V2, and the distributions have no overlap whatsoever (Output Pattern III in Figure 3c).  It is now evident that Output Pattern II and its corresponding Venn Diagram in Figure 4b represent values of I(V1;V2) that fall between Output Patterns I and III.  
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     Finally, it should be evident that as E(V1) increases for any of the distributions in Figure 4, all the conditional distributions will show greater dispersion reflecting more uncertainty about V1.  Likewise, as E(V1) decreases, the conditional distributions will tend to be narrower and more “peaked,” suggesting more certainty about V1.

5.
Operational Validity 

      As discussed previously, our application of operational validity assumes that as a project model undergoes a series of stages for update and review (i.e., Figure 1), the entropy (or uncertainty) of the updated project model (UPM) for the rth stage should be less than the entropy for the project model used prior to updating (PMUPU) from the r-1 stage— but with some adjustments to the PMUPU in the r-1 stage.  The adjustments on the PMUPU simply require the removal of all known or realized elements that have occurred between the r-1 and rth stage, leaving all the future elements intact.  To strongly emphasize this adjustment, we will refer to the adjusted PMPUP as the APMUPU.  When simulations are performed on both models (the UPM and the APMUPU), their total entropies are calculated from their output distributions (for metric data) and probability sets (for nominal or categorical data), are compared.  Hence, for the rth stage (the UPM) representing the rth update, it would be expected that a valid process would have a reduction in entropy when compared to the r-1 update (the APMUPU) such that 

                         Er(V1,V2,…,Vn,…VN)] < Er-1(V1,V2,…,Vn,…VN)]                  (11)   

for r=1,2,……R.  In general,  

       E1(V1,V2,…,Vn,…VN)] > E2(V1,V2,…,Vn,…VN)] > ……

                      …… > Er(V1,V2,…,Vn,…VN)] > ……… > ER(V1,V2,…,Vn,…VN)].          (12)

Theoretically, if the Rth stage represents the last update, then we can assume that if a R+1 stage is permitted, the entropy at that stage would be zero [i.e., ER+1(V1,V2,…,Vn,…VN)= 0].  This follows because we assume that the R+1 stage represents the stage where the project has been completed, and all uncertainties about the project 

have been removed.

      While the above does not address the magnitude of the reduction in entropy between stages, or the time duration between stages, it is nevertheless significant to note that the entropy reductions must occur for a valid modeling process.  Increases in entropy between stages would indicate more randomness and uncertainty are being introduced in the updated model, suggesting a situation were the project manager is more likely to reduce his or her confidence in the modeling process.  

6.
Applications

      Our first case considers a PERT network employed in a simulation model representing a project system.  If the output for completion time is represented by V1, the entropy function is univariate, and the calculations at each stage follow directly from Expression 2 with n=N=1.  The Venn Diagram is simply a single sphere.  For a valid model, the sphere reduces in size (reduced entropy) when moving from one stage to the next, with the expectation that the completion time distribution narrows and becomes more peaked when comparing the UPM with the APMUPU (e.g., see Figure 5).  
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      An extension of the first case is to add a random variable to the output representing the availability of a resource (e.g., manpower, machines, financial resources).  Assume that V2 represents the availability of three different levels of a resource represented by the categories of low, medium, and high.  Project delays are more likely for low resource levels than for high resource levels.  (Note that these delays can be programmed into PERT/GERT simulation networks using subroutines in a SLAM simulation.)  Referring to the output patterns in Figure 4 with n=1 and n’=2, the variate v2,1 (i.e., vn’=2,1) represents the highest resource level since it corresponds to conditional completion time distributions with the least completion time, which is evident in Output Patterns II and III.  However, if Output Pattern I is observed, resource levels and delays do not have a strong relationship or correlation.  This allows for the planned allocation of a low level of the resource, freeing up some of the resource for other uses.  It is interesting that the output patterns for a given stage from the UPM or the APMUPU could be different despite a decrease in entropy.  As sections of the network’s nodes and arcs are lopped off, a number of critical activities may be removed leaving the remaining activities more sensitive to resource levels.  This could occur if the marginal entropies, E(V1) and E(V2), remain roughly the same for APMUPU and UPM, and most of the decrease in entropy occurs because the mutual information function, [image: image8.jpg]Figure 6: GERT Netuork with Three
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I(V1,V2), is greater for UPM than APMUPU.  This is evident in the Venn Diagrams in Figure 4c, where Output Pattern III exhibits the same marginal entropies as the other output patterns, but illustrates that I(V1,V2) is at its maximum value [i.e., I(V1,V2)≈ E(V2)].  

      It should now be evident that any number of resources can be introduced and undergo the same resource-completion time analysis as discussed for the two random variables above.  Also, each resource type can be analyzed as above, employing the mutual information function to indicate correlation between two resource random variables.  However, our treatment of resources assumed categorical data since resources were defined in terms of resource levels.  Hence, while mutual information functions for UPM and APMUPU can be calculated, they cannot be plotted as in Figure 4 which assumed that Vn is a metric (e.g., project completion time).

       Another extension is to consider GERT/VERT networks.  GERT/VERT networks can be viewed as extensions of Activity-on-Arc PERT networks in that the former permits probability assignments to network arcs, such that both time and network structure are random variables.  An example is illustrated in Figure 6, where the GERT network can be decomposed into three component (PERT) networks, each of which have conditional completion time distributions, and each of which represent a different network structure.  Hence, multivariate entropies for UPM and APMUPU can be calculated for each stage, with a valid modeling process assumed if Expressions 11 and 12 hold for the R stages for update and review.  Likewise, the same discussion applied to a PERT network on the relationship between completion time and a selected resource would also apply to a GERT/VERT network.  The only difference is that the completion time distribution for the GERT/VERT network is a marginal distribution based on the realization probabilities of the component networks.  

      Finally, the analysis can be extended beyond “pairs” of random variables.  For example, V1 and V2 could represent two different resources and V3 could represent completion time.  The mutual information function for I(V3;V2|V1) can be calculated from Expression 10, 8, 7, and 2.  Output patterns similar to Figure 4 could be developed by plotting the underlying distribution of random variable V3 as conditional on categorical variates such as v2,k(2)│v1,k(1), given specific values for the indices k(2) and k(1).      
7.
Conclusion

      Validation procedures for one-shot nonrecurring project models have been given very little attention in project management literature.  This study has proposed a procedure that employs the multivariate entropy function and the mutual information function as tools in the validation process for stochastic network representations of project systems.  The premise for what constitutes a valid project model is described in the validation framework presented in this study, with the focus of the study on an element of the framework described as operational validity.  

      Some considerations for further research include:  (1) the development of procedures to carefully define the endpoint nodes of the various project stages, since a point in time which defines a stage will seldom have endpoints coincide exactly with other network nodes that are near the end of a given stage; (2) the determination of appropriate time intervals between the stages; and (3) the determination of what constitutes a significant decrease in entropy as the project moves from one stage to another.   
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