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Abstract
In existing production/inventory models with random yields, the setup cost is given and fixed. However, in many practice situations, they can be reduced by investment in modern production technology. In this study, we attempt to determine the optimal capital investment in setup cost reduction for (Q,r) inventory system, jointly with the optimal ordering policies. We assume that the setup cost is the function of capital expenditure. Furthermore, we show that the expected total annual cost function with capital investment is convex. With the convexity, an algorithm is developed to determine the optimal order quantity and reorder point, and then to find the optimal setup cost. Finally, numerical results are presented to illustrate the algorithm procedure and compared to the results without considering capital investment. Our results evidently show that substantial cost savings might be obtained through capital investment in setup reduction. 
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1. Introduction
The problem of random yields in production or procurement has become an important research topic in production and inventory area. In particular, several papers that have been reported lately examine the implications of yields randomness on lot sizing decisions. For an extensive review on many other variations of lot sizing problems with random yields, the interested readers are referred to the excellent paper of Yano and Lee [18]. Silver [15] was one of the earliest authors who extend the classic economic order quantity (EOQ) model by involving the effect of yield uncertainty. He listed a number of sources for randomness causing the quantity received not matching the quantity requisitioned. Following Silver [15], Gerchak [2] and Noori and Keller [9] consider a variable-yield lot-sizing problem with stochastic demand. They show that the solution for the backorders case is a simple extension of the continuous-review reorder point models initiated by Hadley and Whitin [4]. Other related studies can be found in Kalro and Gohil [8], Parlar and Wang [10], Shin [14], and Wang and Gerchak [17]. 

    On the other hand, the benefits of reduced setups are well documented. For example, faster changeovers have been associated with lower inventories, faster throughput, shorter lead times, improved quality, and lower unit costs. Quick setups are also considered an important element for successfully implementing just-in-time production or time-based competition. Much of the analytical work in setup reduction examines the benefits of reduced setups in inventory and setup costs. In addition, several relationships between the amount of capital investment and the setup cost level have been reported by Billington [1], Hofmann [6], Hong [7], Porteus [11,12], and Sarker and Coates [13].

    Based on above arguments, we assume that the relationship between setup cost reduction and capital investment can be described by the logarithmic investment function. Hence, this article extends the work of Gerchak [2] and Noori and Keller [9] to consider setup cost can be reduced through capital investment. Moreover, we show that the expected total annual cost function with capital investment is convex. With the convexity, an algorithm is developed to determine the optimal order quantity and optimal reorder point. Therefore the optimal ordering policies and capital investments in setup cost reduction are appropriately determined. Finally, numerical example is provided to illustrate the algorithm procedure and to compare the optimal policies without investment option in setup cost reduction.
2. NOTATIONS and ASSUMPTIONS

To establish the mathematical model, the following notations and assumptions are used.

Notations.
    D = average demand per year,

    Q = order quantity, a decision variable,

    r = reorder point, a decision variable,

    Y Q = quantity received given that Q units are ordered, a random variable,
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 = yield’s standard deviation,
K0 = original setup cost per setup,

K = nominal setup cost per setup, a decision variable,
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 = capital investment in setup cost reduction, 

i = cost of capital/$/year,
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h = inventory holding cost per item per year, 
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= penalty cost per shortage, 

L = replenishment lead time, in years,

z = safety factor (
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X = lead time demand,
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 = mean of X, 
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f(x) = probability density function of X,
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B(r) = expected shortage at the end of a cycle,
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 = optimal setup cost per setup,

Q* = optimal order quantity, 

r* = optimal reorder point.

Assumptions.
1. A single item is considered.

2. The inventory position of an item is continuously reviewed, and the policy is to order a lot Q when the inventory position drops to a reorder point r.

3. The reorder point r = expected demand during lead time + safety stock (SS) and SS =
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 where z is the safety factor and considered as a non-negative value, that is 
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, as assumed in Hariga and Ben-Daya [5] and Silver, Pyke, and Peterson [16].

4. The lead time demand X, which is assumed to be independent of YQ, follows the normal distribution with mean
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 and standard deviation
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5. The quantity received is a random variable depending upon the quantity ordered. 

6. The bias factor
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 is necessarily greater than zero, it need not be less than one, as assumed in Gerchak and Palar [3], Kalro and Gohil [8], and Silver [15]. 

7. The relationship between setup cost reduction and capital investment can be described by the logarithmic investment cost function. That is, setup cost, K, and the capital investment in setup cost reduction, 
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       where a is positive constants.

3. THE MODEL 

The expected total annual cost, which is composed of setup, holding and backorder costs, can be determined in a manner similar to that used by Gerchak [2] or Noori and Keller [9] and is given by  

      TC(Q,r) =
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where 
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    As it takes investment to reduce setup cost, we should include an amortized investment cost in our proposal model. Therefore, the expected total annual cost of the system,
[image: image31.wmf])

,

,

(

K

r

Q

ETC

, is composed of Eq. (2) and the amortized total capital cost, 
[image: image32.wmf])

(

K

i

k

f

 which shows the economic consequences of the investment per unit time, as follows:
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where 
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is based on Eqs. (1). Hence, Eq. (3) can be stated as 
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It is easy to show that ETC in Eq. (4) is convex on K. In order to find the minimum cost, the partial derivatives of the 
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From Eqs. (5), the optimal setup cost can be solved as
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Substituting Eq. (6) into Eq. (4) yields the following expression of the corresponding expected total annual cost EAC:
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Hence, the following results will be shown. 

Theorem 1. 
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The proof of Theorem 1 is found in the appendix.
Based on the convex nature of the function, EAC(Q,r). The first-order conditions for a minimum are given by 
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Then, we have the following result. 

Theorem 2.  If 
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The proof of Theorem 2 is included in the appendix.
Algorithm 

The optimal solution
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 can be obtained by solving the above Eqs. (8) and (9) iteratively until convergence. We can easily prove the convergence of the algorithm by adopting a similar graphical technique used in Hadley & Whitin [4]. Therefore, we obtain the optimal setup cost from Eq. (6). Thus, we can use the following iterative algorithm to find the optimal solution 
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    Step 1.  Let 
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    Step 3. Use Eq. (8) to set Qnew = Q (ropt ). 

    Step 4. If 
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    Step 6. Get the optimal order quantity Q* = Q (ropt), the optimal reorder point 
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    When no capital investment in setup cost reduction is made, then 
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Thus, the corresponding expected total annual cost EAC in Eq. (7) can reduce to the expression of Eq. (2) which is the result of Gerchak [2] and Noori and Keller [9]. Therefore, the lot size reorder point inventory model with random yield in this paper is an extension of both Gerchak [2] and Noori and Keller [9]. Next, substituting Eq. (12) into Eq. (8), the optimal order quantity will reduce to 
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Therefore, a similar algorithm as mentioned above can be used to solve Eqs. (13) and (9). Then, the results for special case such as no capital investment in setup cost reduction are derived.
4. ILLUSTRATIVE EXAMPLE

For comparison, two different models used here are specified as follows.

Model 1: (Q,r) model with random yields and with capital investment in setup cost reduction [see Eq. (7)], and

Model 2:(Q,r) model with random yields and no capital investment [see Eq. (2)].

The percentage of savings of excepted total annual cost is defined by 
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Next, to illustrate the above algorithm, let us consider the following numerical example:

Example: We use the following parameter values: D = 1000 units/year, K0 = $100 per setup, h = $10 per unit per year, 
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1. Qp = 22.1538, Q(0) = 110.7906, 
[image: image83.wmf]d

= 88.6368 > 
[image: image84.wmf]e

, and 
[image: image85.wmf]D

Q

h

n

m

P

 = 0.0083 < 
[image: image86.wmf]2

1

 for Model 1, and

2. Qp = 78.4465, Q(0) = 78.5572, 
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Applying the proposed algorithm, we provide the results of procedure solution for two Models as in Table 1. For comparison, a summary of optimal solution for two Models is presented in Table2. From the results shown in Table 2, we see that significant savings of the expected total annual cost are achieved through capital investment. Here, we get the optimal setup cost K* = $9.0948. Then, the investment in the setup cost reduction, 
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 = $3835.9478, namely, the optimal investment require $3835.9478 when Q* = 25.2632 and r* = 59.4656. The corresponding expected total annual cost 
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= $1357.4260, which is less than the cost of without capital investment in setup cost reduction. The percentage of savings of expected total annual cost is given by 29.55%. This is, 29.55% expected total annual cost savings are relative to that without capital investment in setup cost reduction.
5. CONCLUSIONS

Considering that the reduction of setup cost is an important strategy in manufacturing, the present investigations on setup cost in a manufacturing environment are warranted. In this paper, we develop the ordering policies when setup cost can be reduced through capital investment. To explore these policies, the expected total annual cost function with capital investment is formulated. We show that the cost function is convex and develop the algorithm to determine the optimal order quantity and reorder point, then to locate optimal setup cost. Therefore the optimal capital investment is appropriately determined. Finally, a numerical example is given to illustrate the algorithm and evaluate the effects of utilizing capital investment. It should be emphasized that these results evidently show that significant cost savings can be achieved by adopting capital investment and it is consistent with the JIT manufacturing philosophy which calls for reducing setup cost to achieve the inventory reductions.

Table 1

Results of procedure solution of two different models for example 1.

	Model type
	Iteration 

Number
	1
	2
	3
	4
	5
	6

	Model 1
	Q
	22.1538
	24.8848
	25.2179
	25.2583
	25.2632
	25.2632

	
	r
	59.9511
	59.5218
	59.4723
	59.4664
	59.4656
	59.4656

	Model 2
	Q
	78.4465
	80.2092
	80.2539
	80.2550
	80.2550
	

	
	r
	54.8943
	54.7964
	54.7940
	54.7939
	54.7939
	


Table 2

Summary of the results of the optimal procedure solution for example1.

	Model type
	Q*
	r*
	z*
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	EAC(Q*, r*)
	% EAC

	Model 1
	25.2632
	59.4656
	2.3466
	9.0948

(3835.9478)
	1357.4260
	29.55

	Model 2
	80.2550
	54.7939
	1.8794
	100

(0)
	1926.7980
	---
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APPENDIX

Proof of Theorem 1

Eq. (7) yields
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and 
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Let H(Q,r) denote the determinant of the Hessian of 
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Q4 is always positive. With respect to r, we notice that: 
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Eq. (A7) means that, with increasing r (
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Thus, we conclude that EAC(Q,r) is convex on Q > 0 and 
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Proof of Theorem 2

Eq. (A3) can be rewritten as 
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Eq. (13) implies that if 
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Eq. (A10) implies 

      
[image: image115.wmf]0

)

,

(

*

³

¶

¶

r

Q

EAC

r

  for all 
[image: image116.wmf]x

r

³

.             


        (A11)

Therefore, Eq. (A11) reveals that 
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hence, we can obtain 
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