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Abstract

In an attempt to address the potential model over-specification problem observed in the neural-network time-series forecasting literature, the present study has the following objectives: (a) to investigate the potential usefulness of the backpropagation neural network without hidden layers (BPHL0) in modeling and forecasting the special class of time series corresponding to ARMA(p,q) structures; (b) to study the effect of the number of past input data points used in training neural networks for modeling and forecasting this special class of time series. The simulation study shows that the BPHL0 neural network is generally superior to the standard backpropagation neural network with one hidden layer (BPHL1) for the majority of ARMA(p,q) structures and to Box-Jenkins models for more complex ARMA(p,q) structures. It is also concluded that, to obtain better performance, one should intelligently select the input-layer dimension that best matches the characteristic behaviour of the time-series group.
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1. Introduction
Although Box-Jenkins’ approach to modeling time series with autoregressive (AR) and moving average (MA) components, or ARMA modeling approach, has often been criticized to be complicated and difficult to understand, it is one of the widely studied and used models both in research and in practice. Although there has been a wealth of literature on comparing the performance of Box-Jenkins model with that of neural networks on time series data, most comparisons reported have been based on selected time series. Although most of these studies indicate neural network models' comparability or superiority to Box-Jenkins', the results and conclusions from these studies cannot be generalized because the comparisons are limited to isolated or selected data sets. It is apparent that a consistent and comprehensive study across a wide spectrum of ARMA time series is needed if general conclusions are to be drawn. 

However, a study of this nature can only be undertaken and the objective can only be achieved under an experimental setting. The experimental approach is necessary because it allows us to produce time series of a wide spectrum of parameter values that are not readily available in the real world. Moreover, it allows us to conduct an in-depth study of how neural networks perform under the influence of various levels of random noise. This research adopted such an experimental approach that is not seen before in the literature.

In a highly automated production and manufacturing environment, process data collected are often correlated and can be modeled by time-series-analysis techniques. Although using neural networks as function approximators to model these types of data has been popular, the effectiveness of the neural-network approach is heavily dependent upon the sufficient knowledge and understanding of neural networks’ ability to model and forecast under various situations. And, this is the key issue that will be addressed in this paper. 

We believe that in a modern production and operations environment whereby adopting information technology in the planning, modeling, and control systems is becoming indispensable, the emerging modeling approach such as the neural-network approach described in this paper will be of great interest and value.

2. Literature Review

Ever since Lapedes and Faber (1987) demonstrated the utility of neural networks as a class of function approximators in prediction and system modeling, numerous studies and applications of neural network models in time series analysis and forecasting have been reported. The results reported in many of these studies and applications are frequently benchmarked against those produced by Box-Jenkins' ARIMA modeling approach (as in Jhee and Lee 1993, Tang et al. 1991, Tang and Fishwick 1993, Wang and Leu 1996, Wedding and Cios 1996, Hansen and Nelson 1997, among others). Although performance is of primary concern, the choice of the Box-Jenkins model may be partly due to its sound theoretical basis and the numerous research publications available.

Tang et al. (1991) conducted a comparative study of backpropagation networks versus ARMA models on selected time series data from the well-known M-Competition (Makridakis et al. 1984). It was concluded that neural networks not only could provide better long-term forecasting but also do a better job than ARMA models when given short series of input data. Tang and Fishwich (1993) conducted a more comprehensive study of feedforward neural networks’ ability to model time series. They used 14 time series data sets from the well-known M-Competition plus two additional airline and sales data sets. Neural networks were found to perform better than ARMA models for more irregular series and for multiple-period-ahead forecasting. Jhee and Lee (1993) compared the performance of typical feedforward networks with that of recurrent networks on three time series, namely, one AR(2), one MA(1), and one ARMA(1,1). According to their study, recurrent networks were superior. However, the number and the selection of series were very limited in scope. It was not certain whether the conclusion could be generalized. Wang and Leu (1996) adopted the idea of ARIMA model and employed a recurrent network to model stock market trends. Like many other studies conducted in using neural networks for financial forecasting, the data set they studied was confined to a limited domain, in this case, an ARIMA(1,2,1).

Hill et al. (1996) used 104 time series data sets from the same M-Competition and compared the performance of feedforward neural networks with that of six other traditional statistical models including Box-Jenkins’ ARMA model. They found that neural networks performed significantly better than traditional methods for monthly and quarterly time series. For annual time series, however, Box-Jenkins’ model is comparable to neural networks. More recently, Hansen and Nelson (1997) reported their success in combining neural networks such as time-delay networks and backpropagation networks with traditional time series models such as ARIMA in revenue forecasting for the state of Utah, USA. The two time series considered were the rate of non-agricultural job growth and taxable sales. Instead of directly using neural networks to forecast, Tian et al. (1997) used a recurrent network to estimate the parameters of AR processes. 

Although most of these studies indicate neural-network models' comparability or superiority to Box-Jenkins' for particular data series, it is questionable whether or not neural networks can consistently outperform Box-Jenkins models in all situations. Box-Jenkins’ ARIMA models are a class of linear models that are incapable of modeling non-linearity. On the other hand, neural-network models trained by backpropagation with hidden layers are a class of general function approximators and capable of modeling non-linearity. Many of the time series in the above mentioned studies are more non-linear than linear in nature (note that the boundary between linear and non-linear can be fuzzy). This may be the reason why neural-network models outperform ARIMA models in many of these cases.

Another situation that is observed in the literature is that when backpropagation neural networks are used for time series forecasting the multi-layered feed-forward network (hereafter termed backpropagation with n hidden layers and denoted as BPHLn) is often the chosen model regardless of the nature of the data. This may result in model over-specification. 

In an attempt to address the above question, the present study has the following objectives. Namely, (a) to investigate the possible model over-specification problem observed in the literature, i.e., using BPHLn instead of BPHL0 for the special class of time series corresponding to ARMA(p,q) structures; (b) to better understand the effect of memory (or the number of past input data points used) in training neural networks for modeling and forecasting this special class of time series. The study will be carried out via a simulation approach in conjunction with an experimental design. This approach allows us to study a wide spectrum of time series corresponding to various ARMA(p,q) structures covering important regions of parameter space of each parameter. Such study would not be possible without the use of simulated time series. 

3. Autoregressive moving average models

A general linear stochastic model can be described as one that produces output whose input is white noise at, or a weighted sum of historical at’s (Box et al. 1994). Mathematically, it can be expressed as below:
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where ( is the mean of a stationary process, and (t, t = 1,2,…, are coefficients which satisfy 
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, at is an uncorrelated random variable with mean zero and constant variance 
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. However, it is more convenient to express Eq (1) in terms of a finite number of autoregressive (AR) and/or moving average (MA) components. Since the process is stationary with a constant mean (, if we let 
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, an AR(p) process can be generally expressed as follows.
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An MA(q) process can be expressed as follows.
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Hence, a mixed ARMA(p,q) process can be defined as 
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Equations (2), (3), and (4) form the basic building blocks of Box-Jenkins’ time series modeling approach (Box et al. 1994). 

4. Backpropagation without hidden layers

In the literature, backpropagation neural networks are often referred to as multi-layered perceptrons. The term perceptron was actually first used by Rosenblatt (1959) to name his simple neural-like network. The perceptron is a purely feedforward network without any feedback. It uses a binary or threshold logic unit as the transfer function with an output of 0 or 1. About the same time, Widrow and Hoff (1960) introduced a very similar network paradigm composed of a processing element called adaline (ADaptive LInear NEuron). Adaline also uses binary threshold logic with a binary output -1 or +1. These two simple network paradigms are useful in pattern recognition when the data are linearly separable. However, they will not be applicable in time series forecasting where analog outputs are desired. Therefore, this study focuses on an adaline-like network that has a semi-linear transfer function as expressed in Eq(5) and is trained by backpropagation algorithm (Rumelhart et al. 1986). 
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The only difference from the typical backpropagation learning is that only one set of weights, i.e., between input node i and output node j, need to be adjusted according to Eq (6).
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where n is the number of input nodes, 
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 is the input from node i, v is the learning coefficient, ( is the momentum factor,  and
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where  netj  is the weighted input to the only output node, 
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 is the actual observed value and 
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 is the forecast value produced at the output node. Since it does not involve any hidden layers, the network structure is also very simple, consisting of one input layer and one output node. See Rumelhart et al. (1986) for a detailed description of the standard backpropagation learning algorithm.

5. A comparative study: with or without hidden layers

In order to investigate the robustness of BPHL0 and BPHL1 in modeling time series corresponding to ARMA(p, q) structures, simulated time series generated from a wide range of coefficient values were used in this study. Coefficient values were chosen from various sub-regions of the parameter space that satisfy the stationarity and invertibility conditions. Each of these sub-regions represents a special class of models with similar autocorrelation functions and partial autocorrelation functions. Representative sets of coefficient values from each of these sub-regions ensure the extensive coverage of the permissible parameter space. 

Since the study here was confined to one-period-ahead forecasting, n observed values zt-n+1,…, zt-1, zt were used to forecast the next-period value zt+1. For each coefficient set, five time series were generated. Each series contains 100 data points. The first series was used for training the network (modeling the time series) and the remaining four were used for testing the performance of the trained network (forecasting). Once training is completed, it is important to test the trained network with multiple “unseen” time series so that potential biases due to limited testing can be avoided. The random number seeds used to generate the five series were also fixed for all models to facilitate further comparison between different models. Two statistics, namely, root mean squared error (RMSE) and mean absolute percent error (MAPE) were used as performance measures. RMSE is a more objective measure in absolute magnitude than MAPE because MAPE can be easily affected by the magnitude of 
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. However RMSE does not provide information about the relative magnitude of the forecast error. It is therefore recommended using both performance measures.

Since the network had no hidden layers, the only decision that needed to be made concerning the network structure was the number of input nodes. In order to have a fair comparison with the previous results produced by a network structure of 12x8x1 (see Hwarng 1997, Hwarng and Lu 1997), the number of input nodes was also fixed at 12 for the initial comparative study. 

Each training or testing file consisted of 88 vectors. Through preliminary studies, it was observed that the performance measured in MAPE and RMSE were not very sensitive to the value, within a certain range, of the momentum factor (() and of the learning coefficient (v). Therefore, after proper investigation, ( = 0.4 and v = 0.5 were used in all the training. In each training cycle, a training vector consisting of an input/output pair was sequentially selected from the training file and presented to the network. Since most of the training began to level off after 15,000 training cycles and usually reached a stable RMSE before 20,000th cycle, the termination criterion for training was 20,000 training cycles. The performance was also monitored and recorded at 10,000th cycle.

Table 1 summarizes the results obtained from training and testing the BPHL0 network for all the ARMA(p, q) models. The average MAPE is calculated from the MAPEs of four testing series. 
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 is the actual (sample) standard deviation of the simulated series used in training. The value of 
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 reflects roughly the magnitude of the fluctuation of the time series. For example, training series having 
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 greater than 1.5 are inherently less predictable (noisier) than those having 
[image: image18.wmf]z

s

ˆ

 less than 1.5.

Insert Table 1 here.

As tabulated in Table 1, the average MAPE of the 12-input-node BPHL0 is compared with that of the 12-input-node BPHL1 (Hwarng 1997, Hwarng and Lu 1997). Of the 64 sets of ARMA(p, q) time series studied, better (i.e. lower) MAPE is achieved for 36 sets when the BPHL0 network is used. Of the remaining 28 sets of time series, the BPHL1 network produces results which are significantly better only for 3 cases, i.e., ARMA(1,1) with (1  = -0.3, (1 = -0.5 ( at 11%); MA(2) with (1 =  -0.5, (2 =  -0.5 (at 11%) and MA(2) with (1 = 0.2, (2 =  -0.2 (at 7%). For the remaining 25 cases, the differences in MAPE values are less than 5% which is deemed less significant or insignificant.

It is also observed that, for models which are noisier (
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> 2.0), the BPHL0 network is able to produce much better MAPE than the BPHL1 network. Some of these cases are: ARMA(1,1) with (1 = -0.9, (1 = 0.9; ARMA(2,1) with (1 = -1.5, (2 = -0.9, (1 = 0.8 and ARMA(2,2) with (1 = -1.5, (2 = -0.9, (1 = -0.1, (2 = 0.8.

6. The effect of memory

In the experiment, it was found that the number of data points n, or input nodes, did have some effect on the resultant RMSE and MAPE in training (modeling) and in testing (forecasting). Therefore, an investigation was extended to evaluate the effect of the input window size (or the number of most recent data points used, or memory). This may provide some insight as to what input-layer dimension should be used for each time-series group.

In order to test the significance of the effect of the number of input nodes used, one of the most effective and efficient ways is to use an experimental design. Here a randomised complete block design (RCBD) with three treatments (input-node levels) and four blocks (random number seeds) was employed. Using this experimental design, variability arising from extraneous sources can be systematically controlled. In the study, the RCBD seeks to eliminate or block the effect of the random seed on the resultant MAPE and RMSE. The three levels of the input window size are 2, 6, and 12. The response variable is MAPE and RMSE respectively. 

The results of using the randomised complete block design on the resultant MAPE of the BPHL0 network for all ARMA(p, q) models are presented in Table 2. From Table 2, it is shown that the number of input nodes used can have a significant effect on the forecast performance of the BPHL0 network. It is found that different groups of ARMA(p, q) models work best (shown in boldface) with certain levels of input nodes. This effect is found to be statistically significant for slightly less than half (29 out of 64) of all models at ( =0.05 and for about two-thirds (40 out of 64) of all models at ( =0.10.

Insert Table 2 here.

7. Results: compared with Box-Jenkins models

In order to provide a benchmark for the results produced by BPHL0, Box-Jenkins modeling was applied to the same series to produce forecasts. The four steps of the Box-Jenkins modeling approach were model identification, parameter estimation, diagnostics checking and final model selection. The final model(s) was (were) obtained after this iterative procedure then used for making forecasts using the data points in the four testing files. Finally, average MAPE and average RMSE were calculated for performance evaluation. The average MAPE and average RMSE produced by Box-Jenkins models are summarized in the two rightmost columns of Table 3. 

Insert Table 3 here.

A comparison of the average MAPE and average RMSE for BPHL1, BPHL0, and the Box-Jenkins model is summarized in Table 3. For the BPHL1 network, the average MAPE and RMSE results are taken from Hwarng (1997) and Hwarng and Lu (1997). For the BPHL0 network, the best average MAPE results from those shown in Table 2 are used. Table 3 shows that the Box-Jenkins modeling approach is able to produce the best MAPE results for a majority of the simpler AR, MA and ARMA models (the best MAPE of the three methods are shown in boldface). When the ARMA models gets noisier and more complex, the best MAPE are mostly obtained with the BPHL0 network. This suggests that, as the ARMA models become noisier and with more parameters, BPHL0 network’s forecasting ability remained consistently good while that for Box-Jenkins modeling gets more difficult and less precise. For the BPHL1 network, forecast performance is best for only one case: MA(2) with (1 = -0.5 and (2 = -0.5.

From Table 3, it is evident that the BPHL0 network (with input node consideration) is superior to the BPHL1 network. Furthermore, the BPHL0 network is able to produce forecasts that are consistent and are comparable to or better than the Box-Jenkins modeling approach, for a majority of the time series corresponding to ARMA(p,q) structures. This further affirms that, for this special class of linear time series, using multi-layer feedforward neural networks such as the BPHL1 network is unnecessary and often results in over-specification. Furthermore, the BPHL0 network can be a useful forecasting alternative to the widely popular Box-Jenkins model.
8. Conclusion
An often-neglected model over-specification problem in neural-network time-series forecasting was investigated. A simulation approach in conjunction with an experimental design was employed to study the modeling and forecasting ability of backpropagation neural networks without hidden layers (BPHL0). The Box-Jenkins modeling approach was used to benchmark the performance of the proposed neural networks in time series forecasting. The study showed that the BPHL0 neural network, which is simple and straightforward, is generally superior to the standard BPHL1 neural network for forecasting time series that correspond to ARMA(p, q) structures and to Box-Jenkins models for more complex ARMA(p, q) structures. On the other hand, Box-Jenkins models were shown to be slightly superior to BPHL0 for simpler AR(p) or MA(q) structures. The findings suggest that the BPHL0 network should always be considered as an option for neural network forecasting, especially for forecasting time series corresponding to ARMA(p, q) structures. Without involving any hidden layers, the BPHL0 network is much easier to configure than the BPHL1 network. The BPHL1 network should therefore be employed only when the simple BPHL0 network has proven to be inadequate for forecasting the selected time series.

In this study, it was also noted that the number of input nodes used can affect the forecast performance of the neural network significantly for most of the stationary ARMA(p, q) time series. It was found that different groups of ARMA(p, q) structures can be best modeled with certain levels of input nodes. For example, a simple structure of 2 input nodes works well for time series corresponding to simple AR(1), AR(2), MA(1), and MA(2) structures while a more complex network structure is desirable as the underlying structure of the time series gets more complex. This suggests that the network structure of the model should be taken into consideration when building a neural network model for forecasting times series of different groups of ARMA(p, q) structures. Therefore, one should intelligently select the input-layer dimension that best matches the characteristic behaviour of the time-series group.

As evidenced in the experiment, when it comes to more complex time series, Box-Jenkins modeling definitely requires a greater level of experience and experimental judgement in order to make a good forecast. On the other hand, a simple BPHL0 can be easily constructed and perform satisfactorily. Nevertheless, Box-Jenkins modeling does provide strong theoretical justifications throughout its modeling process. This, however, is very much lacking in neural network forecasting. In summary, the study has promoted a better understanding of the strengths and limitations of the backpropagation neural network in modeling and forecasting the special class of time series corresponding to ARMA(p,q) structures. 
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Table 1.

A comparison of average MAPE of the 12-input-node BPHL0 network with that of the 12-input-node BPHL1 network (as reported in Hwarng 1997, Hwarng and Lu 1997) for the stationary ARMA(p,q) series: MAPE results shown were computed using the average of four testing files’ MAPE. The better MAPE for each model is shown in boldface.

	Model
	Coefficients
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	BPHL1
	BPHL0

	
	
	
	MAPE
	MAPE

	AR(1)
	-0.8
	1.52
	9.358
	9.239

	
	-0.2
	1.04
	8.943
	8.928

	
	0.2
	0.76
	8.813
	8.946

	
	0.8
	1.16
	9.318
	9.442

	AR(2)
	-1.5, -0.9
	3.13
	33.548
	28.924

	
	-0.5, -0.5
	1.26
	8.855
	8.853

	
	-0.5, 0.2
	1.24
	9.060
	9.078

	
	-0.1, 0.8
	1.57
	9.843
	10.292

	
	0.2, -0.2
	0.79
	8.823
	8.886

	
	0.3, 0.5
	1.00
	9.330
	9.524

	
	0.5, -0.5
	0.99
	8.815
	8.886

	
	0.5, 0.2
	0.92
	9.093
	9.232

	MA(1)
	-0.8
	1.19
	9.245
	8.870

	
	-0.2
	0.76
	8.805
	8.977

	
	0.2
	1.05
	8.930
	8.921

	
	0.8
	1.28
	9.398
	8.917

	MA(2)
	-1.5, -0.9
	2.20
	10.300
	9.674

	
	-0.5, -0.5
	1.11
	8.143
	9.013

	
	-0.5, 0.2
	1.06
	8.980
	8.837

	
	-0.1, 0.8
	1.20
	9.348
	8.869

	
	0.2, -0.2
	0.73
	8.823
	9.370

	
	0.3, 0.5
	1.25
	9.103
	8.833

	
	0.5, -0.5
	1.17
	9.138
	9.488

	
	0.5, 0.2
	1.17
	8.978
	8.845

	ARMA(1,1)
	-0.9,0.9
	3.44
	35.020
	21.204

	
	-0.8, -0.9
	0.75
	8.840
	8.913

	
	-0.5, -0.3
	0.73
	8.838
	8.967

	
	-0.5, 0.5
	1.46
	9.585
	9.099

	
	-0.3,-0.5
	0.76
	8.050
	8.934

	
	-0.2, -0.1
	0.73
	8.865
	8.954

	
	0.1, 0.2
	0.73
	8.788
	8.943

	
	0.2, -0.9
	1.39
	9.553
	9.038

	
	0.3, 0.5
	1.06
	8.908
	8.893

	
	0.5, -0.5
	1.13
	9.098
	9.128

	
	0.5, 0.3
	0.76
	8.913
	8.984

	
	0.9, 0.2
	1.33
	9.470
	9.892

	ARMA(1,2)
	0.2,-1.5,-0.9
	2.53
	10.845
	9.897

	
	0.2,-0.1,0.8
	1.23
	9.320
	8.888

	
	0.2,0.2,-0.2
	0.73
	8.850
	9.067

	
	0.2,0.5,0.2
	1.14
	8.918
	8.840

	
	0.8,-1.5,-0.9
	5.10
	26.143
	21.422

	
	0.8,-0.1,0.8
	1.27
	9.565
	8.979

	
	0.8,0.2,-0.2
	1.12
	9.340
	9.509

	
	0.8,0.5,0.2
	0.78
	8.863
	9.063

	ARMA(2,1)
	-1.5,-0.9,0.2
	3.64
	56.770
	30.947

	
	-1.5,-0.9,0.8
	5.31
	118.445
	35.393

	
	-0.1,0.8,0.2
	1.68
	10.085
	10.519

	
	-0.1,0.8,0.8
	2.24
	12.153
	11.286

	
	0.2,-0.2,0.2
	0.77
	8.755
	8.877

	
	0.2,-0.2,0.8
	1.27
	9.188
	8.849

	
	0.5,0.2,0.2
	0.82
	9.178
	9.170

	
	0.5,0.2,0.8
	1.06
	8.933
	8.931

	ARMA(2,2)
	-1.5,-0.9,-0.1,0.8
	3.40
	111.935
	34.493

	
	-1.5,-0.9,0.2,-0.2
	3.91
	40.673
	24.254

	
	-1.5,-0.9,0.5,0.2
	4.20
	38.543
	26.255

	
	-0.1,0.8,-1.5,-0.9
	3.11
	15.583
	13.705

	
	-0.1,0.8,0.2,-0.2
	1.92
	11.213
	11.323

	
	-0.1,0.8,0.5,0.2
	1.71
	9.975
	10.135

	
	0.2,-0.2,-1.5,-0.9
	2.49
	10.830
	9.859

	
	0.2,-0.2,-0.1,0.8
	1.63
	9.830
	8.950

	
	0.2,-0.2,0.5,0.2
	1.24
	9.005
	8.809

	
	0.5,0.2,-1.5,-0.9
	3.79
	18.828
	14.915

	
	0.5,0.2,-0.1,0.8
	1.13
	9.515
	8.934

	
	0.5,0.2,0.2,-0.2
	0.89
	9.215
	9.328


Table 2.

The effect of the level of input nodes on the performance of the BPHL0 network using randomised complete block design (RCBD).  Each average MAPE is the average of four testing files. Boldface indicates the best among the three levels. The significant level is indicated with a superscript.

	
	
	
	            Average MAPE

	Model
	Coefficients
	12node
	6node
	     2node

	AR(1)
	-0.8
	9.239
	8.987
	8.702

	
	-0.2
	8.928
	8.510
	8.496b

	
	0.2
	8.946
	8.557
	8.527a

	
	0.8
	9.442
	9.128
	9.063a

	AR(2)
	-1.5, -0.9
	28.924
	26.301
	25.656b

	
	-0.5, -0.5
	8.853
	8.677
	8.511

	
	-0.5, 0.2
	9.078
	8.721
	8.531b

	
	-0.1, 0.8
	10.292
	9.714
	9.443a

	
	0.2, -0.2
	8.886
	8.557
	8.486b

	
	0.3, 0.5
	9.524
	8.960
	8.846a

	
	0.5, -0.5
	8.886
	8.536
	8.530

	
	0.5, 0.2
	9.232
	8.816
	8.773a

	MA(1)
	-0.8
	8.870
	8.810b
	9.491

	
	-0.2
	8.977
	8.556
	8.520a

	
	0.2
	8.921
	8.511
	8.425

	
	0.8
	8.917
	8.941
	9.080

	MA(2)
	-1.5, -0.9
	9.674b
	9.802
	10.885

	
	-0.5, -0.5
	9.013
	8.653
	8.877

	
	-0.5, 0.2
	8.837
	8.734
	8.920

	
	-0.1, 0.8
	8.869a
	9.188
	9.554

	
	0.2, -0.2
	9.370
	8.560
	8.462a

	
	0.3, 0.5
	8.833
	8.916
	8.851

	
	0.5, -0.5
	9.488
	8.712a
	8.915

	
	0.5, 0.2
	8.845
	8.531
	8.776

	ARMA(1,1)
	-0.9,0.9
	21.204
	20.849
	19.811

	
	-0.8, -0.9
	8.913
	8.609
	8.589

	
	-0.5, -0.3
	8.967
	8.516b
	8.541

	
	-0.5, 0.5
	9.099
	8.810
	8.772

	
	-0.3,-0.5
	8.934
	8.577
	8.535b

	
	-0.2, -0.1
	8.954
	8.522
	8.481b

	
	0.1, 0.2
	8.943
	8.520
	8.478b

	
	0.2, -0.9
	9.038a
	9.113
	9.826

	
	0.3, 0.5
	8.893
	8.511
	8.493

	
	0.5, -0.5
	9.128
	8.786a
	8.970

	
	0.5, 0.3
	8.984
	8.561
	8.551a

	
	0.9, 0.2
	9.892
	9.492
	9.436a

	ARMA(1,2)
	0.2,-1.5,-0.9
	9.897a
	10.087
	11.633

	
	0.2,-0.1,0.8
	8.888a
	9.192
	9.529

	
	0.2,0.2,-0.2
	9.067
	8.559
	8.474a

	
	0.2,0.5,0.2
	8.840
	8.521
	8.645

	
	0.8,-1.5,-0.9
	21.422
	22.687
	26.747

	
	0.8,-0.1,0.8
	8.979a
	9.190
	9.750

	
	0.8,0.2,-0.2
	9.509
	9.120
	8.994a

	
	0.8,0.5,0.2
	9.063
	8.593
	8.588a

	ARMA(2,1)
	-1.5,-0.9,0.2
	30.947
	21.771
	18.501

	
	-1.5,-0.9,0.8
	35.393
	34.858
	36.039

	
	-0.1,0.8,0.2
	10.519
	9.950
	9.448a

	
	-0.1,0.8,0.8
	11.286
	10.933
	10.369a

	
	0.2,-0.2,0.2
	8.877
	8.548
	8.462

	
	0.2,-0.2,0.8
	8.849
	8.541
	9.170

	
	0.5,0.2,0.2
	9.170
	8.698a
	8.700

	
	0.5,0.2,0.8
	8.931
	8.511
	8.477

	ARMA(2,2)
	-1.5,-0.9,-0.1,0.8
	34.493
	31.644
	41.809

	
	-1.5,-0.9,0.2,-0.2
	24.254
	22.662
	21.315a

	
	-1.5,-0.9,0.5,0.2
	26.255
	25.062
	26.331

	
	-0.1,0.8,-1.5,-0.9
	13.705a
	13.986
	22.390

	
	-0.1,0.8,0.2,-0.2
	11.323
	10.755
	10.487b

	
	-0.1,0.8,0.5,0.2
	10.135
	9.722
	9.464a

	
	0.2,-0.2,-1.5,-0.9
	9.859a
	9.978
	12.711

	
	0.2,-0.2,-0.1,0.8
	8.950a
	9.351
	9.826

	
	0.2,-0.2,0.5,0.2
	8.809
	8.559
	8.790

	
	0.5,0.2,-1.5,-0.9
	14.915
	14.911
	17.646

	
	0.5,0.2,-0.1,0.8
	8.934a
	9.124
	9.452

	
	0.5,0.2,0.2,-0.2
	9.328
	8.829
	8.691a


 
The effect of the number of input nodes is significant at a(= 0.05, b(= 0.10.

Table 3.

A comparison of average MAPE and RMSE: using BPHL1, BPHL0 networks and Box-Jenkins models. Best MAPE results are shown in boldface.

	
	
	BPHL1 network
	
	BPHL0 network
	Box-Jenkins
	

	Model
	Coefficients
	MAPE
	RMSE
	 MAPE
	RMSE
	MAPE
	 RMSE

	AR(1)
	-0.8
	9.358
	1.114
	8.702
	1.046
	8.670
	1.030

	
	-0.2
	8.943
	1.100
	8.496
	1.054
	8.671
	1.045

	
	0.2
	8.813
	1.079
	8.527
	1.047
	8.436
	1.028

	
	0.8
	9.318
	1.076
	9.063
	1.051
	8.784
	1.014

	AR(2)
	-1.5, -0.9
	33.548
	1.507
	25.656
	1.074
	23.294
	1.049

	
	-0.5, -0.5
	8.855
	1.092
	8.511
	1.061
	8.522
	1.043

	
	-0.5, 0.2
	9.060
	1.101
	8.531
	1.043
	8.518
	1.032

	
	-0.1, 0.8
	9.843
	1.099
	9.443
	1.074
	9.206
	1.045

	
	0.2, -0.2
	8.823
	1.078
	8.486
	1.045
	8.451
	1.034

	
	0.3, 0.5
	9.330
	1.094
	8.846
	1.025
	8.831
	1.037

	
	0.5, -0.5
	8.815
	1.064
	8.530
	1.036
	8.572
	1.031

	
	0.5, 0.2
	9.093
	1.090
	8.773
	1.049
	8.793
	1.045

	MA(1)
	-0.8
	9.245
	1.115
	8.810
	1.071
	8.530
	1.025

	
	-0.2
	8.805
	1.078
	8.520
	1.047
	8.452
	1.030

	
	0.2
	8.930
	1.099
	8.425
	1.054
	8.534
	1.046

	
	0.8
	9.398
	1.146
	8.917
	1.116
	8.359
	1.016

	MA(2)
	-1.5, -0.9
	10.300
	1.168
	9.674
	1.138
	12.017
	1.346

	
	-0.5, -0.5
	8.143
	1.053
	8.653
	1.057
	8.745
	1.062

	
	-0.5, 0.2
	8.980
	1.096
	8.734
	1.071
	8.530
	1.037

	
	-0.1, 0.8
	9.348
	1.138
	8.869
	1.096
	14.850
	1.699

	
	0.2, -0.2
	8.823
	1.084
	8.462
	1.041
	8.671
	1.060

	
	0.3, 0.5
	9.103
	1.125
	8.833
	1.110
	8.469
	1.033

	
	0.5, -0.5
	9.138
	1.107
	8.712
	1.083
	8.625
	1.039

	
	0.5, 0.2
	8.978
	1.111
	8.531
	1.059
	8.464
	1.035

	ARMA(1,1)
	-0.9,0.9
	35.020
	1.694
	19.811
	1.248
	17.337
	1.157

	
	-0.8, -0.9
	8.840
	1.087
	8.589
	1.053
	8.465
	1.027

	
	-0.5, -0.3
	8.838
	1.095
	8.516
	1.057
	8.556
	1.049

	
	-0.5, 0.5
	9.585
	1.146
	8.772
	1.071
	8.635
	1.035

	
	-0.3,-0.5
	8.805
	1.079
	8.535
	1.048
	8.540
	1.040

	
	-0.2, -0.1
	8.865
	1.094
	8.481
	1.047
	8.393
	1.025

	
	0.1, 0.2
	8.788
	1.084
	8.478
	1.048
	8.400
	1.026

	
	0.2, -0.9
	9.553
	1.150
	9.038
	1.093
	8.853
	1.043

	
	0.3, 0.5
	8.908
	1.097
	8.493
	1.057
	8.536
	1.048

	
	0.5, -0.5
	9.098
	1.076
	8.786
	1.053
	9.313
	1.088

	
	0.5, 0.3
	8.913
	1.091
	8.551
	1.048
	8.477
	1.030

	
	0.9, 0.2
	9.470
	1.068
	9.436
	1.055
	9.318
	1.039

	ARMA(1,2)
	0.2,-1.5,-0.9
	10.845
	1.192
	9.897
	1.126
	13.622
	1.453

	
	0.2,-0.1,0.8
	9.320
	1.144
	8.888
	1.098
	14.282
	1.650

	
	0.2,0.2,-0.2
	8.850
	1.091
	8.474
	1.042
	8.491
	1.028

	
	0.2,0.5,0.2
	8.918
	1.104
	8.521
	1.066
	8.393
	1.028

	
	0.8,-1.5,-0.9
	26.143
	1.538
	21.422
	1.255
	25.759
	1.417

	
	0.8,-0.1,0.8
	9.565
	1.163
	8.979
	1.097
	9.966
	1.201

	
	0.8,0.2,-0.2
	9.340
	1.084
	8.994
	1.052
	9.109
	1.058

	
	0.8,0.5,0.2
	8.863
	1.088
	8.588
	1.049
	8.487
	1.029

	ARMA(2,1)
	-1.5,-0.9,0.2
	56.770
	1.687
	18.501
	1.097
	14.444
	1.065

	
	-1.5,-0.9,0.8
	118.445
	2.350
	34.858
	1.330
	36.180
	1.322

	
	-0.1,0.8,0.2
	10.085
	1.107
	9.448
	1.071
	9.465
	1.056

	
	-0.1,0.8,0.8
	12.153
	1.181
	10.369
	1.077
	10.227
	1.049

	
	0.2,-0.2,0.2
	8.755
	1.083
	8.462
	1.048
	8.547
	1.038

	
	0.2,-0.2,0.8
	9.188
	1.136
	8.541
	1.068
	8.802
	1.062

	
	0.5,0.2,0.2
	9.178
	1.103
	8.698
	1.057
	8.935
	1.073

	
	0.5,0.2,0.8
	8.933
	1.099
	8.477
	1.052
	8.742
	1.074

	ARMA(2,2)
	-1.5,-0.9,-0.1,0.8
	111.935
	1.608
	31.644
	1.186
	35.771
	1.371

	
	-1.5,-0.9,0.2,-0.2
	40.673
	1.749
	21.315
	1.101
	19.309
	1.062

	
	-1.5,-0.9,0.5,0.2
	38.543
	1.941
	25.062
	1.187
	24.872
	1.197

	
	-0.1,0.8,-1.5,-0.9
	15.583
	1.252
	13.705
	1.160
	22.266
	1.748

	
	-0.1,0.8,0.2,-0.2
	11.213
	1.138
	10.487
	1.100
	12.433
	1.306

	
	-0.1,0.8,0.5,0.2
	9.975
	1.104
	9.464
	1.081
	9.372
	1.060

	
	0.2,-0.2,-1.5,-0.9
	10.830
	1.222
	9.859
	1.136
	12.308
	1.390

	
	0.2,-0.2,-0.1,0.8
	9.830
	1.180
	8.950
	1.101
	11.974
	1.395

	
	0.2,-0.2,0.5,0.2
	9.005
	1.115
	8.559
	1.068
	8.886
	1.077

	
	0.5,0.2,-1.5,-0.9
	18.828
	1.304
	14.911
	1.147
	17.358
	1.304

	
	0.5,0.2,-0.1,0.8
	9.515
	1.150
	8.934
	1.143
	9.459
	1.131

	
	0.5,0.2,0.2,-0.2
	9.215
	1.100
	8.691
	1.132
	12.327
	1.452
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