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Abstract

Most unit root tests are asymptotic tests. A well-documented fact of unit root tests is that these asymptotic procedures usually have serious size distortions when the root of the error process is large. A direction in which the subject is presently moving is the development of unit root tests with improved size properties. One of the mechanisms for improving the size properties of these tests is related to Bootstrap. The subject of the present paper is to study bootstrapping the Phillips-Perron unit root test. The widely-used Phillips-Perron tests suffer from severe size distortions in the presence of negative moving average errors. Its finite sample performance is also affected by bandwidth selection in the nonparametric correction. In this paper we apply the bootstrap method to the Phillips-Perron unit root test in dealing with these problems. We consider the use of blockwise bootstrap methods. The advantages of blockwise bootstrap methods to handle serially correlated errors will be emphasized. The paper presents some related Monte Carlo results in bootstrapping the Phillips-Perron unit root test. Our results show that the bootstrap methods can improve the performance of the Phillips-Perron test in small samples.

1. Introduction

In this paper, we use bootstrap methods initiated by Efron (1979) for small sample unit root testing based on the Phillips and Perron (1988) unit root test. The literature on unit root testing is enormous. Most of the procedures are based on asymptotic theory, e.g., the commonly used Dickey-Fuller test (or augmented Dickey-Fuller test) or the Phillips-Perron test. Extensive Monte Carlo experiments have been conducted to evaluate the finite sample performance of these asymptotic tests. See, for example, Schwert (1989), Diebold and Rudebusch (1991), DeJong et al. (1992), Phillips and Perron (1988), and Phillips and Xiao (1998). The Monte Carlo results show that, in finite samples, many estimators are biased, and the associated tests usually have size distortions. The situation is worse when the regression errors are serially correlated. There is currently no widely applicable and easily accessible small sample method for estimation and inference for nonstationary time series models.

Recently there are many applications of the bootstrap to nonstationary time series models. The idea behind bootstrap is very simple. Bootstrap samples are drawn from the empirical distribution of a given data set to construct the bootstrap distribution of statistics of interest. In many complex situations, the analytical solutions may not be available. Therefore, the bootstrap distribution can be used to serve as an approximation to the population distribution thus statistical analysis can be performed. Extensive research has been done about bootstrap since Efron (1979). It is shown in the literature that, even if the analytical results are available, the bootstrap can often provide higher order asymptotic refinement than can the normal approximation. Many simulations and applications show that in small samples, bootstrap usually works better in bias reduction, hypothesis testing, and confidence interval construction, etc. Jeong and Maddala (1993) discuss the application of bootstrap methods to econometrics. Li and Maddala (1996) and Berkowitz and Kilian (1997) survey the bootstrap application to time series models. For a comprehensive recent survey of the usefulness and the limitations of the bootstrap applications in econometrics, see Horowitz (2000).

The bootstrap by Efron (1979) is valid for independent and identically distributed (iid) errors. With correlated errors, more refined bootstrap methods, such as recursive bootstrap and blockwise bootstrap, can be used. As a result, various bootstrap methods have been applied to unit root and cointegration models to improve the small sample performance of the asymptotic procedures. The application of the bootstrap methods to unit root models can be found in Basawa et al. (1991a, b), Giersbergen (1995), Ferretti and Romo (1996), Chang and Park (1999), Li and Xiao (2000). With many newly developed bootstrap resampling schemes and their successful application to the nonstationary time series models, the bootstrap technique has been shown to be a potential alternative to those asymptotic procedures in small samples.

The focus of this paper is to study the blockwise bootstrap in unit root testing based on Phillips and Perron (1988). We first briefly outline the usual bootstrap resampling schemes in section 2. Section 3 discusses bootstrap methods for unit root models based on the PP test. The moving block bootstrap and the stationary bootstrap are considered for resampling general dependent errors in the unit root models. Section 4 is a simulation study. The data generating processes and the simulation results are discussed. Finally, the conclusion is given in section 5.

2. A Review of the Bootstrap Approaches

The bootstrap method initiated by Efron (1979) is distribution-free and rests on minimum assumptions about the model. We first briefly describe the standard iid bootstrap and the recursive bootstrap. Then we focus on the discussion of two blockwise bootstrap approaches - the moving block bootstrap (MBB) and the stationary bootstrap (SB).

2.1 The Standard Bootstrap

Consider an iid random sample 
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 from a distribution F characterized by a parameter (. Inferences about ( will be based on a statistic (. The standard bootstrap draws repeated random bootstrap samples 
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In general, assume F is the unknown distribution from which 
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2.2 The Recursive Bootstrap

Many nice properties of the asymptotic refinements of the standard bootstrap break down when the data are dependent. In the presence of serial correlation, refinement of the standard bootstrap is required. To deal with serially correlated data with a well-specified structure (say stationary ARMA(p, q) models with known p and q), the recursive bootstrap first introduced by Freedman and Peters (1984) can be used. Efron and Tibshirani (1986) also used this method for bootstrapping AR(1) and AR(2) models. In the recursive bootstrap, a parametric ARMA(p, q) model is first estimated by OLS, or by some other consistent estimators, then the iid residuals can be obtained and (after rescaling and centering) resampled. With the resampled residuals, the bootstrap samples can be generates recursively based on the estimated model. Note that it is the iid residuals that are being resampled, not the original dependent data.


Bühlmann (1997) considers a bootstrap method that is based on the method of sieves. It is similar to the recursive bootstrap. In the recursive bootstrap based on autoregressive models, the order of autoregression is pre-fixed. In the sieve bootstrap, the stationary time series is modeled as an infinite-dimensional nonparametric model that is approximated by a sequence of finite-dimensional parametric models that are approximated by an autoregressive model of order p, where 
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2.3 The Blockwise Bootstrap

If the structure of serial correlation is not tractable or misspecified, the recursive bootstrap will give inconsistent estimates. Carlstein (1992) provided a survey of the resampling techniques for stationary time series. The techniques are classified as “model-based” or “model-free”. The recursive bootstrap is model-based because we must know the underlying dependence mechanism in the time series. Therefore the main drawback of the model-based bootstrap procedures is that one need to know the correct underlying dependence mechanism in the time series.

Bootstrap schemes not require fitting the data into parametric forms have been developed to deal with general dependent time series. These are classified as model-free. Several of the blockwise bootstrap procedures fall into this category. Carlstein (1986) first discussed bootstrapping non-overlapping blocks of observations rather than the individual observations. Künsch (1989) and Liu and Singh (1992) independently introduced a more general bootstrap procedure, the moving block bootstrap (MBB), which is applicable to general stationary time series. In this method the blocks of observations are overlapping. These bootstrap procedures are extensions of the standard bootstrap. In the blockwise bootstrap, the blocks of data are randomly resampled.

Both methods of Carlstein and Künsch divide a sample of n observations into blocks of length l and select b of these blocks by resampling with replacement all the possible blocks. For simplicity assume n = bl. In Carlstein (1986), there are b blocks. In Künsch (1989), there are 
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). There is a higher probability of missing entire blocks in the Carlstein scheme. For this reason, it is not popular, and it is not often used.


There are some problems with the MBB. For a stationary time series 

, the MBB samples are not stationary. Note that the mean 
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. This is also the case for the non-overlapping blockwise bootstrap of Carlstein (1986). For this reason, Politis and Romano (1994) suggest the stationary bootstrap (SB). The SB resamples the data blocks of random length, where the length of each block has a geometric distribution, while the MBB resamples blocks of data of the same length.


The SB works as follows. Let 
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where 

 and p 

 is the probability of the geometric distribution of the random block length. The average block length in the SB is 1/p. Thus, the block length l in the MBB and the probability p in the SB play the same role when l = 1/p. It is shown in Politis and Romano (1994) that 
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 for the SB. Therefore, the SB generates samples that retain the stationarity property of the original time series. Politis and Romano argue that alternative distributions in the SB can be used. Hence the MBB is only a special case of the SB.

3. Bootstrapping the Phillips-Perron Unit Root Test
Consider an AR(1) model for time series 
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Thus, conventional tests based on normal asymptotic theories are not valid. To test for the unit root null, one can use the Dickey-Fuller (see Dickey and Fuller 1979) coefficient test 
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and
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respectively, where 
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There are many applications of the bootstrap methods to unit root models with iid errors. See the references cited in the previous section for a few examples. In some of the papers it is shown that the bootstrap can improve upon the asymptotic procedures. However, unit root models with iid errors are rather restrictive. A time series can follow more complicated dynamics such as the ARMA(p, q) process with a unit root, or equivalently a unit root AR(1) model with general dependent error structures. In these situations the limiting distributions of the test statistics based on OLS estimator are different from those in the model with iid errors. Consider a unit root model with a more general data generating process for the errors
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 can be a stochastic process which may take the form of any one of a large number of ARMA, ARMAX where the exogenous variables are I(0), and other stationary processes. The unit root null is tested based on the following regression 
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For this model, since the error terms 
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 are serially correlated, the limiting distributions of the t-statistic and the coefficient test statistic are not the same as those of the corresponding standard Dickey-Fuller tests. The limiting distributions are shown to be
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for the coefficient test and
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for the t-test where 
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. The test results may be sensitive to the selection of lag window truncation length when estimating the long-run variance.

Due to the presence of nuisance parameters in the limiting distributions of the test statistics, the critical values of the standard Dickey-Fuller tests can not be used for inference. Other procedures have been developed to deal with this problem. The parametric augmented Dickey-Fuller (ADF) test and the nonparametric PP test are examples. The ADF test makes a parametric correction for higher-order correlation by assuming that 
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 to the right-hand side of the regression. Said and Dickey (1984) show that the ADF test remains valid even when the series has a moving average component, provided that enough lagged difference terms are augmented to the regression. Phillips and Perron (1988) show that nonparametric tests Z() and Z(t) have the same limiting distributions as those of the Dickey-Fuller tests. The PP test is designed to correct for the serial correlation in 
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. The correction is done in a nonparametric way based on an estimate of the spectrum of at frequency zero. The test is robust to heteroskedasticity and autocorrelation of unknown form. However, it is known in the literature that the PP test has serious size distortions in small samples especially when the error 
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We consider using bootstrap method to improve the small sample performance of the PP test. The bootstrap method used here is the blockwise bootstrap. For dependent errors, the recursive bootstrap may not work well in cases where the parameter estimates are biased or the parametric model is misspecified. The blockwise bootstrap method, on the other hand, does not require any parametric form of the model. In this case, the correlated errors are resampled directly in blocks.

For model (12) the MBB takes the following steps:

1. Estimate (12) by PP approach. Calculate the Phillips-Perron test statistics 
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4. Calculate the PP test statistic 
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5. Repeat steps 3 and 4 a large number of times. Tabulate the bootstrap distribution of 
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It is clear from the above MBB procedure that the problem of under parameterizing or misspecification is avoided. The OLS regression errors are resampled directly without estimating a parametric model to get the iid errors. Thus the correlation structure is well approximated for each of the bootstrap pseudo data.

Similar to the bandwidth selection in nonparametric and semiparametric models, the choice of block length plays an important role in the blockwise bootstrap procedures. The asymptotic validity of blockwise bootstrap only requires that the block length satisfies certain expansion rates, leaving a wide range of choices for the practitioner. Sometimes the finite sample performance of the bootstrap can vary considerably with block length selection. Even for the same statistical model, the optimal block lengths may be quite different for different inference problems.

Although the block length does not enter the first order asymptotics, it surfaces in the second order term. Given the statistical model and a specific inference problem, if the corresponding higher order theory is available, a natural way to consider block length choice is to optimize the higher order property with respect to the block length. However, although theoretically this might be a desirable approach, in general the second order expansions are complicated and are dependent on specific models and the subjects of statistical analysis. Even for the same model, different statistical inference problems may correspond to different criterion functions of optimization, giving different block-length choices. For example, if the focus of the study is on estimation, we may want to minimize the mean squared error of the corresponding estimator. However, a testing problem may have a different criterion function, for example, we may want to optimize the size and power properties of the test.

There is some discussion of optimal choice of l and p in Liu and Singh (1992), Carlstein (1986), Künsch (1989), Hall, et al. (1995), and Politis and Romano (1994). The rules based on different criteria are suggestive in small samples. However, the rules are useful as rough guides to selecting the optimal sized blocks. The number of blocks should be lower under the non-overlapping blocks rule of Carlstein than in the moving blocks rule of Künsch. In the SB, where blocks of random length are sampled, the average length of a block is l/p, where p is the parameter of the geometric distribution. Thus, l/p should play the same role as the parameter l in the MBB. Politis and Romano (1994) argue that the SB is less sensitive to the choice of p than the MBB is to the choice of l.

Hall et al. (1995) derive rules taking into account the MSE in the estimation of variance. Their rules are 
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4. The Data Generating Process and Simulation Results

Consider the following models


Model A: 
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Model B: 
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The errors in regressions (17) and (18) are serially correlated. The unit root null is tested using the PP unit root test. In particular, we investigate the performance of the bootstrap test based on the PP test procedure. The critical values are approximated based on the bootstrap distribution of the test statistics. We use the blockwise bootstrap that can capture the serial correlations between adjacent observations in this case.

In order to compare our simulation results with those in the existing literature, we use the following DGP to generate the series 
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. In particular, the parameter values are ( = {1, 0.85} for model A and ( = {1, 0.7} for model B, ( = {0, 0.5, 0.8, (0.2, (0.5, (0.8}, 
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, n = 100.  The DGP for model B is exactly the same as the one considered in Phillips and Perron (1988) to facilitate comparison. We also consider the linear trend model that is not considered in the simulation study of Phillips and Perron (1988). Since the linear trend model usually has lower power in unit root testing, for power comparisons, we set ( = 0.7.

The previous discussion about bootstrapping the PP test is based on the MBB. The SB is used here to simulate the empirical distributions of the coefficient test statistic and the t-test statistic. The reason is mainly that the SB “smoothes” the MBB results. Therefore we shall focus on the use of the SB in our simulation, with 
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The simulation results are reported in Table 1 for model A and Table 2 for model B for the coefficient test. The PP test results in Table 1 almost duplicate the Phillips-Perron (1988) results.
 We have the following main findings:

(1) When ( = 0, the PP test has sizes slightly above the 5% nominal level. When ( > 0, the PP test under rejects the unit root null. For the bootstrap test, the sizes are between 3.49% to 2.72% for 
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.  Though slightly under rejects the null when ( = 0, but the bootstrap test has higher rejection rates than the PP test when ( > 0.

(2) When ( < 0, there are serious size distortions for the PP tests.  The bootstrap test significantly reduces the size distortions. When ( = (0.2 and (0.5, the bootstrap test sizes are between 3.6% to 7.3%, which are much lower than the PP test sizes. When (  = (0.8, bootstrap gives empirical test sizes around 35% at the 5% level, while the PP tests has test sizes above 98\%.

(3) The power of the bootstrap test is in general smaller than its PP test counterpart. The bootstrap test suffers some power losses when 
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.  However, its performance when ( < 0 can be considered quite reasonable, given the serious size distortions in the PP test in this case.  Note that when ( = (0.8, the bootstrap test power decreases when the lag truncation length lr in estimating the long-run variance 
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 increases. When lr = 12, the bootstrap test power (22.82%) is smaller than its test size (36.08%).

For the linear trend model, the results in Table 2 indicate that:

(1) When ( = 0, the PP test has sizes slightly higher than those for model A (also above the 5% nominal level), but the bootstrap test seems to under reject the true null. When (  > 0, the PP test sizes are quite small, in some cases approaching zero when lr = 12. For the bootstrap test, the sizes are about similar for ( > 0.

(2) When ( < 0, the bootstrap test significantly reduces the size distortions. When ( = (0.2, the bootstrap test sizes are between 1.86% to 2.4%; when ( = (0.5, the sizes are between 4.3% to 5.08%.  When ( = (0.8, the empirical bootstrap test sizes decreases from 35.02% to 20.74% as lr increases. Note that the PP test has test sizes of 100%.

(3) Similar to model A, the power of the bootstrap test is smaller than its PP test counterpart. In particular, the bootstrap test power decreases when l increases. When ( = (0.8, and for lr ( 6, the bootstrap test power is smaller than its test size.

For the t-test the results are reported in Table 3 for model A and Table 4 for model B. We summarize the simulation results as follows:

(1) In Table 3 for model A, the PP test results basically duplicate those of Phillips and Perron (1988). The bootstrap Z(t) test performs very well with test sizes between 4.12% to 6.98%, compared to the PP test sizes between 2.52% to 53.56%, for (0.5 ( (  ( 0.8. For the case (  = (0.8, the PP test has sizes all above 98%, while the bootstrap test sizes are between 33.42% to 37.98%.

(2) The power of bootstrap t-test is smaller than its PP t-test counterpart.  In the case of ( > 0, the power of the PP t-test first increases and then decreases when lr changes from 2 to 12. The power of the bootstrap t-test seems to follow the same pattern. When ( = (0.8, the bootstrap t-test has rejection rates above 93%, even when lr = 8 and 12. Note that in the case of coefficient test, the two figures are 55.86% and 22.82%, respectively. Further, when lr = 12, the bootstrap coefficient test power (22.82%) is smaller than its test size (36.08%). Therefore the bootstrap t-test here has significant improve over the asymptotic PP test.

For model B, the results in Table 4 show that:

(1) The PP test results have larger rejection rates (above 6%) for ( = 0 but smaller rejection rates (below 2.48%) for ( = 0.5 and 0.8 when compared to model A. The bootstrap test sizes are between 1.88% to 3.34%.

(2) When ( = (0.2 and (0.5, the bootstrap test sizes are between 2% to 4.62%. The size distortions related to the PP test are significantly reduced. For example, when ( = (0.2, the PP test sizes are between 17.46% to 21.9%; when ( = (0.5, the sizes are between 69.86% to 81.7%. When ( = (0.8, bootstrap gives empirical test sizes between 31.76% to 33.66%. Note that the PP test rejects almost 100%.

(3) The power of the bootstrap test is smaller than the PP test counterpart.  The pattern related to lr is quite similar to the situations in model A.  Except for ( = (0.8, the bootstrap test power decreases when lr increases.

Overall, the bootstrap test has obtained improvement over the Phillips and Perron (1988) test in small samples. In particular, the serious size distortion for a negative moving average regression error has been significantly reduced with reasonable size-corrected power.

5. Summary

In this paper we discuss the bootstrap approaches to the Phillips-Perron unit root testing in small samples. We consider blockwise bootstrap methods. Their advantages to handle serially correlated errors are emphasized.

The paper presents some related Monte Carlo results in bootstrapping the Phillips-Perron unit root test. The stationary bootstrap method is used for unit root model with serially correlated errors. The case of MA(1) errors is investigated in particular. The simulation results indicate that when properly applied, the bootstrap procedures can be used for unit root testing and better size and power can be expected.

Table 1: The Phillips-Perron coefficient test (Model A)

	PP test
	5% Test Size (( = 1)

lr
	
	Power (( = 0.85)

lr

	(
	2
	4
	6
	8
	12
	
	2
	4
	6
	8
	12

	0
	5.28
	5.38
	5.56
	5.70
	5.54
	
	78.66
	79.00
	80.48
	80.02
	81.18

	0.5
	2.06
	2.92
	3.10
	2.76
	2.22
	
	48.08
	57.74
	54.26
	50.56
	36.02

	0.8
	1.56
	2.82
	2.70
	2.30
	1.48
	
	44.34
	54.44
	52.08
	46.22
	29.36

	-0.2
	11.90
	11.78
	12.28
	12.12
	14.18
	
	94.12
	94.82
	95.14
	95.98
	97.12

	-0.5
	48.40
	44.26
	46.50
	51.18
	55.72
	
	100.00
	100.00
	99.98
	100.00
	100.00

	-0.8
	99.08
	98.72
	98.78
	99.04
	99.54
	
	100.00
	100.00
	100.00
	100.00
	100.00

	Bootstrap
	
	
	
	
	
	
	
	
	
	
	

	0
	3.40
	3.48
	3.58
	3.90
	3.66
	
	51.96
	54.28
	54.54
	53.26
	53.04

	0.5
	2.92
	3.48
	3.60
	3.78
	3.90
	
	41.96
	46.06
	45.50
	44.26
	38.48

	0.8
	2.72
	3.42
	3.94
	3.78
	3.32
	
	40.32
	43.98
	44.38
	42.98
	37.00

	-0.2
	3.60
	4.26
	4.00
	3.94
	4.20
	
	53.78
	55.40
	57.10
	58.44
	57.94

	-0.5
	6.28
	6.40
	5.96
	7.06
	7.30
	
	68.58
	70.02
	70.66
	71.52
	70.24

	-0.8
	35.64
	34.46
	34.90
	36.34
	36.08
	
	96.12
	92.34
	77.76
	55.86
	22.82


Table 2: The Phillips-Perron coefficient test (Model B)

	PP test
	5% Test Size (( = 1)

lr
	
	Power (( = 0.7)

lr

	(
	2
	4
	6
	8
	12
	
	2
	4
	6
	8
	12

	0
	5.46
	6.08
	6.64
	7.08
	5.08
	
	97.98
	98.38
	98.18
	98.54
	97.66

	0.5
	1.20
	1.96
	1.84
	1.28
	0.36
	
	78.48
	80.48
	74.16
	63.62
	23.84

	0.8
	0.92
	1.68
	1.44
	0.96
	0.24
	
	73.04
	76.00
	67.44
	51.10
	8.96

	-0.2
	16.48
	16.08
	18.16
	18.88
	21.96
	
	99.94
	99.98
	99.96
	99.98
	99.98

	-0.5
	69.34
	67.14
	71.26
	75.86
	82.06
	
	100.00
	100.00
	100.00
	100.00
	100.00

	-0.8
	100.00
	100.00
	100.00
	100.00
	100.00
	
	100.00
	100.00
	100.00
	100.00
	100.00

	Bootstrap
	
	
	
	
	
	
	
	
	
	
	

	0
	1.96
	1.80
	2.54
	2.80
	1.74
	
	51.72
	53.34
	52.62
	47.70
	29.00

	0.5
	1.22
	1.58
	2.12
	2.50
	2.34
	
	39.84
	42.50
	41.08
	35.80
	15.88

	0.8
	0.90
	1.60
	2.30
	2.06
	2.78
	
	36.12
	38.12
	37.30
	32.46
	12.94

	-0.2
	1.86
	2.08
	2.40
	2.40
	1.86
	
	53.10
	55.02
	53.26
	47.32
	28.88

	-0.5
	4.30
	4.52
	4.34
	5.08
	4.50
	
	70.74
	66.04
	51.68
	38.52
	16.36

	-0.8
	35.02
	32.48
	27.94
	23.68
	20.74
	
	89.74
	61.36
	15.52
	2.52
	0.16


Table 3: The Phillips-Perron t-test (Model A)

	PP test
	5% Test Size (( = 1)

lr
	
	Power (( = 0.85)

lr

	(
	2
	4
	6
	8
	12
	
	2
	4
	6
	8
	12

	0
	5.70
	5.56
	6.20
	5.72
	6.00
	
	65.66
	66.58
	68.28
	67.06
	68.08

	0.5
	3.36
	3.34
	3.84
	3.08
	3.22
	
	29.48
	36.12
	31.98
	27.70
	14.96

	0.8
	2.84
	3.24
	3.18
	2.84
	2.52
	
	24.84
	31.92
	29.26
	24.36
	9.92

	-0.2
	11.98
	12.02
	12.56
	11.66
	13.12
	
	89.66
	90.68
	91.24
	92.80
	94.24

	-0.5
	47.40
	44.28
	46.24
	49.92
	53.56
	
	100.00
	100.00
	99.96
	100.00
	100.00

	-0.8
	98.98
	98.58
	98.68
	98.88
	99.48
	
	100.00
	100.00
	100.00
	100.00
	100.00

	Bootstrap
	
	
	
	
	
	
	
	
	
	
	

	0
	4.12
	4.12
	4.70
	4.14
	4.28
	
	38.68
	40.30
	41.12
	40.72
	39.14

	0.5
	4.62
	4.56
	4.78
	4.32
	4.78
	
	22.14
	26.94
	25.22
	23.02
	14.88

	0.8
	4.42
	4.32
	4.28
	4.34
	4.30
	
	20.08
	24.54
	23.68
	21.80
	12.80

	-0.2
	4.26
	4.66
	4.32
	4.50
	4.30
	
	46.48
	48.22
	50.04
	50.72
	51.18

	-0.5
	6.36
	6.32
	5.74
	6.98
	6.84
	
	66.70
	67.92
	68.64
	69.80
	70.96

	-0.8
	35.10
	33.42
	34.22
	36.78
	37.98
	
	95.82
	95.94
	95.74
	95.02
	93.24


Table 4: The Phillips-Perron t-test (Model B)

	PP test
	5% Test Size (( = 1)

lr
	
	Power (( = 0.7)

lr

	(
	2
	4
	6
	8
	12
	
	2
	4
	6
	8
	12

	0
	6.14
	6.78
	7.18
	7.48
	5.98
	
	96.88
	97.52
	97.30
	97.48
	96.58

	0.5
	1.68
	2.48
	2.34
	1.94
	1.22
	
	66.30
	69.10
	61.64
	50.34
	22.30

	0.8
	1.48
	2.14
	1.92
	1.38
	1.06
	
	59.28
	61.94
	51.00
	36.22
	8.90

	-0.2
	17.56
	17.46
	19.40
	19.70
	21.90
	
	99.94
	99.88
	99.94
	99.96
	99.98

	-0.5
	71.62
	69.86
	72.28
	76.04
	81.70
	
	100.00
	100.00
	100.00
	100.00
	100.00

	-0.8
	100.00
	100.00
	99.98
	100.00
	100.00
	
	100.00
	100.00
	100.00
	100.00
	100.00

	Bootstrap
	
	
	
	
	
	
	
	
	
	
	

	0
	2.10
	2.30
	2.82
	2.96
	2.02
	
	44.24
	45.74
	45.72
	41.76
	30.60

	0.5
	1.88
	2.22
	2.96
	3.00
	3.34
	
	26.32
	28.56
	27.52
	21.68
	7.00

	0.8
	2.18
	2.62
	2.82
	2.82
	3.18
	
	21.86
	25.32
	22.66
	18.10
	4.32

	-0.2
	2.08
	2.48
	2.62
	2.44
	2.00
	
	48.14
	50.98
	49.30
	46.44
	38.86

	-0.5
	4.20
	4.62
	4.04
	4.22
	4.18
	
	67.38
	67.06
	64.20
	63.10
	55.46

	-0.8
	33.66
	32.30
	33.26
	32.68
	31.76
	
	91.38
	92.82
	93.40
	93.34
	94.46
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� Models with a drift term or a linear trend are commonly used in unit root testing.


� The simulation is done using GAUSS programs of Coint 2.0. The results here are slightly different from those in Phillips and Perron (1988) for possible simulation variations.
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