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ABSTRACT

We consider the group maintenance problem for a production system with N independently operating servers and a single Markovian queue. The servers are unreliable and their failure times are identically exponentially distributed. The repair cost consists of a fixed cost associated with starting the repair/maintenance process and a variable cost proportional to the number of repaired machines. In addition there is a delay cost for each customer in the system per unit of time. The main idea of group maintenance is to delay the initiation of the maintenance/repair process until several servers have failed, so that the fixed repair cost is distributed over more machines. The tradeoff associated with group maintenance is that delaying maintenance decreases the average fixed repair cost, but on the other hand increases the average cost of delaying customers.

In this paper we develop a customer-independent m-failure group maintenance model where the repair is started as soon as the number of failed machines reaches a predetermined level m. In the repair process, we assume the positive maintenance time and allow no server failures during maintenance. A matrix geometric method is applied to calculate the steady state distribution and the expected average cost. Besides the mathematical analysis, we numerically demonstrate the properties of the optimal policy for various sets of parameter values.

Keywords: Group maintenance policy; M-failure customer-independent group maintenance policy; Matrix-geometric method; Exponential distribution;  

tc \l1 "ABSTRACTWe consider the group maintenance problem for a production system with N independently operating servers and a single Markovian queue. The servers are unreliable with identically exponentially distributed failure times. The repair cost consists of a fixed cost associated with starting the repair/replacement process and a variable cost proportional to the number of  repaired machines. In addition there is a delay cost for each customer in the system per unit of time. The main idea of group maintenance is to delay the initiation of the maintenance/replacement process until several servers have failed, so that the fixed replacement cost is distributed over more machines. The tradeoff associated with group replacement is that delaying replacement decreases the average fixed replacement cost, but on the other hand increases the average cost of delaying customers.In this paper we consider a specific class of group replacement policy for the problem described above: A customer-independent group replacement model where the repair is started as soon as the number of failed machines reaches a predetermined level m. There are three variations for this class of group replacement policy. We consider two models with positive replacement, and another model with instantaneous replacement. For all three variations, we formulate a matrix geometric model to calculate the steady state distribution and the expected average cost. Besides the mathematical analysis, we numerically demonstrate the properties of the optimal policy for three models for various sets of parameter values.Keywords: Group replacement model; Group maintenance policy; Matrix-geometric methed; Customer-independent; Exponential distribution;  
1. INTRODUCTION

We consider the maintenance problem of a production/service queueing system subject to stochastic failures and repairs. Our focus is on multiple machine models, where there is a fixed cost associated with initiation of the repair process. In this class of problems it is generally preferable to start the repair only after a considerable number of machines have failed, in order to distribute the fixed repair cost. Policies of this type are called group replacement policies and they have received considerable attention in the stochastic maintenance literature.

Group replacement models are applicable in production processes, where starting the repair process involves opening/setting up the repair facility or collecting all failed machines and transporting to a remote repair center. In the above situations, a fixed repair cost is incurred in addition to variable repair/maintenance cost per machine. In an electronic switching system of telecommunication company , for instance, there are several electronic switching circuits operating in parallel. When failed switching circuits are left unrepaired, the communication traffic increases and the company may lose some customers, who used to be loyal users. On the other hand, if the repair process is initiated, in addition to variable repair cost per switching circuit, a fixed repair cost is incurred because of the procedure for asking repair (including inspection, paper work, management decision, etc.), service decreased during repair, opening/setting up the repair facility, transportation for failed switching machines or repair facility, and the basic service charge & transportation for repairman, etc..

A large amount of research has been devoted to finding optimal replacement policies of the group replacement models. According to our observation, there are three main types of group replacement policies which have been studied in most of the literature. The first one is T-age group replacement policytc \l3 "The first one is T-age group replacement policy. The general idea for this policy is that no failed machine is repaired until a scheduled time T, then all failed machines in the system are fixed simultaneously. In Barlow, Proschan, and Hunter(1965) it is shown that the optimal scheduled time for preventive maintenance is nonrandom and there exists a unique optimal policy if the distribution of time to failure has an increasing failure rate. A detailed analysis for determining optimal T is presented in Okumoto & Elsayed(1983). For the case of exponential distribution, a closed form expression for T* is developed. For general underlying failure distribution, bounds for T* are derived. The second one is M-failure group replacement policy. tc \l3 "M-failure group replacement policy. The general idea for this policy is that we do not repair any failed machine until m failed machines have occurred, then all failed machines in the system are fixed simultaneously. Assaf & Shanthikumar(1987) has considered two models with exponential failure times with parameterλand a more general replacement policy f(m,n). When the number of failed machines reaches m, n machines are repaired. By developing expressions on the expected average cost as a function of m and n, they show that the optimal repair policy is either not to repair any failed machine or to repair with an f(m,m)-type policy. This is actually a m-failure group replacement policy. A basic assumption of the first model is that the number of failed machines is known at any instant. It is also shown that how to explicitly compute this control limit. In the second model, Assaf & Shanthikumar deviate from the above assumption and require an inspection to determine this number of failed machines. A positive cost is paid every time when such an inspection is performed, then a characterization of an optimal periodic inspection/repair policy that minimizes the expected cost per unit time over an infinite horizon is given. By extending Assaf & Shanthikumar’s repair and replacement model, optimal m-failure policies with nonnegative random repair time are discussed in Wilson and Benmerzouga(1990). The cost function is shown to be unimodal and an easily implemented algorithm for finding optimal policies is developed. The last one is (m,T) group replacement policy.tc \l3 "It is also shown that how to explicitly compute this control limit. In the second model, Assaf & Shanthikumar deviate from the above assumption and require an inspection to determine this number. A positive cost is paid every time when such an inspection is performed, then a characterization of an optimal periodic inspection/repair policy that minimizes the expected cost per unit time over an infinite horizon is given. By extending Assaf & Shanthikumar┬ repair and replacement model, optimal m-failure policies with nonnegative random repair time are  discussed in Wilson and Benmerzouga(1990). The cost function is shown to be unimodal and an easily implemented algorithm for finding optimal policies is developed.  The last one is (m,T) group replacement policy. The general idea is that we do not repair any failed machine until a scheduled time T or upon m failed machines, whichever comes first. Then all failed machines in the system are fixed simultaneously. Nakagawa has considered the optimal number 
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 to minimize the mean cost rate when the scheduled replacement time T is specified. Ritchken & Wilson (1990) have considered a generalization of the combined (m,T) group replacement model which requires inspection at either the scheduled time T or the time when exactly m machines have failed, whichever comes first. At an inspection, all failed machines are replaced with new units while operating machines are serviced so that they become as good as new. Inspection and service costs are incurred in addition to the fixed and variable replacement costs and the downtime penalties. Under nondecreasing assumptions on the cost structure, an expression is developed for the expected average cost as a function of (m,T), and an iterative algorithm is proposed for numerical computation of the optimal values, m* and T*.

The analysis of the group replacement model is also related to that of a single machine with minimal repair and replacement options. A comprehensive discussion on different maintenance policies for this kind of model is included in Beichelt(1993).

The typical approach in the analysis of group replacement policies is to assume that the operating machines produce output at a constant rate, that is, there is a continuous input flow of production jobs into the system. Although the assumption of continuous inflow is appropriate for high-volume production processes, it may be realistic for systems where the jobs arrive according to a random arrival stream. In this case the production loss cost rate depends on the number of jobs waiting for service at any given time. It means that we can obtain more precise production loss cost than the traditional group replacement models in which we assume constant production job arrivals. 

The problems we described above also fall in the category of queuing system with unreliable servers, which usually applies the matrix geometric method for steady state analysis of a certain class of continuous time Markov Processes. This area has also been analyzed in the literature, however to a lesser extent. The focus has mainly been on steady state analysis of systems where servers are immediately replaced as soon as they fail. The earliest results on matrix-geometric solutions are contained in the paper of Evans(1967) and the Ph.D. thesis of Wallace(1969) for block-Jacobi generators of continuous-parameter Markov processes of the GI/M/1 type, called quasi birth and death (QBD) processes. The general theory, largely developed by Neuts (1981), was motivated by the problem of analyzing the steady state behavior of nonmarkovian (M/G/1 and GI/M/1) queues operating in a random environment that can be in one of N appropriately defined states. Because the models we consider in this paper refer to M/M/N queuing systems, we present the matrix geometric results as they apply to continuous time Markov processes from some literatures. In Neuts & Lucantoni (1979) and Neuts (1981), the steady state of the above system is analyzed under the assumption that there is a crew of c<N repairmen in the repair facility. Whenever a server fails, its repair is started immediately if any repairman is available, otherwise the server remains in the failed state until the repair can start. The repair can only be performed by one of the repair crew, and the repair time also follows an exponential distribution. This system can be modeled as a continuous time Markov chain with state (x,w), where x denotes the number of customers in the system, and w the number of operating servers. The steady state probability vector is shown to be of matrix-geometric type. The average system length and waiting time distribution are also calculated. However, little effort has been spent on the control aspect, that is, on finding optimal maintenance policies, with the exception of the related problems of server vacations (Alfa & Frigui).

2. PROBLEM DESCRIPTION AND FORMULATION

We consider a M/M/N queuing system with unreliable servers by performing the group maintenance policies which only allow the maintenance decision to depend on the number of working servers at any given time. These policies, unlike those in Chapter 2 of the Ph.D. dissertation are clearly customer-independent m-failure group maintenance policies. We show that the system can be modeled in terms of matrix geometric model. Then in Section 3., we calculate steady state behavior and expected average costs as a function of the group maintenance parameter m.

This paper considers a service system with a single queue and servers operating in parallel. The servers are subject to random failures with failure times exponential with rate f. Customer arrivals follow a Poisson process with instantaneous rate 
[image: image2.wmf]l

w

 depending on the number of working servers: w. Service time for each customer finished by one server is exponentially distributed with rate 
[image: image3.wmf]m

. The server repair process is characterized by an m-failure group maintenance policy. Specifically, no repairs are performed as long as the number of failed servers is less than m. Repairs are performed by a crew of c repairmen. We assume that the repair crew devotes their effort proportionately to all servers being repaired at any given time. Therefore, the instantaneous repair rate 
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 when w servers are operational and N-w under repair is equal to 
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. When repair is completed, all repaired servers become operational at the same time.

In this model, the maintenance takes non-zero repair time and server failures are not allowed during the period of maintenance. At the time of the m-th failure, the repair process is initiated. During the repair process, we assume that the repair crew will do the repair work for the failed servers and do the inspection work for operational servers with instantaneous inspection time. It is pretty reasonable in real world. Therefore, no server failures will occur as long as repair process is still keep going. 

The above model is related to that in Neuts and Lucantoni (1979) where the failed servers start repair at the failure instant if any repairman is available. 

The infinitesimal generator 
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 takes the form as:
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The square blocks of the dimension 
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 are defined as:
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where the matrix Q is the generator which describes the failure/repair process.
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Here m is the number of failed machines that initiates the group maintenance process. In summary, we have
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(2.4)
The infinitesimal generator 
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 as described in (2.1) is in the general form of the infinitesimal generator described in Neuts. Therefore, the matrix geometric method can be applied to compute the steady state probability distribution. The details of the implementation, together with cost analysis, are presented in following section.
3. MODEL AND COST FUNCTION ANALYSIS

3.1. Stability and Steady State Analysis.

The first thing we need to consider is whether the queue is stable in this model. From the general theory in Latouche & Neuts regarding stability of QBD processes, it follows that for the model described above, the queue is stable if and only if 
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whereπis the stationary probability vector of Q in (2.4), 
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In our case, since
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Assume that (3.2) holds, then the system is stable and the matrix geometric method can be applied for the steady-state analysis. According to the similar procedure of steady state analysis from Neuts & Lucantoni (1979) and Neuts (1981), we next present: (1) the steady-state analysis for the simple case that N=m=1. (2) an algorithm for the general case
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(1) In the special case that N=1 and m=1, we obtain the explicit solution for the stationary probability vector y of 
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 as follows:
a. The stationary probability vectorπof Q:

The transition rate matrix in (2.4) takes the form 
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By solvingπQ=0 andπe=1, we obtain
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b. The stability condition:

The queue is stable (or
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is positive recurrent) if and only if 


[image: image35.wmf]m

l

l

p

m

pl

cr

<

cr

+

f

 

 

w

 

 

<

 

1

0

w

N

=1

w

®

å

                (3.5)
c. Matrix R is the minimal solution of equation 
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, which takes the following form in our case: 
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In addition, R also satisfies equation
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 described in Chapter 6 of Neuts’s book (1981).

This equation 
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 can be used to facilitate the solution of the quadratic system (3.6).
Specifically, we obtain 
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d. To apply the result of the geometric-matrix solution 
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By substituting (3.4) and (3.7) into (3.8) , we obtain
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From the stability condition (3.5), we can conclude that 
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By substitutng (2.2), (3.3), (3.7) and (3.9) into (3.10), we obtain
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g. To summarize, the steady state distribution for this case is
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Recall that for any x, 
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(2) In the general case that 
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, no analytical expression is known. Instead, An algorithm can be derived as follows:

a. The matrix equation
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 has a unique solution and sp(R)<1. The solution is strictly positive and the equality 
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b. The first N (N+1)-vectors 
[image: image63.wmf]y

,......,

y

1

-

N

0

are obtained by solving the linear equations


[image: image64.wmf] ,

0

 

=

 

T

y

+

T

y

10

1

00

0



[image: image65.wmf] ,

2

-

N

x

1

 

for

    

 ,

0

 

=

 

T

y

+

T

y

+

)

(

y

1,0

+

x

1

+

x

x,1

x

1

-

x

£

£

D

l



[image: image66.wmf] ,

0

 

=

)] 

(

R

+

T

[

y

+

)

(

y

1,1

-

N

1

-

N

2

-

N

m

l

D

D

              (3.11)

[image: image67.wmf].

 

1

 

=

 

e

R)

-

(I

y

e

y

1

-

1

-

N

x

2

-

N

=0

x

+

å


Then we have 
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c. In some applications of this model the order of the system may be very high, but its particular structure allows an efficient solution. Since the vectorλdefined in this model is positive, we may solve the equations (3.11) recursively, starting with the penultimate one. This leads to
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 where the matrices
[image: image70.wmf]H

i

are defined by


[image: image71.wmf]I

 

=

 

H

1

-

N

,


[image: image72.wmf])

(

)

RA

+

T

-(

=

H

-1

2

1,1

-

N

2

-

N

l

D

,


[image: image73.wmf]N.

3

 

for

  

),

(

)

T

H

+

T

H

-(

=

H

-1

2,0

+

-

N

2

+

-

N

1,1

+

-

N

1

+

-

N

-

N

£

£

D

n

l

n

n

n

n

n


The vector 
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The advantage of this solution is very sufficient for saving the memory of computer. The recursion equations (3.12) may be implemented by storing only two of matrices 
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 is accumulated as one goes along. At the final stage of the recursive computation, one has all the ingredients needed to compute the coefficient matrix and hence the solution of the system (3.13).  
3.2. The Computation of the Cost Function

In the following we consider the long-run expected average cost of this specific model. The detailed computing procedure is described as follows:

(1) The average number of customers in system:
First we denote the mean vector as 
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. By the result of stability and steady state analysis, we can derive mean vector
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as follows:
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Therefore, we have 
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     (3.14) According to the above results, we can get the average number of customers in system as 
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(2) Average holding cost:

Let h be the holding cost per customer per unit time, then we have Average holding cost = h
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(3) Expected cycle time:
Let 
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 be the expected transition time from state i to j, and 
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 the expected recurrence time of state i. In our case the cycle is the time between two successive repair. Because we start the group maintenance when there are exactly N-m operating servers in the system, we can define the cycle time as 
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. By the matrix Q in (2.4) and the theory from Markov renewal processes (Ross,1970), we obtain the following linear equations:
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   (3.15)

We can solve the above equations to obtain 
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. Because there is no server failures during the period of maintenance, the time between two successive repairs will include the time spending on repair and the failure processes from w=N until w=N-m. Therefore, we have
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                    (3.16)
(4) Expected variable cost of repair:

First we start the group maintenance when state w is N-m. Since there is no server failures during the period of maintenance in this model, the number of repaired servers for each group maintenance must be m. Then the expected variable repair cost can be obtained as 
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(5) Expected average cost:
In this model, several costs are incurred within each cycle. These are the fixed repair cost, variable repair cost, and holding cost. According to (1), (2), (3), (4), and by denoting S to be fixed repair cost, we can define the average cost function of parameter m as follows:
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            (3.17)
This equation can be used to determine the optimal group maintenance parameter m.
3.3. The Properties of Cost Function

First we assume that 
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Lemma 3.1 If m=0, then 
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Proof:

From equation (3.16), we have 
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                            By substitute m=0 to the above equation, we obtain
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Then we have 
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The proof is complete.    
Corollary 3.2 If m=0, then the average cost function avg_c(m) =∞.
Proof:

By substituting m=0 to the average cost function (3.17), we obtain
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According the result of Lemma 3.1, it is trivial that 
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The result holds. 
Lemma 3.3 
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Proof:

From (3.16), we have
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It is obvious that 
[image: image108.wmf]t

m

-

N

m,

-

N

 is increasing in m. 
Lemma 3.4 Stability index is increasing in m.

Proof:

By definition, we know stability index equal to 
[image: image109.wmf]p

m

pl

w

N

=1

w

w

 

å

.

According to the structure of generator Q in (2.4), when m getting larger, the system spends more time staying in the status of smaller w. Hence,
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 becomes smaller and the value of 
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 is still the same when m is increasing. Therefore, the stability-index is increasing in m. The proof is complete.  
Theorem 3.5 There exists an optimal group maintenance parameter 
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Proof:

From the result of Corollary 3.2, we have the average cost function avg_c(m)=∞ where m=0. Then, if we assume that m>N (it means that we never do the group maintenance), the average number of customers in system 
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 goes to infinite. Then the average holding cost 
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= ∞, and certainly the expected average cost avg_c(m) goes to infinite as well. From (3.16), it is trivial that 
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. Therefore, it is obvious that there exists an optimal group maintenance parameter 
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4. NUMERICAL EXAMPLE AND RESULT ANALYSIS

In the following example, we apply basic set of parameters as shown in the first row of table: (1) the number of total machines N=8; (2) the number of repair crew c=4; (3) arrival rate
[image: image120.wmf]5

=

=

=

8

1

0

=

l

=

l

l

l

L

; (4) service rate μ=3; (5) server failure rate f=1; (6) repair rate for each repairman r=4 (7) fixed repair cost S=25 (8) variable repair cost per failed machine 
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=2; (9) the holding cost per customer per unit time h=20.       
Example 4.1:

	N=8,c=4,
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,μ=3, f=1, r=4, S=25,
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	Stability rate =
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	Avg. # of customer
	Cycle time 
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	Expected avg. cost

	m=1
	0.2173913044
	1.666910758
	0.1875
	177.3382152

	m=2
	0.2380952381
	1.667744053
	0.3928571429
	107.1730629

	m=3
	0.2632905015
	1.671410834
	0.6220238096
	83.26553724

	m=4
	0.2948412700
	1.685973689
	0.8845238096
	71.02768374

	m=5
	0.3360066836
	1.738623341
	1.197023810
	64.01165130

	m*=6
	0.3932980602
	1.914225151
	1.592857143
	61.51320257

	m=7
	0.4829931972
	2.481711395
	2.155357143
	67.72867695

	m=8
	0.6703869049
	5.262355568
	3.217857143
	117.9885099


From the result of example 4.1, we can see that stability rate is increasing in m, the amount of customers in system is increasing in m, the transition time of a cycle is increasing in m, and the expected average cost is convex in m.    
tc \l1 "3. MODEL AND COST FUNCTION ANALYSIS3.1. CIGR with Positive Replacement Time - Server Failures during Replacement3.1.1. Stability and Steady State Analysis.The first thing we need to consider is whether the queue is stable in this model. From the general theory in Latouche & Neuts regarding stability of QBD processes, it follows that for the model described above, the queue is stable if and only if                                              ,                                                                           (3.1)where 
 is the stationary probability vector of Q in (2.4),  is the vector of arrival rates, and is the vector of service rates. In our case, since , the stability condition takes the form                                                         (3.2)Assume that (3.2) holds. Then the system is stable and the matrix geometric method can be applied for the steady-state analysis. According to the similar procedure of steady state analysis from Neuts & Lucantoni (1979) and Neuts (1981), we next present: (1) the steady-state analysis for the simple case that N=m=1. (2) an algorithm for the general case .(1) In the special case that N=1 and m=1, we obtain the explicit solution for the stationary  probability vector y of  as follows:   a. The stationary probability vector 
 of Q:The transition rate matrix in (2.4) takes the form                              (3.3)By solving 皦=0 and 簟=1, we obtain  ,

 .                                                                (3.4) b. The stability condition:The queue is stable (or  is positive recurrent)  if and only if                                                               (3.5)c. Matrix R is the minimal solution of equation , which in our case, takes the  form                                                    (3.6)In addition, R also satisfies equation described in Chapter 6 of Neuts┬ book (1981).This equation  can be used to facilitate the solution of the quadratic system (3.6).Specifically, we obtain                                                            (3.7)d. To apply the result of the geometric-matrix solution , we must compute the vector  first. It is given as the solution to   and .An easier, more intuitive way to compute  is:Note that . Therefore,              (3.8)By substituting (3.4) and (3.7) into (3.8) , we obtain                                (3.9)                                                            From the stability condition (3.5), we can conclude that  is positive.e.   satisfies equation , where                                    (3.10)By substitutng (2.2), (3.3), (3.7) and (3.9) into (3.10), we obtain= [0,0]f.   also satisfies normalizing equation as follows: = 1.g. To summarize,  the steady state distribution for this case is, where  .                                         Recall that for any x,  where   = P[x customers in system, server is not working],  and  = P[x customers in system, server is working]. (2) In the general case that , no analytical expression is known. Instead, An algorithm can be derived as follows:a. The matrix equation has a unique solution, and sp(R)<1. The solution is strictly positive and the equality  holds.  b. The first N (N+1)-vectors are obtained by solving the linear equations                                                          (3.11)Then we have .c. In some applications of this model the order of the system may be very high, but its particular structure allows an efficient solution. Since the vector 
 defined in this model is positive, we may solve the equations (3.11) recursively, starting with the penultimate one. This leads to                                                                     (3.12) where the matrices  are defined by,,The vector  is then obtained by solving the system,                                                                                  (3.13)The advantage of this solution is very sufficient for saving the memory of computer. The recursion equations  (3.12) may be implemented by storing only two of matrices . The vector  is accumulated as one goes along. At the final stage of the recursive computation, one has all the ingredients needed to compute the coefficient matrix and hence the solution of the system (3.13).  3.1.2. The Computation of the Cost FunctionIn the following we consider the long-run expected average cost of  this specific model. The detailed computing procedure is described as follows:(1) The average number of customers in system:First we denote the mean vector as , where  . By   the result of stability and steady state analysis, we can derive mean vector  as follows:   then we haveTherefore, we have   .                       (3.14)          By the above result, we can get the average number of customers in system as .(2) Average holding cost:Let h be the holding cost per customer per unit time, then we have Average holding cost = h
 .(3) Expected cycle time:Let  be the expected transition time from state i to j, and  the expected recurrence time of state i. In our case the cycle is the time between two successive repair. Because we start the group replacement when there are exactly N-m operating servers in the system,  we can define the cycle time as  . By the matrix Q in (2.4) and the theory from Markov renewal processes (Ross,1970), we obtain the following linear equations:                    (3.15)We can solve the above equations to obtain .(4) Expected variable cost of repair:In this part, we consider only the transition mechanism for the number of operating machines (i.e., w) from starting m-failure group replacement to actually finishing it. First we start group replacement when state w is  N-m. After the transition, the state w=N-m will go to N when replacement is done or N-m-1 when there is an another working machine failed. If the replacement is done first, then this transition mechanism stops and a new cycle begins. Otherwise, this transition  mechanism will continue until the group replacement is finished. It  means that the state w  in  this transition mechanism could be  N-m, N-m-1, ....., 1, 0, N. In state w from N-m to 1, we either go to N with transition rate , or go to w-1 with transition rate wf. When state w=0, we only return to N with transition rate . When w=N, we begin a new cycle. The corresponding transition flow is as follows:From the above transition mechanism, we obtain the probability of the number of repaired servers for each group replacement as follows:p[m servers repaired] =  ,p[i servers repaired] =     for i=m+1,......,N.                         (3.16)Then the expected variable cost of repair can be obtained as follows: where   is  variable  repair cost  per failed machine.(5) Expected average cost:In this model, several costs are incurred within each cycle. These are the fixed repair cost, variable repair cost, and holding cost. According to (1), (2), (3), (4), and by denoting S to be fixed repair cost, we can define the average cost function of parameter m as follows:                                                       (3.17)This equation can be used to determine the optimal group replacement parameter m.3.1.3. The Properties of Cost FunctionFirst we assume that , then we have the following properties.Lemma 3.1 If m=0, then =0.Proof:From equation (3.15), we have                                   By substitute m=0 to the above equation, we obtain .Then from (2.4), we have   .Since , we have =0.                                                                                    The proof is complete.







           Corollary 3.2 If m=0, then the average cost function avg_c(m)=
.Proof:By substituting m=0 to the average cost function (3.17), we obtain .According the result of Lemma 3.1, it is trivial that .The result holds.







             Lemma 3.3  is increasing in m.Proof:We need to show  , then the proof holds. From equation (3.15) and transition flow for group replacement process in Figure 3.1, it  shows thatand .According to the above results, then we haveIt is clear that .The proof is complete.







             Lemma 3.4 Stability index is increasing in m.Proof:By definition, we know stability index equal to .According to the structure of generator Q in (2.4), when m getting larger, the system spends more time staying in the status of smaller w. Hence, becomes smaller and  the value of  is still the same when m is increasing. Therefore, the stability-index is  increasing in m. The proof is complete. 





            Theorem 3.5 There exists an optimal group replacement parameter  which can find the minimal average cost. Proof:From the result of Corollary 3.2, we havethe average cost function avg_c(m)=
 where m=0.Then, if we assume that m>N (it means that we never do the group replacement), the average number of customers in system  goes to infinite. Then the average holding cost = 
, and certainly the expected average cost avg_c(m) goes to infinite as well.From (3.15), it is trivial that  where . Hence, . Therefore, it is obvious that there exists an optimal group replacement parameter , which can find the minimal average cost.  The proof is complete.                                                                                                   3.2. CIGR with Positive Replacement Time - No Server Failures during Replacement3.2.1. Stability and Steady State Analysis.In this model we have the same procedure of steady state analysis with that in Section 3.1.1. by applying the different generator Q in (2.6)..3.2.2. The Computation of the Cost FunctionIn this model we have the similar computing procedure to that in Section 3.1.2. , but with a few differences as follows:(1) Expected cycle time:Because there is no server failures during the period of replacement, the time between two successive repairs will include the time spending on repair and the failure processes from w=N until w=N-m.  Therefore, we have                                                                            (3.18)(2) Expected variable repair cost:First we start the group replacement when state w is N-m. Since there is no server failures during the period of replacement in this model, the number of repaired servers for each group replacement must be m. Then the expected variable repair cost can be obtained as  3.2.3. The Properties of Cost FunctionFirst we assume , then we have the following properties.Lemma 3.6 If m=0, then =0.Proof:From equation (3.18), we have                                By substitute m=0 to the above equation, we obtainThen  we have   . Since , we have =0.  The proof is complete.







     From the same argument as in Corollary 3.2, we have the following result. Corollary 3.7 If m=0, then the average cost function avg_c(m)=
.Lemma 3.8  is increasing in m.Proof:From (3.18), we have                                              It is obvious that  is increasing in m.                                                                  From the same argument as in Lemma 3.4, we have the following result. Lemma 3.9 Stability index is increasing in m.Theorem 3.10 There exists an optimal group replacement parameter  which can find the minimal average cost. Proof:From the result of Corollary 3.7, we havethe average cost function avg_c(m)=
 where m=0.Then, if we assume that m>N (it means that we never do the group replacement), the average number of customers in system  goes to infinite. Then the average holding cost = 
, and certainly the expected average cost avg_c(m) goes to infinite as well.From (3.18), it is trivial that  where . Hence, . Therefore, it is obvious that there exists an optimal group replacement parameter .  The proof is complete.                                                                                                        3.3. CIGR with Instantaneous Replacement3.3.1. Stability and Steady State Analysis.In this model we still have the same procedure of steady state analysis  in Section 3.1.1. but with different customer arrival rate vector, service rate vector as follows:, , Since some elements of vector 
 are zero, we cannot implement the same approach mentioned in (3.12) and (3.13) to solve the system equations in (3.11). Now we present a more time-consuming, but safe, iterative method (Neuts,1981) to solve this system equations. To do so, first let  and , , denote the matrices , and , , respectively.Then the system equations (3.11) may be written into the form                                               (3.19)   The first three equations above are well suited for a Gauss-Seidel type iteration. The last  equation, which is known as normal equation, may be used at each step to keep the successive iterations within a compact set that contains the unique solution vector.   3.3.2. The Computation of the Cost FunctionIn this model we have the similar computing procedure to that in Section 3.1.2. , but with a few differences as follows:(1) Expected cycle time:Because of instantaneous replacement, the time between two successive repairs will only include the time spending on the failure processes from w=N until w=N+1-m.  Therefore, we have                                                                          (3.20)(2) Expected variable repair cost:First we start the group replacement when state w is N-m. Because of the instantaneous replacement, the group replacement must be finished before any other transition going on. Hence the number of repaired servers for each group replacement must be m. Then the expected repair cost can be obtained as3.3.3. The Properties of Cost FunctionFirst we assume that , then there exist the following  properties.Lemma 3.11 If m=0, then =0.Proof:From equation (3.20), we have                                 It is obvious that =0 when m=0.                                                                          From the same argument as in Corollary 3.2, we have the following result. Corollary 3.12 If m=0, then the average cost function avg_c(m)=
.Lemma 3.13  is increasing in m.Proof:From (3.20), we have                                                     It is obvious that  is increasing in m.                                                                   From the same argument as in Lemma 3.4, we have the following result. Lemma 3.14 Stability index is increasing in m.Theorem 3.15 There exists an optimal group replacement parameter  which can find the minimal average cost. Proof:From the result of Corollary 3.12, we havethe average cost function avg_c(m)=
 where m=0.Then, if we assume that m>N (it means that we never do the group replacement), the average number of customers in system  goes to infinite. Then the average holding cost = 
, and certainly the expected average cost avg_c(m) goes to infinite as well.From (3.20), it is trivial that  where . Hence, . Therefore, it is obvious that there exists an optimal group replacement parameter , which can find the  minimal average cost.The proof  is complete.                                                                                                        4. NUMERICAL EXAMPLE AND RESULT ANALYSISIn Example 4.1, we first examine the sensitivity of the results to the value of N, the number of total machines. In this example, we only present  performance of the optimal policy for different values of  N.
Example 4.1: N=5, N=7,N=8,N=9,N=10c=4,, 
=3, f=1, r=4, S=25, =2, h=20  Stability  rate =                         Num. of cust.  in systemCycle time Expected average costN= 5, m*=30.49654675172.1231332100.991287878874.39541162N=7, m*=50.43596830462.1814675981.43595154868.68522590N=8, m*=60.41362847202.2391884701.62779503168.20073020N=9, m*=70.39475739272.3080189351.80535714368.45205911N=10, m*=70.33375805422.1599857571.59272951568.88331467In the above example the optimal expected average cost is  convex  in N, and minimized for N=8. Therefore, we choose the number of total machines N= 8 in the following numerical examples.4.1. CIGR with Positive Replacement Time - Server Failures during ReplacementNow we present Example 4.2, which is the basic example for the models in this section:Example 4.2:N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.2220786336161.0474230m=20.26259556191.7626715930.4439726532104.2570052m=30.28946565991.8153876840.678793333784.65328558m=40.32100096781.8927530610.939347492274.85346504m=50.36035621702.0159979291.24417117569.66376305m*=60.41362847202.2391884701.62779503168.20073020m=70.49613803882.7581752182.17437888273.37960091m=80.67038690495.2623539953.217857143117.9884784According to the results of the above  example, the stability rate is increasing in m, the amount of customers in system is increasing in m, the transition time of a cycle is increasing in m, and the expected average cost is convex in m.In the following we perform the numerical analysis by changing value in some specific parameter based on Example 4.2.(1) Change arrival rate 
 only: 
In the next three examples, we examine the sensitivity of the model to the arrival rate, we try to find some monotonicity properties on different performance measures . Example 4.3:  N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.14297599881.0225655670.2220786336147.0124118m=20.15755733711.0373780670.443972653289.75112745m=30.17367939591.0572977960.678793333769.49148782m=40.19260058061.0860339120.939347492258.71908206m=50.21621373031.1308520481.24417117551.96084543m=60.24817708431.2092830651.62779503147.60262210m*=70.29768282331.3789627562.17437888245.79535167m=80.40223214292.0316536003.21785714353.37447045Example 4.4:  N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.19063466501.3708372480.2220786336153.9778455m=20.21007644941.3953593990.443972653296.91075409m=30.23157252791.4288253040.678793333776.92203798m=40.25680077421.4774560810.939347492266.54752544m=50.28828497361.5539541081.24417117560.42288663m*=60.33090277761.6896893511.62779503157.21074828m=70.39691043111.9925588592.17437888258.06727373m=80.53630952383.2573509383.21785714377.88841721Example 4.5: N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.28595199762.0849061240.2220786336168.2592230m=20.31511467412.1423827300.4439726532111.8512207m=30.34735879182.2223247260.678793333792.79202642m=40.38520116132.3412373000.939347492283.82314982m*=50.43242746032.5341271851.24417117580.02634817m=60.49635416682.894048651.62779503181.29794010m=70.59536564643.7878329112.17437888293.97275477m=80.80446428569.6604612323.217857143205.9506231According the results in Example 4.2-4.5, the stability rate is increasing in arrival rate 
 for every m, the number of customers in system is also increasing in 
, but  the transition time of a cycle is the same for all 
. the expected average cost is increasing in 
 and the optimal group replacement parameter m* is decreasing in 
. This is intuitively expected, because when the arrival rate is high, then the queue size will be higher on average, which means earlier replacement necessary.(2) Change setup cost S only In the next two examples, we examine the sensitivity of the model to the setup cost, we try to find some monotonicity properties on different performance measures . Example 4.6:  S = 10N=8,c=4,, 
=3, f=1, r=4, S=10, =2, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.222078633693.50378543m=20.26259556191.7626715930.443972653270.47114083m=30.28946565991.8153876840.678793333762.55522672m=40.32100096781.8927530610.939347492258.88493502m*=50.36035621702.0159979291.24417117557.60753304m=60.41362847202.2391884701.62779503158.98584474m=70.49613803882.7581752182.17437888266.48108003m=80.67038690495.2623539953.217857143113.3270056Example 4.7: S=40N=8,c=4,, 
=3, f=1, r=4, S=40, =2, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.2220786336228.5913804m=20.26259556191.7626715930.4439726532138.0429015m=30.28946565991.8153876840.6787933337106.7513239m=40.32100096781.8927530610.939347492290.82200204m=50.36035621702.0159979291.24417117581.71998264m*=60.41362847202.2391884701.62779503177.41563873m=70.49613803882.7581752182.17437888280.27810490m=80.67038690495.2623539953.217857143122.6500078Comparing the results in Example 4.6, Example 4.7, with the basic model in Example 4.2, we see that  the expected average cost is increasing in S and the optimal group replacement parameter m is increasing in S. This is intuitively expected, because when S is high, it is not economic  to perform the group replacement too early.(3) Change variable repair cost   only In the next two examples, we examine the sensitivity of the model to the variable repair cost, we try to find some monotonicity properties on different performance measures  Example 4.8: =1N=8,c=4,, 
=3, f=1, r=4, S=25, =1, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.2220786336154.0537312m=20.26259556191.7626715930.443972653297.91010964m=30.28946565991.8153876840.678793333778.89552444m=40.32100096781.8927530610.939347492269.66137878m=50.36035621702.0159979291.24417117565.03872262m*=60.4136284722.239188471.62779503164.17134721m=70.49613803882.7581752182.17437888270.02032090m=80.67038690495.2623539953.217857143115.5023703Example 4.9: =10N=8,c=4,, 
=3, f=1, r=4, S=25, =10, h=20  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.2220786336217.0013569m=20.26259556191.7626715930.4439726532155.0321677m=30.28946565991.8153876840.6787933337130.7151789m=40.32100096781.8927530610.9393474922116.3902031m=50.36035621702.0159979291.244171175106.6641844m=60.41362847202.2391884701.627795031100.4357762m*=70.49613803882.7581752182.174378882100.2538528m=80.67038690495.2623539953.217857143137.8775072By comparing Example 4.8, Example 4.9 with the basic model in Example 4.2, it is very clear that  the expected average cost is increasing in  and the optimal group replacement parameter m is also increasing in . It is intuitive that when  is high, the average cost to perform the group replacement become high as well. Therefore,  it is  more economic  to perform the group replacement after more machine failures.  (4) Change holding cost h only In the following two examples, we do the sensitivity analysis to the holding cost, we try to find some monotonicity properties on different performance measuresExample 4.10: h=10N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=10  Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.2220786336143.8042579m=20.26259556191.7626715930.443972653286.63029697m=30.28946565991.8153876840.678793333766.49941150m=40.32100096781.8927530610.939347492255.92593454m=50.36035621702.0159979291.24417117549.50378928m=60.41362847202.2391884701.62779503148.80884899m*=70.49613803882.7581752182.17437888245.79784111m=80.67038690495.2623539953.21785714365.36494464Example 4.11: h=25N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=25Stability  rate =     Num. of cust.  in systemCycle time Expected average costm=10.23829333141.7243161270.2220786336169.6688063m=20.26259556191.7626715930.4439726532113.0703861m=30.28946565991.8153876840.678793333793.73022978m=40.32100096781.8927530610.939347492284.31722902m=50.36035621702.0159979291.24417117579.74375415m*=60.41362847202.2391884701.62779503179.39663905m=70.49613803882.7581752182.17437888287.17047655m=80.67038690495.2623539953.217857143144.3002706Comparing Example 4.10, Example 4.11, with basic example, it is very clear that  the expected average cost is increasing in h and the optimal group replacement parameter m is decreasing in h. It is intuitive that when h is higher, the average holding cost is also higher. Therefore,  it is  more economic  to perform the group replacement earlier.4.2. CIGR with Positive Replacement Time - No Server Failures during ReplacementIn this example, we apply the same set of parameters as in Example 4.2.  Example 4.12:N=8,c=4,, 
=3, f=1, r=4, S=25, =2, h=20  Stability  rate =     Num. of cust. in systemCycle time Expected average costm=10.21739130441.6669107580.1875177.3382152m=20.23809523811.6677440530.3928571429107.1730629m=30.26329050151.6714108340.622023809683.26553724m=40.29484127001.6859736890.884523809671.02768374m=50.33600668361.7386233411.19702381064.01165130m*=60.39329806021.9142251511.59285714361.51320257m=70.48299319722.4817113952.15535714367.72867695m=80.67038690495.2623555683.217857143117.9885099From the result of the above example, we can see that stability rate is increasing in m, the amount of customers in system is increasing in m, the transition time of a cycle is increasing in m, and the expected average cost is convex in m.    4.3. CIGR with Instantaneous ReplacementIn this example, we apply the same set of parameters as in Example 4.2.  Example 4.13:N=8,c=4,, 
=3, f=1, r=50, S=25, =2,  h=20  Stability  rate =     Num. of cust. in systemCycle time Expected average costm=10.20833333331.6028492550.13239.7492928m=20.22321428571.6072831470.2778571429136.5158429m=30.24140211651.6127072420.4495238096101.2160092m=40.26438492061.6213919860.654523809682.84617366m=50.29484126991.6424255810.909523809671.33018701m=60.33829365091.7090599331.24785714363.83202865m*=70.40901360551.9639940481.75285714361.52927044m=80.56622023823.5551243572.75785714385.96910201From the result of the above example, we can see that stability rate is increasing in m, the amount of customers in system is increasing in m, the transition time of a cycle is increasing in m, and the expected average cost is convex in m.    5. Conclusion and Extensions

For this m-failure customer-independent group maintenance model, we have currently formulated the matrix geometric method to calculate the steady state distribution and the expected average cost as a function of the maintenance policy parameter m. This model considers positive maintenance time and no server failures are allowed during the repair process.

All numerical results obtained so far indicate that stability rate is increasing in m, the amount of customers in system is increasing in m, the transition time of a cycle is increasing in m, and the expected average cost is convex in m. Therefore, there exists a unique m that minimizes the cost.

For mathematical analysis, we have showed there exists an optimal group maintenance parameter 
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, which can find the minimal average cost for this model. Although proving convexity of the expected cost in m, was not able to go through so far, weaker analytical results, such as unimodality could be attempted. 
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