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Abstract

This paper presents a simulated annealing heuristic for finding good solutions to large combinatorial optimization problems.  The research problem is to schedule a sequence dependent machine to minimize total tardiness.  Although the scheduling objective of minimizing tardiness is a common due date performance measure, it is a complex scheduling problem especially in a sequence dependent environment.  The single machine tardiness problem has been proven to be NP-hard and its computation time and storage requirements increase exponentially with problem size.  A simulated annealing heuristic was described and used to find excellent solutions to the scheduling problem, and its performance was compared to two random search techniques, local search and pairwise interchange.  The results suggest that simulated annealing is a viable heuristic that can yield good solutions to large combinatorial optimization problems when considering the tardiness objective with sequence dependent setup times.

Key words: Scheduling, sequence dependent setup times, simulated annealing, tardiness.
1. Introduction

Simulated annealing is a heuristic algorithm based on an analogy with the physical process of annealing, in which metal or glass is heated and then allowed to cool slowly into its steady state at the minimum energy configuration.  When applied as a search algorithm, simulated annealing offers a powerful search heuristic for obtaining excellent solutions for large combinatorial optimization problems, such as the single machine tardiness problem.  The single machine minimizing tardiness problem has been proven to be NP-hard (Du and Leung 1990) and its computation time and storage requirements increase exponentially with problem size.  Its optimal solutions can only be obtained via enumeration techniques such as dynamic programming or branch-and-bound.

Dynamic programming (Baker 1974) is an approach for finding the optimal solution to a problem by breaking it into smaller sub-problems each labeled a stage.  Although the solution technique has tremendous potential due to its ability to solve difficult problems in which other optimization tools fail, it suffers from an exponential growth in the amount of computation as a function of problem size.  If the problem doubles in size, the amount of computation quadruples.  In addition, a new formulation must be designed if a problem differs slightly.  Therefore, it is rendered inefficient or even infeasible for problems with many jobs and constraints.

Branch-and-bound (Ragatz 1993, Fisher 1976) procedures are an intelligent search procedure resulting in either an optimal or a close to optimal solution to mathematical programming problems.  Branch-and-bound procedures include pure integer programming and mixed integer programming problems.  The procedure divides a problem into two or more sub-problems, known as branching, and sets two bounds on the value of the objective function.  All sub-problems whose objective functions are better than the established feasible bounds are used to modify the bound.  These are then subdivided and investigated.  The process is repeated until no further subdivision is possible, at which point the optimal or near optimal solution has been reached.  Branch-and-bound can be efficiently coded into computer routine and works well in problems containing a few integer variables.  However, the tightness of the bounding procedures remains a critical factor in determining how well branch-and-bound works, and it is neither efficient nor feasible for large problems (Tan et al. 1999, Ragatz 1993).

The research problem of scheduling a sequence dependent machine to minimize tardiness has been research extensively (Tan et al. 1999, Sun et al. 1999, Tan and Narasimhan 1997a and 1997b).  Although minimizing total tardiness is a frequently cited due date related performance measure by industrial schedulers (Wisner and Siferd 1995, Panwalkar et al. 1973), it is a difficult criterion to work with and no simple scheduling rule is known to minimize it, even in a sequence independent environment.  The single machine case has been used in the literature to investigate scheduling issues relating to more complex job shops.  The single machine context also captures scheduling issues in many shops that are limited by a bottleneck machine, where scheduling may be done by considering only this bottleneck machine (Hax and Candea 1984, Graves 1981).

This research presents a simulated annealing heuristic to minimize total tardiness in a sequence dependent environment, that is, a combinatorial optimization problem.  A simulated annealing heuristic was described and used to find excellent solutions to the scheduling problem, and its performance was compared to two local search techniques, local search and pairwise interchange.  The next section reviews relevant literature, and subsequent sections describe the research problem and heuristics, follows by discussion of the results.

2. Literature Review

Simulated annealing was first applied to combinatorial optimization problems by Kirkpatrick et al. (1983).  The authors exploited the annealing analogy of solids to provide a framework for combinatorial problems, and annealed into local optimum for a large 6000-city traveling salesman problem.  Cerny (1985) also proposed that the simulated annealing process could be applied to large optimization problems by comparing the energy states of solid to an objective function to be optimized.  Subsequently, many researchers have reported successful applications of simulated annealing in obtaining good solutions to large combinatorial problems.  For example, it has been used successfully to solve graph partitioning problem (Johnson et al. 1989), to route traffic over a freight rail network (Brown et al. 1992), to minimize makespan (Van Laarhoven et al. 1992), to solve multi-criteria facility layout (Shang 1993) and open shop scheduling problems (Liaw 1999).

Scheduling a sequence dependent machine to minimize tardiness has received attention in recent literature.  One of the earliest works was that of Rinnooy Kan et al. (1975) who presented a branch-and-bound algorithm for sequencing jobs on a single machine to minimize weighted tardiness.  Ragatz (1993) continued the research by proposing a more efficient branch-and-bound algorithm.  Subsequently, Rubin and Ragatz (1995) applied a genetic search algorithm to a set of test problems similar to Ragatz (1993), and its performance was compared to branch-and-bound and a random search technique, known as pairwise interchange.  Despite its simplicity, pairwise interchange outperformed both genetic search and branch-and-bound in terms of processing speed and the quality of solutions in many instances.  Islam and Eksioglu (1997) proposed a tabu search approach to minimize mean tardiness on a single machine with no setup times.

Due to the inefficiency and inability of the enumeration techniques in finding the optimal solution for the minimizing tardiness problem in a sequence dependent environment, efforts have been intensified in developing heuristic procedures.  Tan and Narasimhan (1997a) successfully applied simulated annealing in finding good solutions to the minimizing tardiness problems, and suggested that simulated annealing offers promise to deal with a class of scheduling problems which has been considered difficult by both researchers and practitioners.  Subsequently, Tan and Narasimhan (1997b) expanded the simulated annealing study by considering multiple objectives in a similar shop environment.  A tradeoff parameter was used to combine two scheduling objectives into a single cost function.  Recently, Tan et al. (1999) compared the effectiveness of simulated annealing (Tan and Narasimhan 1997a) to genetic search, branch-and-bound, and pairwise interchange (Rubin and Ragatz 1995) for minimizing total tardiness on a single machine in a sequence dependent environment.  The results consistently suggest that simulated annealing is an effective solution technique that can yield good solutions to large combinatorial problems.

A general conclusion that can be reached is that a well tuned simulated annealing search heuristic is a viable and attractive alternative job shop scheduling approach when the problem is too large and complex to be solved through optimization methods.

3. Problem Description

Suppose we have N jobs, indexed 1, 2, 3, ..., N, that are all available for processing at time zero on a continuously available machine that can process one job at a time.  Associated with each job j to be processed is the required processing time (pj), the due date (dj), and the sequence dependent setup time (sij) incurred when job j follows job i in the processing sequence.  Let us define Q to be a sequence of the jobs, Q = {Q(0), Q(1), ..., Q(N)}, where Q(j), is the index of the jth job in the sequence and Q(0) = 0.  The completion time of the jth job in the sequence is

cQ(j) = 

[sQ(k-1)Q(k) + pQ(k)]

and the tardiness of the jth job in the sequence is

tQ(j) = max[0, cQ(j) - dQ(j)].

We would like to find a sequence that minimizes the total tardiness of the jobs (the objective function of this research).  The total tardiness for a sequence Q is

TQ = 

tQ(j).
The test problems used for this research are based on a subset of Tan and Narasimhan (1997a), which are consistent with the single machine sequence dependent scheduling literature.  Processing time was normally distributed with a mean ((p) of 100 and standard deviation ((p) of 25.  Tan and Narasimhan (1997a) and Rubin and Ragatz (1995) used a uniformly distributed setup time between 0 and 19, and found that the range was too small to affect solution difficulty.  Therefore, setup time in this research was increased to uniformly distributed between 0 and 25.  Besides being consistent with past literature, the parameters and distributions of jobs were considered a good representation of actual job shop with advanced manufacturing technologies.  The small setup time relative to the processing time can be attributed to the applications of single minute exchange of dies and flexible manufacturing systems.  The machine was assumed to be idle at time zero, and the objective was to find a sequence that minimizes the total tardiness of the jobs.  Completing a job prior to its due date does not affect the tardiness objective.

The tardiness factor (TF) determines the approximate percent of jobs in a random sequence that will be tardy.  The mean of the due dates ((d) was set equal to (1-TF)((N)(((p), and its range (Rd) was set equal to (RD)((N)(((p), where RD is the relative range of due dates and N is the number of jobs.  Therefore, due dates are uniformly distributed between [(d-Rd/2] and [(d+Rd/2].  Some scheduling research  (for example, Potts and Van Wassenhove 1991) used uniformly distributed due dates between (p2(1-TF-RD/2) and (p2(1-TF+RD/2), where (p2 is the processing time variance.  While both formulations will generate negative due dates (i.e., overdue jobs), the latter formulation ignores the number of jobs in the sequence.

In this research, the number of jobs in the sequence was set at 200, thus setting a huge solution space of 200! feasible sequences.  There is no known technique that can solve a combinatorial problem of this magnitude to optimality, and complete enumeration of the solution space is impossible.  Both the tardiness factor and relative range of due dates were set at 0.5 to reflect the difficult levels considered in prior research (Tan and Narasimhan 1997a, Ragatz 1993).  Relative range of due dates higher than 0.5 is not realistic in actual job shops and implies that resources are being under utilized, whereas a very low relative range of due dates suggests that it is too tight and there is a need to overhaul the due date promise procedure.  These parameters were chosen and considered to be a good representation of an actual job shop, and resulted in a uniformly distributed due date between 5000 and 15000.  Ten sets of 200-job problems were generated based on the parameters described above.

4. Simulated Annealing

Unlike local optimization technique which repeatedly improve the initial solution by making small local alterations until no such alteration yields a better solution, simulated annealing randomizes this procedure to allow for occasional changes that worsen the solution to reduce the probability of becoming stuck in a locally optimal solution.  In theory, simulated annealing yields a near optimal solution independent of the initial solution.  The basic steps in casting a combinatorial problem into an annealing problem are: (1) describe the state space, (2) the move set, and (3) the objective function.  In this research, the state space is the set of feasible solutions, that is, all possible sequences.  The move set involves randomly switching the sequence of two jobs.  The objective function is to minimize total tardiness.

Simulated annealing makes a random switch in the sequence of two jobs and determines the resultant objective value created after the change.  The proposed simulated annealing scheme will always accept a better sequence, and will also accept a worse sequence with a probability determined from the Boltzmann probability mass function.  The procedure slowly decreases the probability of accepting the random switch in the sequence that results in poorer performance.  Rejection or acceptance of a new sequence is made according to the following criteria:

(1) If total tardiness is lower after randomly switching the positions of two jobs (i.e., a better sequence), accept the new sequence.

(2) If total tardiness is not lower after randomly switching the positions of two jobs (i.e., a worse sequence), accept or reject the new sequence according to the Boltzmann probability mass function.

The Boltzmann probability mass function is defined as:






where,



T
=
Temperature



(H
=
H( - H



H
=
Total tardiness before changing the positions of two jobs



H(
=
Total tardiness after changing the positions of two jobs



e
=
exponential (2.718282)

As the annealing temperature (T) decreases, changes that decrease the objective function value are more likely to be accepted than those that increase total tardiness.  At very high T compares to (H, p(c) approaches 0.5, suggesting that the simulated annealing scheme has equal probability of accepting or rejecting a worse sequence.  At moderate T values, the higher the (H, the less likely it is that the simulated annealing scheme will accept a change that leads to a worsening of the objective function value.  At very small T values, p(c) approaches zero.  Bertsimas and Tsitsiklis (1993), and Otten and van Ginneken (1989) provide an excellent discussion on the convergence analysis (i.e., does it converge to the optimal solution, and the speed of convergence) of simulated annealing.

The proposed simulated annealing scheme makes a random switch in the sequence of two jobs and determines the resultant objective function value created after the change.  The simulated annealing process slowly decreases the probability of accepting the random switch in the sequence that results in poorer performance by slowly decreasing the annealing temperature T according to a geometric cooling scheme.  The sequence of steps used in this research to implement the simulated annealing search heuristic is shown in Figure 1.

   1.
Set the control parameters:


1.1  Initial temperature (Tmax)


1.2  Final temperature (T0) at which the system is considered frozen

1.3  Temperature decay rate (R)


1.4  Let T = Tmax
   2.
While not yet frozen (T > T0), do the following


2.1
Generate 2 different integer random #s between 1 and N.



Let these 2 random #s represent job #s.



Exchange the positions of these 2 jobs.


2.2
Let (H = H( - H


2.3
If (H ( 0 (downhill move), accept the new sequence.


2.4
If (H > 0 (uphill move),



(i)
calculate the probability of accepting that change from the




Boltzmann probability mass function, p(c) = 

,



(ii)
Select h, a uniformly distributed random number between 0 and 1.




2.4.1
If p(c) > h, accept the new sequence.




2.4.2
If p(c) ( h, reject the new sequence, and retain the previous





sequence prior to step 2.1.


2.5
Set T = R ( T (reduces temperature)


2.6
Return to step 2.1

   3.
Return H.

   4.
End of Program.

Figure 1: Simulated Annealing Procedure

The values for the two control parameters (Tmax, T0) must be specified a priori, to use the simulated annealing scheme.  These two control parameters were derived as follows:

The Initial Temperature (Tmax)

At the initial stage of the simulated annealing scheme, the heuristic should be given equal chance of rejecting or accepting a worse solution.  This important prerequisite of a successful implementation of the heuristics in solving combinatorial problems has been overlooked by most simulated annealing research which tend to set Tmax at a value solely based on available computer run time.  In this research, pilot runs were made to estimate the worst deterioration in the objective value, total tardiness, when the sequence of two jobs was switched.  The maximum observed increased in total tardiness, (H, was approximately 10,000.  Given (H, Tmax was calculated from the Boltzmann probability mass function by setting p(c) ( 0.50.  Theoretically, p(c) approaches 0.5 only if Tmax is infinitely large.  In this research, p(c) was set equal to 0.475, a value sufficiently close to 0.5, which yields a value of approximately 100,000 for Tmax.
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The Final Temperature (T0)
The selection of the final temperature (T0) is another important parameter that has been overlooked by most simulated annealing research.  In this research, it was selected such that the probability of accepting a worse sequence approaches zero at the end of the annealing process.  The smallest incremental value of the objective function, total tardiness ((H) is 1.  Theoretically, p(c) approaches zero only if T0 is infinitely small.  The values of 0.10 for T0 was calculated by setting p(c) = 0.00005, a probability sufficiently close to zero.  Simply stated, the simulated annealing process is terminated or considered frozen when the annealing temperature approaches 0.10, when it has a 0.00005 chance of accepting a worse solution.
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The Temperature Decay Rate (R)
A geometric cooling scheme was used for this research.  The annealing temperature was reduced by a constant ratio between 0 and 1, called temperature decay rate (R).  The larger the temperature decay rate (i.e., closer to 1), the longer is the annealing run.  The temperature decay rate is a critical factor in determining the quality of the final solutions.  Prior research has shown that long annealing run (thus large temperature decay rate) always result in better solutions than short annealing run (Tan and Narasimhan 1997a and 1997b, Otten and Van Ginneken 1989).  Therefore, temperature decay rate controls the tradeoff between the quality of the solution and computation time.  In this research, temperature decay rate was set at 0.95, 0.995, 0.99995 and 0.999995 to demonstrate the importance of correctly setting the proper temperature decay rate.  Setting R = 0.95, 0.995, 0.99995 and 0.999995 result in a total of 404, 4134, 414454 and 4144642 iterations respectively.  Each iteration provides the heuristic an opportunity to explore a neighborhood solution, or complete step 2 of the annealing scheme in Figure 1 once.
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5. PairWise Interchange and Local search

To provide a benchmark for simulated annealing, pairwise interchange and local search were used.  Pairwise interchange procedure is a random search technique with no built in procedure to escape from local optimum.  However, it searches the solution space in a control and systematic routine.  It is the same search procedure used in Tan et al. (1999), Tan and Narasimhan (1997a), and Rubin and Ragatz (1995) which was shown to outperform branch-and-bound and genetic search in many instances.  It tests seriatim all interchanges of adjacent pairs of jobs, accepting each interchange if it improves the schedule, until no further improvements are noted.  For example, in a sequence of jobs labeled Q = {Q(0), Q(1), ..., Q(N)}, adjacent pairs of jobs {[Q(0) and Q(1)], [Q(1) and Q(2)], … [Q(N-1) and Q(N)]} will be switched if it improves the schedule.  Once a pair of jobs has been switched, pairwise interchange returns to the beginning of the sequence and re-tests all adjacent pairs.  A local optimum is found if there is no improvement in the solution after evaluating the last pair of jobs.

Local search is very similar to pairwise interchange, except that it randomly searches for a better sequence, instead of testing all adjacent pairs as in pairwise interchange.  The local search procedure used in this study was simplified from the simulated annealing scheme in Figure 1 by eliminating step 2.4.  Local search provides a good example to demonstrate the effectiveness of the simulated annealing scheme and how it uses the Boltzmann probability mass function to escape from local optimum.

6. Experimental Results and Discussions

The solution techniques were coded and compiled in Microsoft Visual Basic 6.  To minimize bias of coding efficiency and to provide a better comparison of results, all the three heuristics were allowed to explore the solution space on a fixed number of iterations, instead of using similar run time as the stopping criterion.  Each problem was solved ten times, by simulated annealing, pairwise interchange and local search respectively.  Each solution technique was allowed to run for 404, 4134, 414,454 and 4144642 iterations respectively.  All the three heuristics took less than a second to explore 404 iterations (a complete replication of one problem when R = 0.95) on a Gateway E-3000 personal computer with a Pentium 233 Mhz processor and 128 MB of RAM.  When R was set at 0.995, each heuristic took approximately four seconds on the Gateway E-3000 computer to explore 4134 iterations.  When R was set at 0.99995, simulated annealing (00:06:42 hours) took slightly longer to complete 414454 iterations than local search (00:06:28 hours) and pairwise interchange (00:06:20 hours).  Each heuristic took approximately 22 minutes to complete a replication on a Gateway ALR 8300 server with dual Intel Pentium II Xeon 450 Mhz processors and 524 MB RAM, when R was set at 0.999995.  Simulated annealing took about a minute longer than the other two heuristics to complete the 4144462 iterations because it needed to evaluate step 2.4 in Figure 1.  It can be concluded that the three heuristics were very close in terms of processing speed.
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Figure 2: Total Tardiness During the Simulated Annealing Process (
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Table 1: Percent Improvements over Starting Solution1

	R2
	Data
	Starting3
	Simulated Annealing
	Local search
	PairWise Interchange

	
	Set #
	Solution
	Best
	Median
	Worst
	Best
	Median
	Worst
	Best
	Median
	Worst

	0.95

(Iterations = 404)
	1
	681235
	36.1*
	33.4
	30.2
	35.9
	34.6
	32.4
	9.8
	7.5
	5.2

	
	2
	718841
	32.3
	29.5
	27.1
	34.3*
	30.5
	28.9
	9.6
	8.0
	7.2

	
	3
	691563
	35.1
	31.1
	28.7
	36.2*
	33.6
	30.8
	9.3
	7.4
	3.4

	
	4
	636772
	38.0
	35.4
	33.1
	40.8*
	36.7
	33.7
	8.2
	6.5
	4.8

	
	5
	735209
	35.4*
	32.6
	29.5
	35.3
	33.3
	29.8
	8.3
	7.0
	5.5

	
	6
	785267
	37.0
	35.4
	32.9
	37.4*
	35.2
	33.1
	8.7
	7.4
	4.8

	
	7
	742234
	34.2
	30.6
	29.0
	35.5*
	32.3
	29.3
	10.6
	9.2
	6.6

	
	8
	707620
	31.3
	30.2
	26.2
	35.3*
	30.7
	28.0
	7.5
	5.9
	4.8

	
	9
	773228
	36.0
	32.7
	30.4
	38.1*
	34.2
	32.5
	8.7
	8.0
	5.3

	
	10
	812440
	35.3
	32.9
	29.8
	36.2*
	33.3
	31.0
	10.7
	7.8
	5.2

	0.995

(Iterations = 4,134)
	1
	681235
	59.4
	58.5
	56.5
	60.5*
	59.5
	58.1
	27.5
	24.9
	23.3

	
	2
	718841
	55.2
	53.8
	52.8
	55.7*
	54.6
	53.2
	25.8
	23.3
	22.5

	
	3
	691563
	58.4
	57.2
	55.9
	58.6*
	58.1
	57.3
	26.8
	22.4
	21.2

	
	4
	636772
	64.4*
	62.5
	60.9
	63.8
	62.9
	61.5
	27.0
	25.2
	23.1

	
	5
	735209
	59.9*
	58.2
	57.5
	59.8
	58.9
	57.7
	23.6
	22.1
	20.6

	
	6
	785267
	61.6
	60.2
	58.8
	62.1*
	60.4
	59.4
	25.4
	22.6
	19.2

	
	7
	742234
	56.1
	54.7
	52.4
	56.7*
	54.9
	54.0
	24.2
	22.4
	20.8

	
	8
	707620
	55.4
	53.9
	52.5
	56.3*
	54.9
	54.1
	22.5
	20.7
	19.0

	
	9
	773228
	60.7
	59.4
	57.3
	61.6*
	60.3
	57.5
	25.0
	21.7
	20.0

	
	10
	812440
	57.7
	56.3
	55.1
	59.3*
	57.3
	56.6
	26.5
	24.0
	22.7

	0.99995

(Iterations = 414,454)
	1
	681235
	69.8
	69.4
	68.6
	69.3
	68.8
	68.1
	69.9*
	69.3
	68.5

	
	2
	718841
	65.1*
	64.4
	63.5
	64.7
	63.9
	63.4
	64.8
	64.2
	62.9

	
	3
	691563
	68.8*
	67.6
	67.0
	67.9
	67.5
	66.6
	67.6
	67.1
	66.8

	
	4
	636772
	73.9*
	73.4
	72.6
	73.6
	72.6
	71.8
	73.7
	73.0
	72.5

	
	5
	735209
	69.9*
	69.1
	68.2
	69.4
	68.8
	68.0
	69.4
	68.3
	67.1

	
	6
	785267
	71.5*
	70.8
	70.2
	70.6
	70.1
	69.3
	71.4
	70.3
	69.2

	
	7
	742234
	66.2*
	65.4
	64.9
	65.7
	64.7
	64.1
	66.1
	65.1
	64.6

	
	8
	707620
	64.3*
	63.7
	63.0
	64.0
	63.6
	62.7
	64.1
	63.6
	63.3

	
	9
	773228
	69.6*
	69.4
	68.9
	69.5
	69.0
	68.2
	69.5
	69.0
	68.7

	
	10
	812440
	67.2*
	66.4
	65.9
	66.9
	66.0
	65.5
	67.1
	66.2
	65.9

	0.999995

(Iterations = 4,144,642)
	1
	681235
	70.5*
	70.3
	69.7
	69.6
	68.9
	68.2
	69.9
	69.3
	68.5

	
	2
	718841
	66.0
	65.7
	65.0
	64.8
	64.4
	62.4
	68.8*
	68.3
	68.1

	
	3
	691563
	69.2*
	68.9
	68.4
	68.4
	67.3
	66.8
	67.6
	67.1
	66.8

	
	4
	636772
	74.7*
	74.3
	73.9
	73.9
	72.6
	72.0
	73.7
	73.0
	72.5

	
	5
	735209
	71.0*
	70.0
	69.7
	69.5
	69.0
	68.6
	70.0
	69.0
	68.2

	
	6
	785267
	72.2*
	71.9
	71.7
	71.1
	70.3
	69.8
	71.4
	70.3
	69.2

	
	7
	742234
	67.0*
	66.7
	66.6
	65.9
	65.5
	64.7
	66.2
	65.1
	64.6

	
	8
	707620
	65.2*
	64.7
	64.4
	64.1
	63.8
	62.9
	64.1
	63.6
	63.3

	
	9
	773228
	70.6*
	70.3
	69.8
	69.6
	68.8
	68.3
	69.5
	69.0
	68.7

	
	10
	812440
	67.9*
	67.7
	67.4
	66.5
	66.1
	65.6
	67.1
	66.2
	65.9


1 Improvement expressed in % over starting solution.  The average of 10 replications was used to compute %.

2 Temperature decay rate.

3 Average starting solution for 10 replications.  Each solution technique used similar starting solution, which was different for each replication.

* indicates best solution for the three solution techniques in that category.

Figure 2 shows the progress of the objective function value, total tardiness, during the simulated annealing process for the first problem set when R was set at 0.995.  When compared to the local search heuristic in Figure 3, it clearly shows that the annealing scheme accepted worse sequences with higher total tardiness, especially during the early stage of the annealing process.  As the annealing temperature decreases, the probability of accepting a worse sequence reduced.  The process of using the annealing temperature to provide opportunities to accept worse sequences enable simulated annealing to escape from a locally optimal solution.  The progress of total tardiness in Figure 3 is strictly downhill move because a worse sequence was never accepted in local search or pairwise interchange.

Table 1 shows the average starting values of total tardiness and the best, median and worst improvements in percent over the starting values of the ten problem sets when R was set at 0.95, 0.995, 0.99995, and 0.999995.  At R = 0.95, simulated annealing found the best solutions for the first and fifth data sets, whereas local search found the best solution for the other eight problem sets.  The improvements over the starting values ranged from 34.3% to 40.8%.  Pairwise interchange which performed well in Tan et al. (1999), and Rubin and Ragatz (1995) performed poorly at all levels of R.  Indeed, it outperformed simulated annealing and local search in two cases only, that is, problem sets 1 and 2 when R was set at 0.99995 and 0.999995 respectively.  Its performance was very disappointing and substantially worse than the other two heuristics when it was allowed to explore a small number of iterations (at small R), but seemed to improve when the number of iterations increased.  At high R, the performance of pairwise interchange was very close behind the other two heuristics.  A difference between the problem sets used in this research and Tan et al. (1999) and Rubin and Ragatz (1995) was that the distribution of setup time was increased from uniformly distributed between 0 to 19, to 0 to 25.  The number of iterations was set at five millions in Tan et al. (1999) and two millions in Rubin and Ragatz (1995).  Thus, a preliminary conclusion is that pairwise interchange requires long run to find good solutions, and the range of the setup time may have a significant impact on its performance.
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When R was set at 0.995, the percent improvements over the starting values of simulated annealing and local search were between fifty-five percent to slightly over sixty percent, although local search found eight of the ten best solutions.  When R was increased to 0.99995 and 0.999995, simulated annealing clearly outperformed the other two heuristics by identifying more best solutions.  At these two R values, the percent improvements for the best, median and worst solutions of all the three solution techniques were between sixty to seventy percent.  Simulated annealing identified nine of the ten best solutions, and pairwise interchange managed to identify only one in each case.  While a particular solution technique might have performed significantly better than the others, the differences in terms of percent improvements over the initial solutions were very close, even for the median or worst solutions.

The above analysis suggested the temperature decay rate (thus, the number of iterations) affected the effectiveness of the solution techniques, and it was confirmed in Figure 4.  Figure 4 clearly shows that local search was the most effective technique at R = 0.95 and 0.995, but its performance deteriorated when R was set at 0.99995 and 0.999995.  It suggests that there is significant interaction effect between solution techniques and temperature decay rate.  Therefore, paired samples t-tests, instead of standard Analysis of Variance (ANOVA) was used to analyze the effectiveness of solution techniques (Table 2).

Table 2: Paired Samples t-Tests

	TempRate
	Solution Technique
	Paired Difference (1 - 2)

	(Iterations)
	1
	2
	Mean
	Std Error
	95% Confidence Interval
	2-tail Sig

	0.95

(404)
	SA
	LS*
	7539.70
	1876.31
	3816.69
	11262.71
	.000

	
	SA*
	PW
	-181637.51
	2393.37
	-186386.48
	-176888.54
	.000

	
	LS*
	PW
	-189177.21
	2259.36
	-193660.26
	-184694.16
	.000

	0.995

(4,134)
	SA
	LS*
	5922.88
	824.95
	4286.00
	7559.76
	.000

	
	SA*
	PW
	-249918.07
	2776.84
	-255427.93
	-244408.21
	.000

	
	LS*
	PW
	-255840.95
	2758.43
	-261314.27
	-250367.63
	.000

	0.99995

(414,454)
	SA*
	LS
	-3378.34
	481.79
	-4334.32
	-2422.36
	.000

	
	SA*
	PW
	-2145.75
	455.56
	-3049.69
	-1241.81
	.000

	
	LS
	PW*
	1232.59
	478.39
	283.36
	2181.82
	.011

	0.999995

(4,144,642)
	SA*
	LS
	-10047.43
	395.35
	-10831.90
	-9262.96
	.000

	
	SA*
	PW
	-6701.57
	968.96
	-8624.20
	-4778.94
	.000

	
	LS
	PW*
	3345.86
	1031.66
	1298.82
	5392.90
	.002


* This solution technique produced statistically better final solutions at ( = 5%.

When the solution techniques were allowed to explore 404 iterations (i.e., when R was et at 0.95), local search was statistically more effective than simulated annealing, which in turns was more effective than pairwise interchange.  Similar results were obtained when R was increased to 0.995.  When R were increased to 0.99995 and 0.999995, simulated annealing emerged as the statistically most effective solution technique, followed by pairwise interchange.  The finding is consistent with the literature that simulated annealing requires long annealing run to produce good solution.  It also demonstrates the importance of choosing the proper temperature decay rate for a successful annealing scheme.  A well-tuned simulated annealing scheme is an effective tool for finding good solutions to combinatorial optimization problems.

7. Conclusion

This paper presented a simulated annealing scheme and demonstrated that when applied correctly, it is an effective heuristic for finding excellent solutions to combinatorial optimization problems, including scheduling a sequence dependent machine to minimize total tardiness.  Simulated annealing has also been successfully used to find excellent solutions to graph partitioning problem, multi-criteria facility layout and open shop scheduling problems.  This paper also discussed how to derive the proper annealing parameters and the effect of temperature decay rate on the quality of the solutions.  At high temperature decay rate (thus long annealing run), simulated annealing outperformed local search and pairwise interchange.  The advantage of having a routine (step 2.4 in Figure 1) to escape from local optimum has enabled simulated annealing to find good solutions to complex optimization problems.
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Figure 4: The Effects of Temperature Decay Rate (R) on Solution Technique
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