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Abstract

There have been, and will be, some researches and applications in developing a system with an embedded Back Propagation Neural Networks (BP) subsystem to handle  chaotic environments.  There are no studies on whether a BP system can effectively handle a chaotic environment, nor any studies probed into BP systems resulted from learning chaotic time series data.  This study examines a BP system after it has learned chaotic time series data and explores if a BP system can handle a chaotic environment.  We find that after learning the chaotic time series data, a BP system may become either a chaotic system or a non-chaotic system.  Chaotic time series data with a large fluctuation will lead the BP system to become a chaotic system with a poor predicting effect.  We conclude that a BP system cannot handle a chaotic environment.
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1.
Introduction and Literature Reviews


Since 1984, deterministic chaos has been hailed as a revolution in thought and  attracted ever increasing attention of many scientists and technologists from diverse disciplines including biology, computation, engineering, economics, mathematics, meteorology, physics, statistics and many others.  On the other hand, since 1986, numerous researchers and practitioners have recognized that Artificial Neural Networks (ANN) is one of the ideal tools for handling the nonlinear environment.  The merit of the ANN is that it is data driven and model free
.  One of the most popular ANN is the Back Propagation Neural Networks (BP), a layered feed-forward network with the back propagation learning algorithm (Rumelhart, et. al., 1986).  There have been, and will be, numerous researches and applications of the BP system to the prediction of chaotic time-series data (Adachi et. al., 1992), time series forecasting of financial markets (Azoff, 1994), uncovering nonlinear structure in a stock market (Abhyankar et. al., 1997), and so on.  There have been no studies of whether it is proper to apply the BP system to handling a chaotic environment, nor any investigations into the BP system after learning chaotic time series data.  A chaotic environment can be represented as a set of function families, each of which is a family of chaotic functions.  The following function (1) with variant values of R, for instance, consists in a family of chaotic functions.

Xt+1 = RXt (1 - Xt)




(1)
Suppose we use the BP system to learn a set of time series data that were sampled from a chaotic system.  After learning, is the BP system a rebuilder of the learned chaotic system or just its approximator?  As Hornik et. al., (1989) mentioned that the BP system acted just as an approximator, it is not a rebuilder.  This conclusion comes from the fact that the value of objective function of learning at the end of learning is usually not zero.  Even if the objective function value at the end of learning is zero, any measurement error in the training data, which is unavoidable in the real world, will mislead the learning of the BP system since chaos has a sensitive dependence on the initial conditions.  As mentioned in (Barron, 1991; Barron, 1992), “when the network is exposed to test data that has not been seen before, the network function F acts as an estimator of new points of the target function.”  Due to those facts, it seems that the BP cannot rebuild any chaotic model.

Another question remains: is the BP system a good approximator of a chaotic environment?  The answer shall be derived from answering the following questions: Is the BP system, after learning chaotic time series data, a chaotic system or a non-chaotic system?  If the BP system, after learning chaotic time series data, is a chaotic system, how well does it mimic the chaotic system it has learned?  If the BP system, after learning chaotic time series data, is a non-chaotic system and is used to predict the behavior of the learned chaotic system, how large will the error be?  This study focuses on these points, and tries to answer those questions.

To answer these questions, we set up an experiment.  In this experiment, a chaotic environment was derived from equation (1) with R variant values.

Xt+1 = RXt (1 - Xt)




(1)
The time series data derived from equation (1) was used as the training data for the BP system.  To examine if the BP system after learning is a chaotic system, we verified if the time series data generated from the BP system has satisfied four aspects of the definition of chaos, inclusive of stationarity, determinism, aperiodicity and a sensitive dependence upon the initial conditions.  In addition, we also examined how well the BP system predicts the behavior of the learned system.

In the following, first the chaos, equation (1), and the BP are reviewed.  Section 2 presents the experimental design.  In Section 3, we show the experimental results and  analysis.  In section 4, a summary and future work are presented.

1.1  Chaos

Chaos is aperiodic bounded dynamics in a deterministic system with a sensitive dependence upon the initial conditions (Devaney, 1989; Kaplan & Glass, 1995), where

· Aperiodic means that chaotic systems do not manifest any fixed, permanent patterns.  Such aperiodic behavior is highly complex and permanently sensitive to small perturbations.  However, it is not in a state of total disorganization nor is it patternless. 
· Bounded means that upon successive iterations the state stays within a finite range and does not approach infinity.  However, this is not very useful when dealing with real data; any measured data is in a finite range, since the mass and energy of the universe are finite.  Infinity is a mathematical concept, not a physical one (Kaplan & Glass, 1995).  A different, but related concept for assessing boundedness in data is stationarity. A time series is stationary when it shows similar behavior throughout its duration.

· Deterministic means that there is a definite rule with no random terms governing the dynamics.
· Sensitive dependence upon the initial conditions means that two points that are initially close will drift apart as time proceeds.
Sensitive dependence upon the initial conditions is an essential aspect of chaos.  This means that we may be able to predict what happens for a short time, but a long-term prediction will be impossible since we can never be certain of the exact value of the initial condition in any realistic system.
For different values of R, the simple finite-difference equation (1) displays various qualitative type of behavior: steady states, periodic cycles of different lengths and chaos.  As mentioned in (Kaplan & Glass, 1995), Figure 1 displays a summary of the following dynamic behaviors of equation (1):

· For 3.0000 < R < 3.5688, there may be a stable cycle of period 2, 4, 8, or 16.

· As R is increased closer to 3.570, there are stable cycles of period 2n, where the period of the cycles increases as 3.570 is approached.
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Figure 1: The bifurcation diagram of equation (1).  The asymptotic values of Xt are plotted as a function of R. (Kaplan & Glass, 1995)
· For values of R > 3.570, there are narrow ranges of periodic solutions as well as chaotic behavior.

Also, as shown in Figure 1, the chaotic environment has the property of self-similarity, the repetition of structures at different length scales.  For instance, in the range 3.82 ( R ( 3.86, there are also various qualitative types of behavior: steady states, periodic cycles of different lengths, and chaos.

1.2  Back Propagation Neural Networks

In 1986, Rumelhart and his colleagues presented the BP system.  It adopted the layered feed-forward network structure, named a multilayered Perceptron.  The invention of the BP system resulted in the resurgence of ANNs because it can solve  nonlinearly separable problems that remained unsolved by the previously invented Neural Networks, such as Perceptron (Rosenblatt, 1958).  Since then, the BP has been widely used in many fields. 
The learning algorithm of the BP system adopts the generalized delta rule. That is, the learning algorithm is defined to minimize an objective function to find the optimal network structure via using the gradient descent method.  The objective function E is usually defined as:
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(2)

where dcl and Ocl are the desired and true activation values of the lth output node given the cth stimulus, respectively.
The highly nonlinear property of the objective function leads to the notorious predicament of the relatively optimal learning result.  Furthermore, Barron (1991 & 1992) described the approximation property of a multiplayer Perceptron, which used a single layer of hidden neurons using sigmoidal nonlinearities and a linear output neuron, and was trained using the generalized delta rule.  During training, the network learned specific points of a target function f in accordance with the training data, and thereby produced the approximating function F.  When the network was exposed to test data that had not been seen before, the network function F acted as an “estimator” of new points of the target function.

2.  
Experimental Design

The chaotic environment studied here is the family of equation (1) with variant values of R.  That is,

Xt+1 = f(Xt) ( RXt (1 - Xt)
For different values of R, the simple finite-difference equation (1) displays various qualitative type of behavior: steady states, periodic cycles of different lengths, and chaos.
Table 1 lists the design of experiment.  The BP system used here has one input node, three hidden nodes and one output node.  All hidden and output nodes use the hyperbolic tangent activation function.  For each case in Table 1, each network system has 10 repetitions with different initial weights.  We used 2000 training data
 generated from equation (1), with t =0, 1, …, 1999.  That is, the pairs of input and its associated desired output are {(Xt, Xt+1), t =0, 1, …, 1999}.  The stopping rule for learning is the satisfaction of either the value of the objective function E less than 10-25 or learning iterations greater than 250000.
Table 1: Experiment design

	The trial value of R
	Characteristic of model
	The trial value of x0
	Remark

	3.1
	Non-chaotic
	0.5
	A stable cycle of period 2

	3.83
	Non-chaotic
	0.5
	A stable cycle of period 3

	3.5
	Non-chaotic
	0.5
	A stable cycle of period 4

	3.63
	Non-chaotic
	0.5
	A stable cycle of period 6

	3.6
	Chaos
	0.5
	Observe the differences between the behaviors of network systems after learning chaotic data generated from equation (1) with different values of R.  Observe the sensitive dependence upon the initial conditions via using two different x0.

	3.6
	
	0.5001
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	3.64
	
	0.5
	

	3.65
	
	0.5
	

	3.7
	
	0.5
	

	3.725
	
	0.5
	

	3.75
	
	0.5
	

	3.775
	
	0.5
	

	3.8
	
	0.5
	

	3.85
	
	0.5
	

	3.9
	
	0.5
	

	3.95
	
	0.5
	

	4
	
	0.523423
	

	4
	
	0.523424
	


After learning, we assessed the errors between the data generated from equation (1) (i.e., Xt+1 = f(Xt)) and from BP (i.e., Ot+1 = F(Xt)) with respect to the learning and the predicting.  The pairs of input and its associated desired output for testing the learning effect are {(Xt, Xt+1), t =0, 1, …, 1999} generated from equation (1) with X0 being designed as in Table 1; The pairs of input and its associated desired output for testing the predicting effect are {(Xt, Xt+1), t =0, 1, …, 1999} generated from equation (1) with X0 = 0.49999.  The following MRE (mean ratio of error) was used for assessing the learning and prediction effects:
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In principle, the smaller MRE, the better the result.

To test if the BP system is a chaotic system was performed via testing if the time series data generated from the BP system (i.e., {Ot, t =1, 2, …, 2000, with O1 = F(0.49999) and Ot+1 = F(Ot) for all t > 1}) satisfies all four characteristics of the definition of Chaos.  If the time series data generated from a system satisfies all four characteristics, we say that the system is a chaotic system.  Here the methodologies mentioned in the following subsections are used to test if the time series data generated from the system satisfies all four chaos characteristics.

2.1  Aperiodicity

Although we can quantify ”how aperiodic” a time series is as mentioned in (Kaplan & Glass, 1995), here we draw the data to verify whether there is any periodicity in the data.

2.2  Stationarity

Here we adopt the following operational definition, as used in (Kaplan & Glass, 1995), to verify the characteristic of stationarity: the mean and standard deviation in one quarter of the signal are not significantly different from those in the other quarters.

2.3  Determinism

Kaplan and Glass (1995) claims that we shall construct a model from the data generated in the system we want to investigate, and just see whether the predictions made from this model are accurate.  If the predictions are perfect, then the system is completely deterministic.  If the predictions are good, but not perfect, then the system has a deterministic component.  If the predictions are terrible, then the system is not deterministic at all.

According to (Kaplan & Glass, 1995), the following steps can be used to assess the characteristic of Determinism:

I. Choose 1% of the records from the data 
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 generated by the BP to generate a sequence of 
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 in order.

II. Look through the rest of the data 
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 to find each point that is closest to each 
[image: image7.wmf]'

i

O

.  Let’s define these points as 
[image: image8.wmf]20

2

1

,

,

,

P

P

P

L

 according to the order of 
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III. From the data 
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, search the next records of each 
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IV. Then, calculate the following mean prediction error, 
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(4)

V. This is continued using the following ration:
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where 
[image: image18.wmf]2

s

 is as the variation in the data 
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.  If this ratio is close to one, then the system is not deterministic.  If the ratio is close to zero, then the system is deterministic.

2.4  Sensitive Dependence upon the Initial Conditions

Here we use the Lyapunov Exponent (Ott, et al., 1994).  Lyapunov exponents quantify how perturbations of the state vector affect the subsequent history of the system.  The Lyapunov exponent with respect to the time series data generated from the BP is calculated with the following equation:
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(6)

where Jt is the derivative of Ot.  A common definition of chaos for deterministic systems is that those chaotic systems have bounded fluctuations with 
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3.  Analyses of the Experimental Results

Table 2 shows the test summary if the time series data generated from the BP system are chaotic, and the average MRE with respect to learning and predicting are shown in Table 3.  The following facts were obtained from the experimental results:

1.  All experimental results show that, regardless what the time series data are, the BP system acts as an approximator, not a rebuilder.  This coincides with what we have described in section §1.

2.  From Table 2, when the time series data are non-chaotic, the BP system after learning may be a non-chaotic system or a chaotic system.  Furthermore, when the time series data are chaotic, the BP system after learning may also be a non-chaotic system or a chaotic system.  Most of the non-chaotic time series data lead to a non-chaotic BP system.  However, in the case of R = 3.83, where the characteristic of the time series data was a stable cycle of period 3, seven times 
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 of the BP system was positive, twice the BP system generated a time series data with a stable cycle of period 6, and once the BP system generated a time series data with a stable cycle of period 3, using ten repetitions with different initial weights.

Table 2: Test summary if the time series data generated from the BP system are chaotic.  The number in the parentheses denotes the occurrence ratio of events.  For instance, Chaos (7/10) denotes that seven out of ten times 
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 of the BP system was positive.

	R
	X0
	Characteristic of model
	Suggestion of the data generated from the BP system

	3.1
	0.5
	A stable cycle of period 2
	A stable cycle of period 2 (10/10)

	3.83
	0.5
	A stable cycle of period 3
	Chaos (7/10), a stable cycle of period 6 (2/10), or a stable cycle of period 3 (1/10)

	3.5
	0.5
	A stable cycle of period 4
	A stable cycle of period 2 (10/10)

	3.63
	0.5
	A stable cycle of period 6
	A stable cycle of period 2 (1/10) or 4 (9/10)

	3.6
	0.5
	Chaos
	A stable cycle of period 2 (10/10)

	
	0.5001
	
	A stable cycle of period 2 (10/10)

	3.61
	0.5
	
	A stable cycle of period 2 (10/10)

	3.62
	0.5
	
	A stable cycle of period 2 (10/10)

	3.64
	0.5
	
	A stable cycle of period 2 (5/10) or 4 (5/10)

	3.65
	0.5
	
	A stable cycle of period 2 (4/10) or 4 (6/10)

	3.7
	0.5
	
	A stable cycle of period 2 (1/10) or 4 (9/10)

	3.725
	0.5
	
	A stable cycle of period 4 (10/10)

	3.75
	0.5
	
	Chaos (4/10), a stable cycle of period 4 (1/10), or a stable cycle of period 8 (5/10)

	3.775
	0.5
	
	Chaos (7/10), a stable cycle of period 8 (1/10), or a stable cycle of period 16 (2/10)

	3.8
	0.5
	
	Chaos (8/10), a stable cycle of period 48 (1/10), or a stable cycle of period 96 (1/10)

	3.85
	0.5
	
	Chaos (8/10), a stable cycle of period 3 (1/10), or a stable cycle of period 10 (1/10)

	3.9
	0.5
	
	Chaos (7/10), a stable cycle of period 6 (2/10), or a stable cycle of period 20 (1/10)

	3.95
	0.5
	
	Chaos (10/10)

	4
	0.523423
	
	Chaos (10/10)

	
	0.523424
	
	Chaos (10/10)


Table 3: The average MRE values with respect to the learning and prediction effects.

	R
	X0
	Characteristic of model
	MRE

	
	
	
	learning
	Prediction

	3.1
	0.5
	A stable cycle of period 2
	0.0011443399
	0.0011444556

	3.83
	0.5
	A stable cycle of period 3
	0.0073356936
	0.0073356946

	3.5
	0.5
	A stable cycle of period 4
	0.0292038380
	0.0292038365

	3.63
	0.5
	A stable cycle of period 6
	0.0150251981
	0.0150251984

	3.6
	0.5
	Chaos
	0.0364212107
	0.0377815150

	
	0.5001
	
	0.0364790831
	0.0371301983

	3.61
	0.5
	
	0.0354886138
	0.0354215181

	3.62
	0.5
	
	0.0338398210
	0.0337879184

	3.64
	0.5
	
	0.0327144921
	0.0316006468

	3.65
	0.5
	
	0.0332513987
	0.0339537242

	3.7
	0.5
	
	0.0243521584
	0.0244972361

	3.725
	0.5
	
	0.0192708275
	0.0193522653

	3.75
	0.5
	
	0.0212268949
	0.0211940741

	3.775
	0.5
	
	0.0245197898
	0.0251355069

	3.8
	0.5
	
	0.0291888183
	0.0289361490

	3.85
	0.5
	
	0.0145385341
	0.0145385493

	3.9
	0.5
	
	0.0429308816
	0.0438884928

	3.95
	0.5
	
	0.0640912490
	0.0673216803

	4
	0.523423
	
	0.3937918162
	0.5912379605

	
	0.523424
	
	0.2877836018
	0.6902030474


3.  From Table 2 and Table 3, it seems that when the BP system, after learning, becomes a non-chaotic system, its prediction effect may be acceptable or rather bad if the time series data learned were non-chaotic, and may be rather bad or bad if the time series data learned were chaotic.  When the BP system, after learning, become a chaotic system, its prediction effect may be rather bad if the time series data learned were non-chaotic or chaotic.  One thing is sure, from the experimental result of the case of R = 4.0, the time series data that were chaotic with a large fluctuation lead the BP system, after learning, to become a chaotic system with a poor prediction effect.

4.  With respect to non-chaotic time series data, the MRE values of learning and prediction were almost the same.  This result is reasonable due to the characteristic of the stable cycle of those non-chaotic models, except with the case of R = 3.83 where seven out of ten times the 
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 value of the BP system was positive.

It seems that whether the BP system, after learning, is a non-chaotic system or a chaotic system is relevant to the complexity of the chaotic environment.  This is concluded from the facts that the BP system acts as an approximator and that the chaotic environment has the property of self-similarity.  That the BP system is an approximator means that  the function F(Xt) obtained from learning is (slightly) different from the actual function f(Xt).  The property of self-similarity leads to the repetition of structures at different length scales and mixed narrow ranges of periodic and chaotic behaviors.  For instance, as shown in the range 3.57 ( R ( 4.0 in Figure 1, a slightly different value of R might render the structure of the asymptotic value of Xt dramatically different.  In other words, a good approximation of f(Xt) leads to an F(Xt) slightly different from f(Xt), yet a BP system whose dynamics is dramatically different from the one of f(Xt).  This may be the reason why the BP system, after learning non-chaotic time series data, may become either a chaotic or non-chaotic system, and the BP system, after learning the chaotic time series data, also may become either a chaotic or non-chaotic system.

4.  Summary and Future Work

The following lessons have been learned from this research.  Because the BP system is an approximator and that chaos has the property of sensitive dependence upon the initial conditions, the BP system cannot rebuild any chaotic models.  Furthermore, the characteristic of approximation in the BP system renders it not suitable for handling chaotic environments.  This is because, as shown in Figure 1, a tiny shift in the value of R may cause a dramatic change in the system behavior of equation (1).  This explains why the BP system, after learning non-chaotic or chaotic time series data, may become either a chaotic system or a non-chaotic system.  Concerning the prediction effect of the BP system, there is no coincidence, except that with time series data that are chaotic with a large fluctuation leads the BP system after learning to become a chaotic system with a poor prediction effect.  This means that, for a chaotic environment, not only the long-term prediction but also the short-term prediction may be unreliable via the BP system.  From all of the above, we can conclude that it is not proper to apply the BP system to handling chaotic environments.

Because the BP system cannot rebuild any chaotic model, we can expect that the BP system, after learning chaotic time series data, may become either a chaotic or a non-chaotic system.  Yet, we do not expect the BP system, after learning non-chaotic time series data, may become a chaotic system.  The unexpected occurs in the case of R = 3.83, where the characteristic of the time series data is a stable cycle of period 3.  A future work will involve examining this unexpected.

In this study, we used equation (1) as the illustration.  This is a quadratic equation with one dimension and a single state variable.  One future project will be to examine other equations with more state variables and dimensions, especially those closer to real world parameters, to verify what we have obtained here.
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� In the context of traditional statistical methods, the ANN can be considered as a multivariate nonlinear non-parametric inference technique that is data driven and model free.  Multivariate implies that the ANN inputs comprise many different variables whose interdependencies and causative influences are exploited.  Nonparametric and model free mean there are no presumptions regarding the relationship between the input and output variables.  Data driven implies that the weights of the ANN are estimated from the (given) training data.





� We tried 4000 training data instead of 2000 training data and the experimental results were similar.  It seems that 2000 training data are sufficient to describe the characteristic of the time series data generated from equation (1)
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