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Abstract 

Suppose one is given a vector X  of a finite set of quantities  which are independently Poisson 
distributed random variables. A null hypothesis  about  is to be tested against an alternative 
hypothesis . A quantity 
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is to be computed and used for the test. The optimal values of iω  are calculated for three cases: (1) 
signal to noise ratio is used in the test, (2) normal approximations with unequal variances to the Poisson 
distributions are used in the test, and (3) the Poisson distribution itself is used. A comparison is made of 
the limit values of iω  for large signal and noise in the three cases. 

 
1. Introduction 

Independent Poisson counts in  bins that have different means in each bin are considered. The application is signal 
processing of return neutron signals from an object irradiated by a neutral particle beam(Kim [3] and [4]). The objective 
is to discriminate between a re-entry vehicle (RV) and a decoy using the return signal in the presence of background 
Poisson noise. This discrimination problem is formulated as a test of hypothesis: 

k

 an RV   object isH  :0  vs.    a decoy  object is H   : 1

(The theory of testing hypotheses is given in [5] and [7].) The observations are formed into a vector of neutron counts in 
several energy bins: , where . ),,,( 21 kxxxx = n
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where the weight iω  are to be chosen later. Since the iω  are to be chosen positive (see (2.2), (3.3), and (4.1) below), 
we reject  if 0H ≤Y some critical value . Three methods of choosing the c iω  are given and compared. 

The first method is based on a signal-to-noise ratio S/N. Maximizing S/N usually is intended to maximize the power 
of the statistical test, defined by the criterion for rejecting . In the present situation the variance of 0H Y (the test 
statistic) is not the same under  and ; consequently, maximizing S/N and maximizing power are not equivalent. 
The second method of choosing weight is based on maximizing power for normal distribution approximations with 
unequal variances under  and . The third method maximizes power for the exact Poisson distributions. 
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2. Signal-to-noise 
Since the  are independent Poisson random variables, the mean is  iX
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In the theory of testing hypotheses concerning means 0µ  and 1µ  with common variance , the power 
(probability of rejecting

2σ

00 : µµ =H  when 1µµ = ) is an increasing function of the signal-to-noise ratio 
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This suggests that in the present case, one might choose iω  to maximize 
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If  for all i , then S/N is indeed the signal-to-noise ratio. R.E. Graves [2] gives the following proof that (2.2) 
below is the optimal choice of the 

0=id

iω . 
By the Cauchy-Schwarz inequality, we have 
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with equality holding if and only if 
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for some constant K . In other words, the signal-to-noise ratio is maximized by the choice 
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Since any constant multiple of the iω  also maximizes S/N, the iω  of (2.2) can be rescaled so that . 1
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3. Normal Approximation with Unequal Variances 

Assume that the independent Poisson distributions )( iP λ of the can be approximated by normal distributions. 
Then, approximately, 
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It is no additional difficulty to allow . Therefore, the  will remain in the analysis. One may set 0>id id 0≡id  
whenever desired. The detection rate is α−1 , where 
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where  is the cumulative distribution function of the standard normal random variable Φ Z . The false alarm rate is 
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The combination of (3.1) and (3.2), for fixed α , shows that β  satisfies 
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The quantity  is the ”excess” signal under hypothesis  over that under . If  is regarded as 

noise plus a small decoy signal, then the first term in (3.3): 
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is the signal-to-noise ratio and is just (2.1). 
It is required to find { iω } that maximize the function })({ ih ω  defined by the right-hand side of (3.3). One can 

assume that not all 0=iω , since otherwise 1=α . One first assumes that 01 =ω and investigates all maxima of the 
resulting function of  variables. Then assume 1−k 01 ≠ω  and divide numerator and denominator of (3.3) by 1ω and 
put 1/ωωω ii = , . Then ki ,,3,2= })({ ih ω becomes a function of 1−k  variables })({ ih ω . A sufficient condition 

(see [7]) that the point { ∗
iω } be a strict local maximum for  is that h 0}) =∗

iω({h∇  and that the matrix })2∇ h({ ∗
iω  

be negative definite. This condition can be verified by checking that the eigenvalues of the matrix })({ ∗
ih ω2∇  are 

negative. Finally, having checked all strict local maxima, it is necessary to insure that the function does not become 
elsewhere greater than its value at one of the strict local maxima. There are other possibilities that must be checked such 
as nonstrict maxima. 

This procedure will be illustrated in only one case: 2 k = . Assume 01 ≠ω . Put 122 /ωωω ==X . Then 
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Put 111 ntt += , 222 ntt += , 111 ndd +=  and 222 ndd += . Then (3.4) becomes 
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After calculating , transposing a square root and squaring both sides, a quadratic equation in 0)( =′ xh x  is obtained: 
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In the special case that 11 =d , 22 =d , 31 =t , 42 =t , , (3.6) reduces to 16  
which has two real roots, only one of which gives a value zero to 
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03 =+ ′ : 3398.1=x  and 0)3398.1( <′′h . 

The condition 121 =+ωω  finally gives .5726., 24274.1 == ωω  Since 0)0( <h and 2−) =∞(h , there is no 
other maximum value of . h(x)
 
4. Optimal Weights for Poisson Distributions 

For Poisson counts in one energy bin defined by a threshold, Kim [3] give a rather complete analytical analysis. For 
two energy bins, the discrimination surface, analogous in the discrimination curve in [4] is a mapping of  to . 
For this analysis, one needs to develop one or more test statistics. In this section we give an optimal test statistic based 
on the observation that to minimize 
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β  is to maximize the power β−1 . We seek the most powerful (MP) test of the 
hypothesis . The Neyman-Pearson lemma [5, p.74] computes the MP test in terms of a 0H
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is the likelihood ratio. The MP test has the form , where  cxyifHReject 
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5. Comparison of Limit Optimal Weights 

We now have three methods of calculating weights: (1) S/N, (2) normal approximations, and (3) Poisson MP test. In 
this section we compare the three methods as the amount of signal and noise becomes infinite. 

Comparison is made in the limit for large signal and noise. Let 0=id  for all i , and iii nt λ=  with 0≥iλ  for all 
. Then consider the limit of the i iω  for the three methods of this paper as the noise becomes infinite, i.e. as 
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For the S/N method, we obtain 
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For the Poisson MP test method, we obtain 
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For the normal approximation method, we further specialize the limiting process so that the noise for 
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The second term of (5.3) for various choices of the iω  is bounded above (and below), since the min( . 
Consequently, as 

0)0 >in
∞→ν , the first term dominates and the iω  that maximize (5.3) converge to the S/N weights; i.e. 

∞→→ νλω     as ii  
It is interesting that the normal approximations to the Poisson distributions implicitly included in (3.3) and (5.3) 

become better as and  become large (it in )∞→ν  but that the iω  that maximize (5.1) do not converge to the 
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Poisson MP test weights. 
 
6. Remark 

Note that the optimal weighting have not been verified here as being able to discriminate the hypothesis at 
reasonable risks α  and β . 
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