COMPARISON OF NORMAL VARIANCE ESTIMATORS IN TERMS OF PITMAN NEARNESS CRITERION

Jyh-Jiuan Lin^{1*}, Nabendu Pal²and Ching-Hui Chang³

¹ Department of Statistics Tamkang University, Tamsui, Taipei, Taiwan, R.O.C.

> ²Department of Mathematics University of Louisiana at Lafayette⁺ Lafayette, Louisiana 70504-1010, USA

³Department of Applied Statistics, Ming Chuan University, Taoyuan, Taiwan, R.O.C.

ABSTRACT

For estimating a normal variance under squared error loss function it is well known that the best affine (location and scale) equivariant estimator, which is better than the maximum likelihood estimator as well as the unbiased estimator, is also inadmissible. The improved estimators, e.g., Stein type, Brown type and Brewster-Zidek type, are all scale equivariant but not location invariant. Lately a good amount of research has been done to compare the improved estimators in terms of risk, but very little attention had been paid to compare these estimators in terms of Pitman nearness criterion. In this paper we have undertaken a comprehensive study to compare various variance estimators in terms of Pitman nearness criterion, which has long been over due, and have made some interesting observations in the process.

Keywords and phrases: Affine equivariance, loss function, risk function, non-central chi-square distribution

* Corresponding author (e-mail: jjlin@stat.tku.edu.tw).

⁺Formerly University of Southwestern Louisiana

1. INTRODUCTION

Assume that we have independent random observations X and S such that $X = (X_1, X_2, \dots, X_p)$ follow a $N_p(\mathbf{q}, \mathbf{s}^2 I_p)$ (*p*-dimensional normal) distribution and (S/\mathbf{s}^2) follow a \mathbf{c}_{m-1}^2 (chi-square with (m-1) *d. f.*) distribution. Consider the problem of estimation of \mathbf{s}^2 efficiently.

The above-described model is encountered if one has independent and identically distributed (*iid*) observations X_1, X_2, \dots, X_n from a $N_p(\mathbf{q}, \mathbf{s}^2 I_p)_n$ distribution. The data can be reduced by sufficiency principle, and one needs to focus only on $X = \sqrt{nX}$, $\overline{X} = (X_i/n)$ and $S = \left\| X_i - \overline{X} \right\|^2$. Note that X follows $N_p(\mathbf{m}, \mathbf{s}^2 I_p)$ and $S/\mathbf{s}^2 \sim \mathbf{c}_{m-1}^2$ with $\mathbf{m} = \sqrt{n\mathbf{q}}$ and $(m^{i-1}) = p(n-1)$.

Even though this article deals with estimation of s^2 , the techniques discussed here can be used, with suitable modification, for estimating s^{2a} for any a > 0. In particular, one can take a = 1/2 to estimate s, the normal standard deviation. The special case p = 2 of the above setup has many applications in defense research and development while estimating the accuracy of a weapon system. Accuracy of a weapon system is measured by CEP, called Circular Probable Error. For example, in a test range a new surface to surface missile in being tested and the location of the target is known, say, O = (0,0). From a fixed distance when missiles are test fixed, we observe the points of impact, i. e., bivariate locations X_1, X_2, \dots, X_n which are assumed to follow a bivariate normal distribution with mean $m = (m_1, m_2)$ and diagonal dispersion matrix s^2I_2 . When the system is 'in order' (or 'in focus'), the mean m is expected to be 0, the target location; and the system is 'out of focus' if m is different from O and usually unknown. The radius of the circular area centered at m which gives probability mass of 0.5 is called the CEP of the weapon system (particular type of missiles). It can be shown that CEP is proportional to s, and hence CEP estimation essentially boils down to estimation of s.

In classical statistics, usual estimators of s^2 are (i) the unique minimum variance unbiased estimator (UMVUE) given by

$$\mathbf{s}_{u}^{2} = S/(m-1); \qquad (1.1)$$

and (ii) the maximum likelihood estimator (MLE) given by

$$\mathbf{s}_{ml}^{2} = S/(m+p-1). \tag{1.2}$$

In a decision-theoretic setup the two most commonly used loss functions are

$$L_{s}(\mathbf{s}^{2}, \mathbf{w}) = (\mathbf{s}^{2}/\mathbf{s}^{2} - 1)^{2}$$
(1.3)

$$L_{E}(\mathbf{s}^{2}, \mathbf{w}) = (\mathbf{s}^{2}/\mathbf{s}^{2}) - \ln(\mathbf{s}^{2}/\mathbf{s}^{2}) - 1$$
(1.4)

where \mathbf{s}^2 is an estimator of \mathbf{s}^2 and $\mathbf{w} = (\mathbf{q}, \mathbf{s}^2)$. The loss functions L_s and L_E are called respectively the squared error loss (SEL) and the entropy loss (EL).

If we consider the group G_A of affine transformations (i.e., (X, S) $(aX+b, a^2S)$, a > 0, $b^{p} = p$ -dimensional real space), then the affine equivariant estimators have the form $\mathbf{s}_c^2 = cS$, where c > 0 is a constant. Since the group G_A (and the corresponding induced group \overline{G}_A acting on $\Omega = \{\mathbf{w} = (\mathbf{q}, \mathbf{s}^2) | \mathbf{q}^{p}, \mathbf{s}^2 > 0\}$ such that $(\mathbf{q}, \mathbf{s}^2)$ $(a\mathbf{q}+b, a^2\mathbf{s}^2)$, a > 0, b^{p} is transitive, an affine equivariant estimator \mathbf{s}_c^2 has constant risk on Ω . Therefore, one can find the best affine equivariant estimator (BAEE) of \mathbf{s}^2 by minimizing the risk of \mathbf{s}_c^2 with respect to (w. r. t.) c. The BAEEs of \mathbf{s}^2 under L_s and L_E are respectively.

$$\mathbf{s}_{S}^{2} = S/(m+1)$$
 and $\mathbf{s}_{E}^{2} = \mathbf{s}_{u}^{2} = S/(m-1)$ (1.5)

Interestingly, \mathbf{s}_{s}^{2} (\mathbf{s}_{E}^{2}) is inadmissible under L_{s} (L_{E}), and improved estimators are only scale equivariant but not location invariant. Stein (1964) showed that under L_{s} , an improved estimator of \mathbf{s}^{2} can be found as

$$\mathbf{s}_{S(S)}^{2} = \min\left\{S/(m+1), \ (S + \|X\|^{2})/(m+p+1)\right\},$$
(1.6)

which is uniformly better than s_s^2 . Brown (1968) proposed a similar but somewhat different estimator of s^2 under

 $L_{\rm s}$ of the form

$$\mathbf{s}_{S(B)}^{2} = \left\{ c_{0}I(F < r_{0}) + (m+1)^{-1}I(F - r_{0}) \right\} S, \qquad (1.7)$$

where $r_0 > 0$ is any constant, $F = ||X||^2 / S$ and $c_0 = c_0(r_0)$ is a suitable constant dependent on r_0 , and $c_0 < (m+1)^{-1}$. However, both $\mathbf{s}_{S(S)}^2$ and $\mathbf{s}_{S(B)}^2$ are nonanalytic and hence inadmissible. Brown's technique was further extended by Brewster and Zidek (1974) who obtained an admissible improved estimator of \mathbf{s}^2 as

$$\boldsymbol{s}_{S(BZ)}^{2} = \left\{ 1 - \boldsymbol{f}_{S(BZ)}(U) \right\} S / (m+1), \qquad (1.8)$$

where $F = ||X||^2 / S$, $U = (1+F)^{-1}$ and

$$\boldsymbol{f}_{S(BZ)}(U) = \frac{2(m+p+1)^{-1}(1-U)^{p/2}U^{(m+1)/2}}{\frac{1}{U}(1-y)^{p/2-1}y^{(m+1)/2}dy}.$$
(1.9)

For a comprehensive review on normal variance estimation and related topics see Pal, Ling and Lin (1998). Estimators analogous to (1.6), (1.7) and (1.8) under the loss L_E can be derived. Such estimators are mentioned in Section 3 for further analysis.

While emphasis had been given to compare various variance estimators in terms of risk, very little attention had been paid to do the same in terms of another important criterion namely, the Pitman nearness criterion (PNC).

<u>Definition 1.1</u>. Given two estimators, say \boldsymbol{s}_1^2 and \boldsymbol{s}_2^2 , of \boldsymbol{s}^2 , \boldsymbol{s}_1^2 is said to be better than \boldsymbol{s}_2^2 in terms of PNC if

$$\Delta_{\mathbf{w}}(\mathbf{s}_{1}^{2}|\mathbf{s}_{2}^{2}) = P((\mathbf{s}_{1}^{2}-\mathbf{s}^{2})^{2} \quad (\mathbf{s}_{2}^{2}-\mathbf{s}^{2})^{2}) \quad 0.5$$

i.e.,
$$\Delta_{\mathbf{w}}(\mathbf{s}_{1}^{2}|\mathbf{s}_{2}^{2}) = P((\mathbf{s}_{1}^{2}/\mathbf{s}^{2}-1)^{2} \quad (\mathbf{s}_{2}^{2}/\mathbf{s}^{2}-1)^{2}) \quad 0.5.$$
 (1.10)

The major difference between the usual risk criterion and the PNC is that the latter is nontransitive i.e., if s_1^2 is better than s_2^2 in terms of PNC, and s_2^2 is better than s_3^2 in terms of PNC, then it does not imply that s_1^2 is better than s_3^2 in terms of PNC. As a result, comparison under PNC can sometimes be more complicated and a bit confusing.

The renewed interest in PNC was due to Rao (1981), who claimed that the PNC was more appropriate than the quadratic loss function for evaluating an estimator. For further general discussion on this topic one can see Rao, Keating and Mason (1986).

In Section 2 we first consider comparison of three affine equivariant estimators, e.g., \mathbf{s}_{ml}^2 , $\mathbf{s}_u^2 = \mathbf{s}_E^2$ and \mathbf{s}_S^2 , in terms of PNC. It appears, quite interestingly, that the unbiased estimator emerges as the most preferable among the three affine equivariant estimators. In Section 3 we compare $\mathbf{s}_u^2 = \mathbf{s}_E^2$ against $\mathbf{s}_{E(S)}^2$ and $\mathbf{s}_{E(BZ)}^2$, Stein type and Brewster-Zidek type improved estimators under L_E respectively. Interestingly it is found that both $\mathbf{s}_{E(S)}^2$ and $\mathbf{s}_{E(BZ)}^2$ are much inferior to \mathbf{s}_u^2 (UMVUE) in terms of PNC. It turns out that \mathbf{s}_u^2 is better (PNC) than other variance estimators and this is the main contribution of our investigation.

2. COMPARISON OF AFFINE EQUIVARIANT ESTIMATORS

Take two affine equivariant estimators $\mathbf{s}_1^2 = c_1 S$ and $\mathbf{s}_2^2 = c_2 S$. Then \mathbf{s}_1^2 is closer to \mathbf{s}^2 than \mathbf{s}_2^2 with probability

$$\Delta_{\mathbf{w}}(\mathbf{s}_{1}^{2}|\mathbf{s}_{2}^{2}) = P_{\mathbf{w}}\left((\mathbf{s}_{1}^{2}/\mathbf{s}^{2}-1)^{2} \quad (\mathbf{s}_{2}^{2}/\mathbf{s}^{2}-1)^{2}\right).$$
(2.1)

The probability $\Delta_{\mathbf{w}}(\mathbf{s}_1^2 | \mathbf{s}_2^2)$ can be simplified further as

$$\Delta_{\mathbf{w}}(\mathbf{s}_{1}^{2} | \mathbf{s}_{2}^{2}) = P_{\mathbf{w}} \left(\frac{S}{\mathbf{s}^{2}}\right) \left(c_{1}^{2} - c_{2}^{2}\right) \left(\frac{S}{\mathbf{s}^{2}}\right) - 2(c_{1} - c_{2}) = 0$$

$$= \frac{P(S/\mathbf{s}^{2} - 2(c_{1} + c_{2})^{-1}), \quad \text{if } c_{1} > c_{2}}{P(S/\mathbf{s}^{2} - 2(c_{1} + c_{2})^{-1}), \quad \text{if } c_{1} < c_{2}}.$$
(2.2)

Call $c^* = 2/(c_1 + c_2)$. Since S/s^2 is a c_{m-1}^2 random variable we have

$$\Delta_{\mathbf{w}}(\mathbf{s}_{1}^{2} | \mathbf{s}_{2}^{2}) = \begin{array}{c} P(\mathbf{c}_{m-1}^{2} \ c^{*}), & \text{if } c_{1} > c_{2} \\ P(\mathbf{c}_{m-1}^{2} \ c^{*}), & \text{if } c_{1} < c_{2} \end{array}$$
(2.3)

Also, form the expression (2.1) it is conveniently noted that $\Delta_{\mathbf{w}}(\mathbf{s}_1^2 | \mathbf{s}_2^2) = 1 - \Delta_{\mathbf{w}}(\mathbf{s}_2^2 | \mathbf{s}_1^2)$.

2.1 Computation of Δ_w 's

(1) Comparison of s_{ml}^2 and s_s^2 . Take $c_1 = (m+1)^{-1}$ and $c_2 = (m+p+1)^{-1}$. Then define $c_1^* = 2(m+1)(m+p+1)/(2m+p+2)$. Then from (2.3),

$$\Delta_{\mathbf{w}}(\mathbf{s}_{S}^{2} | \mathbf{s}_{ml}^{2}) = P(\mathbf{c}_{m-1}^{2} | \mathbf{c}_{1}^{*}).$$
(2.4)

(2) Comparison of s_u^2 and s_{ml}^2 . Take $c_1 = (m-1)^{-1}$ and $c_2 = (m+p+1)^{-1}$. Define $c_2^* = 2(m-1)(m+p+1)/(2m+p)$. Form (2.3) it is readily seen that

$$\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2} | \mathbf{s}_{ml}^{2}) = P(\mathbf{c}_{m-1}^{2} | \mathbf{c}_{2}^{*}).$$
(2.5)

(3) Comparison of s_u^2 and s_s^2 . Take $c_1 = (m-1)^{-1}$ and $c_2 = (m+1)^{-1}$. Also define $c_3^* = (m^2 - 1)/m$. Therefore, from (2.3) we have

$$\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2}|\mathbf{s}_{s}^{2}) = P(\mathbf{c}_{m-1}^{2} \ c_{3}^{*}).$$
(2.6)

of *m* and *p*. Note that while $\Delta_{\mathbf{w}}(\mathbf{s}_{s}^{2}|\mathbf{s}_{ml}^{2})$ and $\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2}|\mathbf{s}_{ml}^{2})$ are dependent on both *m* and *p*, $\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2}|\mathbf{s}_{s}^{2})$ is free from p.

Figure 2.1. 3-D graph of $\Delta_{w}(\boldsymbol{s}_{s}^{2} | \boldsymbol{s}_{ml}^{2})$.

Figure 2.2. 3-D graph of $\Delta_{\mathbf{w}}(\mathbf{s}_u^2 | \mathbf{s}_{ml}^2)$.

m m	2	2	4			15	20	25	50	100
$^{\nu}$	2	3	4	5	10	15	20	25	50	100
1	0.9359	0.8916	0.8586	0.8328	0.7557	0.7153	0.6895	0.6712	0.6236	0.5884
2	0.9471	0.9093	0.8800	0.8564	0.7820	0.7407	0.7135	0.6938	0.6414	0.6017
3	0.9545	0.9216	0.8956	0.8743	0.8041	0.7631	0.7352	0.7147	0.6585	0.6147
4	0.9596	0.9305	0.9075	0.8883	0.8230	0.7829	0.7549	0.7339	0.6748	0.6274
5	0.9633	0.9373	0.9167	0.8994	0.8391	0.8005	0.7728	0.7516	0.6905	0.6399
6	0.9661	0.9426	0.9240	0.9084	0.8529	0.8612	0.7891	0.7680	0.7054	0.6520
7	0.9683	0.9468	0.9300	0.9158	0.8649	0.8301	0.8038	0.7830	0.7196	0.6639
8	0.9701	0.9502	0.9349	0.9220	0.8753	0.8426	0.8173	0.7969	0.7332	0.6754
9	0.9715	0.9531	0.9390	0.9272	0.8844	0.8537	0.8295	0.8098	0.7461	0.6866
10	0.9728	0.9554	0.9424	0.9317	0.8924	0.8637	0.8407	0.8216	0.7584	0.6975
20	0.9788	0.9676	0.9604	0.9551	0.9379	0.9245	0.9121	0.9001	0.8525	0.7905
30	0.9810	0.9721	0.9672	0.9641	0.9564	0.9508	0.9449	0.9388	0.9081	0.8571
40	0.9821	0.9744	0.9707	0.9688	0.9659	0.9643	0.9620	0.9592	0.9411	0.9032
50	0.9828	0.9759	0.9728	0.9716	0.9716	0.9722	0.9719	0.9710	0.9610	0.9344
100	0.9842	0.9788	0.9771	0.9772	0.9822	1.0000	1.0000	0.9903	0.9924	0.9897

Table 2.1. Values of $\Delta_{w}(s_{s}^{2}|s_{ml}^{2})$ for various m and p.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2 0.8033 0.7769 0.7593 0.7452 0.6985 0.6711 0.6526 0.6390 0.602	
	0.5737
3 0.8096 0.7889 0.7752 0.7636 0.7213 0.6940 0.6746 0.6601 0.619	0.5868
4 0.8141 0.7981 0.7877 0.7785 0.7410 0.7145 0.6949 0.6798 0.635	0.5996
5 0.8176 0.8053 0.7978 0.7907 0.7583 0.7330 0.7135 0.6981 0.651	0.6121
6 0.8203 0.8111 0.8060 0.8008 0.7734 0.7497 0.7306 0.7151 0.667	0.6243
7 0.8225 0.8159 0.8130 0.8095 0.7867 0.7648 0.7464 0.7310 0.681	6 0.6364
8 0.8243 0.8199 0.8188 0.8168 0.7985 0.7785 0.7608 0.7457 0.695	5 0.6481
9 0.8258 0.8233 0.8238 0.8232 0.8090 0.7909 0.7741 0.7595 0.709	0.6595
10 0.8270 0.8262 0.8282 0.8288 0.8184 0.8022 0.7864 0.7723 0.721	3 0.6707
20 0.8338 0.8422 0.8525 0.8605 0.8759 0.8748 0.8689 0.8613 0.822	0.7668
30 0.8365 0.8488 0.8629 0.8743 0.9023 0.9097 0.9103 0.9080 0.884	3 0.8374
40 0.8379 0.8524 0.8686 0.8820 0.9170 0.9292 0.9336 0.9345 0.922	3 0.8874
50 0.8388 0.8546 0.8723 0.8868 0.9263 0.9413 0.9479 0.9507 0.946	0.9221
100 0.8407 0.8595 0.8800 0.8972 0.9455 0.9653 0.9749 0.9802 0.987	0.9865

Table 2.2. Values of $\Delta_{w}(\mathbf{s}_{u}^{2}|\mathbf{s}_{ml}^{2})$ for various m and p.

Table 2.3. Values of	Δ (\mathbf{s}^2	(\mathbf{s}_{a}^{2}) for	various	т	and all	р.
	$\Delta_{w}(\mathbf{S}_{v})$		various	111	anu an	$p \bullet$

m =	2	3	4	5	10	15	20	25	50	100
All p	0.7793	0.7364	0.7102	0.6916	.06414	0.6173	0.6024	0.5921	0.5658	0.5468

Figure 2.3. 3-D graph of $\Delta_{\mathbf{w}}(\mathbf{s}_u^2 | \mathbf{s}_s^2)$.

Figure 2.4. Comparison of s_u^2 , s_s^2 and s_{ml}^2 .

Remark 2.1.

(i) \boldsymbol{s}_{s}^{2} is better than \boldsymbol{s}_{ml}^{2} (in PNC);

(ii) \boldsymbol{s}_{u}^{2} is better than \boldsymbol{s}_{ml}^{2} (in PNC); and

(iii) \boldsymbol{s}_{u}^{2} is better than \boldsymbol{s}_{s}^{2} (in PNC).

The above diagram Figure 2.4 gives a better visual comparison of the three above-mentioned estimators. We thus conclude that \mathbf{s}_{u}^{2} (UMVUE as well as the BAEE under L_{E}) is the best among the three affine equivariant estimators we have discussed above.

(2) In Tables 2.1 and 2.2, for a fixed m', the values of $\Delta_{\mathbf{w}}(\mathbf{s}_s^2 | \mathbf{s}_{ml}^2)$ and $\Delta_{\mathbf{w}}(\mathbf{s}_u^2 | \mathbf{s}_{ml}^2)$ are both increasing as p increases. This is due to the fact that in (2.4) and (2.5), both c_1^* and c_2^* are increasing functions of p for a fixed m'. However, such a simple trend does not occur always if one varies m for a fixed p'. Table 2.1 shows that $\Delta_{\mathbf{w}}(\mathbf{s}_s^2 | \mathbf{s}_{ml}^2)$ decreases monotonically as m increases (p fixed) in most of the cases (1 p 50). Only for `vary large p' (p=100), the values first decrease, then increases and then finally decrease with increasing m. In Table 2.2, values of $\Delta_{\mathbf{w}}(\mathbf{s}_u^2 | \mathbf{s}_{ml}^2)$ are steadily decrease-increase) as m increases. In Table 2.3, $\Delta_{\mathbf{w}}(\mathbf{s}_u^2 | \mathbf{s}_s^2)$ decreases monotonically as m increases.

⁽¹⁾ From the above Table 2.1-2.3, it is clear that

2.2 Asymptotic values of Δ_w 's.

In this subsection we will see the limiting values of Δ_w 's ((2.4) - (2.6)) when (i) p fixed and m; (ii) m = p.

Note that $(\mathbf{c}_{m-1}^2/(m-1))$ can be treated as the average of (m-1) *iid* \mathbf{c}_1^2 random variates. To be precise, let Y_1, Y_2, \dots, Y_{m-1} be *iid* \mathbf{c}_1^2 -random variables. Then $\overline{Y} = Y_i/(m-1)$ is equivalent to $(\mathbf{c}_{m-1}^2/(m-1))$ as far as probability distribution is concerned. Since \mathbf{c}_1^2 -distribution has mean 1 and variance 2, by Central Limit Theorem,

$$Y = \sqrt{\frac{m-1}{2}}(\overline{Y} - 1) \text{ is asymptotically } N(0, 1) .$$
(2.7)

We will use (2.7) to study (2.4) - (2.6) asymptotically.

(1) p fixed and large m.

Note that by using the representation of Y in (2.7),

(i)
$$\Delta_{\mathbf{w}}(\mathbf{s}_{S}^{2} | \mathbf{s}_{ml}^{2}) = P(\mathbf{c}_{m-1}^{2} c_{1}^{*})$$
 (from(2.4))

$$= P \sqrt{\frac{m-1}{2}} (\overline{Y} - 1) \frac{(mp + 4m + 3p + 4)\sqrt{m-1}}{(2m^{2} + mp - p - 2)\sqrt{2}}$$

$$P(N(0, 1) \quad 0)$$
 (for fixed p and $m \gg p$)

(ii)
$$\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2} | \mathbf{s}_{ml}^{2}) = P(\mathbf{c}_{m-1}^{2} | \mathbf{c}_{2}^{*})$$
 (from (2.5))

$$= P \sqrt{\frac{m-1}{2}}(\overline{Y}-1) \frac{(p+2)\sqrt{m-1}}{(2m+p)\sqrt{2}}$$

$$P(N(0,1) \quad 0) \text{ (for fixed } p \text{ and } m >> p)$$

= 0.5

(iii)
$$\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2}|\mathbf{s}_{s}^{2}) = P \sqrt{\frac{m-1}{2}}(\overline{Y}-1) \frac{\sqrt{m-1}}{\sqrt{2m}} = 0.5$$
 for large m .

This tells that, in Tables 2.1 - 2.3, each row converges to 0.5 (for any fixed p).

(2) m = p = large

Interestingly, we get quite different results when m and p increase simultaneously. This will explain why the diagonal elements (m = p) in Tables 2.1 and 2.2 are converging to 1.

By setting m = p, we get

(i)
$$\Delta_{\mathbf{w}}(\mathbf{s}_{S}^{2}|\mathbf{s}_{ml}^{2}) = P \sqrt{\frac{m-1}{2}}(\overline{Y}-1) \frac{(m^{2}+m+4)\sqrt{m-1}}{(3m^{2}-m-2)\sqrt{2}}$$
 1 as m ;

and

(ii)
$$\Delta_{\mathbf{w}}(\mathbf{s}_{u}^{2}|\mathbf{s}_{ml}^{2}) = P \sqrt{\frac{m-1}{2}}(\overline{Y}-1) \frac{(m+2)\sqrt{m-1}}{\sqrt{2}(3m)}$$
 1 as m

3. COMPARISON WITH SCALE EQUIVARIANT SHRINKAGE ESTIMATORS

In Section 2 we found that the unbiased estimator \mathbf{s}_{u}^{2} , which is also the BAEE under L_{E} (i.e., \mathbf{s}_{E}^{2}), is the most preferable in terms of PNC, among the three affine equivariant estimators. But in a decision theoretic setup, under the loss L_{E} the estimator $\mathbf{s}_{u}^{2} = \mathbf{s}_{E}^{2}$ is dominated by the Stein type estimator

$$\mathbf{s}_{E(S)}^{2} = \min\left\{S/(m-1), (S + \|X\|^{2})/(m+p-1)\right\},$$
(3.1)

and the Brewster-Zidek type estimator

where $U = S/(S + ||X||^2)$ and

$$\boldsymbol{s}_{E(BZ)}^{2} = \left\{ 1 - \boldsymbol{f}_{E(BZ)}(U) \right\} S / (m-1), \qquad (3.2)$$

7

$$\boldsymbol{f}_{E(BZ)}(U) = \frac{2(m+p-1)^{-1}(1-U)^{p/2}U^{(m-3)/2}}{\int_{U}^{1}(1-y)^{p/2-1}y^{(m-3)/2}dy}.$$
(3.3)

The estimator $\boldsymbol{s}_{E(S)}^2$ can be expressed as (similar to $\boldsymbol{s}_{E(BZ)}^2$)

$$\boldsymbol{s}_{E(S)}^{2} = \left\{ 1 - \boldsymbol{f}_{E(S)}(U) \right\} S / (m-1), \qquad (3.4)$$

where

$$\mathbf{f}_{E(S)}(U) = max \quad 0, 1 - \frac{(m-1)}{(m+p-1)U} \quad .$$
(3.5)

Both the improved estimators in (3.2) and (3.4) have the general structure $\mathbf{s}_{*}^{2} = \mathbf{s}_{u}^{2}(1-\mathbf{f}(U))$, where $0 < \mathbf{f}(U)$ 1, and \mathbf{f} is nondecreasing in U. So, the probability that $\mathbf{s}_{*}^{2} = \mathbf{s}_{u}^{2}(1-\mathbf{f}(U))$ is closer to \mathbf{s}^{2} than \mathbf{s}_{u}^{2} is so to \mathbf{s}^{2} is

$$\Delta_{\mathbf{w}}(\mathbf{s}_{*}^{2} | \mathbf{s}_{u}^{2}) = P \Big[(\mathbf{s}_{*}^{2} - \mathbf{s}^{2})^{2} \quad (\mathbf{s}_{u}^{2} - \mathbf{s}^{2})^{2} \Big]$$

= $P \mathbf{f}(U)(\frac{S/\mathbf{s}^{2}}{(m-1)}) \quad 2(\frac{S/\mathbf{s}^{2}}{(m-1)} - 1) \quad .$ (3.6)

First we simplify the expression (3.6), and then using specific choices for f(U) (i.e., $f_{E(S)}$, $f_{E(BZ)}$), we get the desired probabilities.

desired probabilities. For notational simplicity let $U_1 = S/S^2$ and $U_2 = ||X||^2/S^2$. Note that U_1 and U_2 follow respectively \mathbf{c}_{m-1}^2 and $\mathbf{c}_p^2(\mathbf{l})$ (noncentral Chi-square distribution with p df and noncentrality parameter $\mathbf{l} = ||\mathbf{n}||^2/S^2$), and they are independent. We use the representation: $\mathbf{c}_p^2(\mathbf{l}) = \mathbf{c}_{p+2J}^2$ where J follows Poisson $(\mathbf{l}/2)$. Given J = j, U_2 follows \mathbf{c}_{p+2j}^2 ; and hence $(U_1 + U_2)$ follows $\mathbf{c}_{m+p-1+2j}^2$ which is independent of $U = U_1/(U_1 + U_2)$, Ufollows Beta((m-1)/2, (p/2) + j) distribution. Expression (3.6) can be written as

$$\Delta_{\mathbf{w}} (\mathbf{s}_{*}^{2} | \mathbf{s}_{u}^{2}) = P[U\mathbf{f}(U)(U_{1} + U_{2})/(m-1) \quad 2(U(U_{1} + U_{2})/(m-1) - 1)]$$

$$= P[(U_{1} + U_{2})U(2 - \mathbf{f}(U)) \quad 2(m-1)]$$

$$= \exp(-1/2) \frac{(1/2)^{j}}{j!} P \mathbf{c}_{m+p-1+2j}^{2} \frac{2(m-1)}{U(2 - \mathbf{j}(U))} ,$$
(where U is a $Beta((m-1)/2, (p/2) + j)$ random variable)

$$= \exp(-1/2) \frac{(1/2)^{j}}{j!} - \frac{\frac{1}{0} u^{\frac{m-1}{2}-1} (1-u)^{\frac{p}{2}+j-1}}{Beta(\frac{m-1}{2}, \frac{p}{2}+j)} P c_{m+p-1+2j}^{2} - \frac{2(m-1)}{u(2-f(u))} du.$$
(3.7)

By using $f(U) = f_{E(BZ)}(U)$ and $f(U) = f_{E(S)}(U)$ in (3.7) we get the expressions for $\Delta_{w}(s_{E(BZ)}^{2} | s_{u}^{2})$ and $\Delta_{w}(s_{E(S)}^{2} | s_{u}^{2})$ respectively.

In Table 3.1 (a)(g) and 3.2 (a)(g) we have computed the values of $\Delta_{w}(\mathbf{s}_{E(BZ)}^{2}|\mathbf{s}_{u}^{2})$ and $\Delta_{w}(\mathbf{s}_{E(S)}^{2}|\mathbf{s}_{u}^{2})$ for $\mathbf{l} = 0.0, 0.1, 0.3, 0.5, 1.0, 5.0, 10.0$, and various combinations of m and p. Note that all the tabulated values are less than 0.5.

	Table 3.1	l (a). Valu	les or Δ_{μ}	$(\boldsymbol{S}_{F(RZ)} $	\mathbf{S}_{μ}) Ior	I = 0.0.	
$p \qquad m$	5	10	15	20	25	50	100
1	0.3610	0.3938	0.4066	0.4134	0.4174	0.4238	0.4211
2	0.3461	0.3886	0.4076	0.4191	0.4270	0.4467	0.4599
3	0.3278	0.3741	0.3953	0.4083	0.4173	0.4405	0.4575
4	0.3130	0.3620	0.3847	0.3988	0.4086	0.4341	0.4528
5	0.3008	0.3518	0.3757	0.3906	0.4011	0.4284	0.4487
10	0.2616	0.3165	0.3438	0.3612	0.3737	0.4070	0.4327
25	0.2121	0.2661	0.2978	0.3156	0.3322	0.3669	0.4040
50	0.1977	0.2387	0.2662	0.2827	0.2994	0.3389	0.3762

Table 3.1 (a). Values of $\Delta_{\mu}(s_{I(PZ)}^2 | s_{\mu}^2)$ for l = 0.0.

Table 3.1 (b). Values of $\Delta_{w}(s_{F(RZ)}^{2}|s_{u}^{2})$ for l = 0.1.

	$\frac{1}{2} \sum_{w \in E(BZ)} B_{w} = \frac{1}{2} \sum_{w \in E(BZ)} B_{w}$									
$p \qquad m$	5	10	15	20	25	50	100			
1	0.3619	0.3950	0.4079	0.4148	0.4190	0.4258	0.4238			
2	0.3447	0.3893	0.4083	0.4197	0.4276	0.4472	0.4604			
3	0.3283	0.3748	0.3960	0.4090	0.4180	0.4411	0.4578			
4	0.3135	0.3628	0.3855	0.3995	0.4093	0.4346	0.4532			
5	0.3013	0.3525	0.3765	0.3914	0.4019	0.4290	0.4491			
10	0.2620	0.3173	0.3445	0.3620	0.3744	0.4077	0.4332			
25	0.2063	0.2548	0.2832	0.3016	0.3122	0.3523	0.3855			
50	0.1858	0.2296	0.2521	0.2689	0.2838	0.3217	0.3565			

Table 3.1 (c). Values of $\Delta_{m}(s_{E(PZ)}^{2}|s_{m}^{2})$ for l = 0.3.

Tuble 3.1 (c): Values of $\Delta_w(S_{F(RZ)} S_u)$ for $1 = 0.51$										
$p \xrightarrow{m}$	5	10	15	20	25	50	100			
1	0.3634	0.3972	0.4104	0.4175	0.4219	0.4295	0.4286			
2	0.3475	0.3906	0.4096	0.4210	0.4288	0.4482	0.4613			
3	0.3292	0.3762	0.3974	0.4103	0.4193	0.4421	0.4586			
4	0.3144	0.3642	0.3870	0.4010	0.4107	0.4357	0.4541			
5	0.3022	0.3540	0.3781	0.3929	0.4033	0.4301	0.4500			
10	0.2627	0.3187	0.3461	0.3635	0.3760	0.4090	0.4342			
25	0.1873	0.2333	0.2539	0.2699	0.2868	0.3198	0.3460			
50	0.1680	0.2057	0.2295	0.2422	0.2563	0.2941	0.3208			

Table 3.1 (d). Values of $\Delta_{w}(s_{F(BZ)}^{2}|s_{u}^{2})$ for l = 0.5.

	Table 5.	I (u). Val		E(BZ)	\mathbf{S}_{u}) IOI	I = 0.5 .	
$p \xrightarrow{m}$	5	10	15	20	25	50	100
1	0.3648	0.3993	0.4128	0.4201	0.4246	0.4329	0.4331
2	0.3484	0.3918	0.4108	0.4221	0.4299	0.4492	0.4622
3	0.3302	0.3776	0.3988	0.4116	0.4205	0.4430	0.4593
4	0.3154	0.3656	0.3885	0.4024	0.4121	0.4368	0.4549
5	0.3031	0.3555	0.3796	0.3944	0.4047	0.4313	0.4509
10	0.2634	0.3200	0.3476	0.3651	0.3775	0.41032	0.4352
25	0.1686	0.2074	0.2313	0.2454	0.2579	0.2874	0.3142
50	0.1509	0.1880	0.2048	0.2194	0.23203	0.2638	0.2935

Table 3.1 (e). Values of $\Delta_{w}(s_{F(RZ)}^{2}|s_{u}^{2})$ for l = 1.0.

$W (\mathcal{S}_{F}(R)) \mathcal{S}_{\mu}$									
$p \xrightarrow{m}$	5	10	15	20	25	50	100		
1	0.3681	0.4038	0.4178	0.4255	0.4304	0.4401	0.4425		
2	0.3505	0.3948	0.4137	0.4249	0.4325	0.4514	0.4642		
3	0.3324	0.3809	0.4020	0.4147	0.4234	0.4454	0.4611		
4	0.3176	0.3692	0.3920	0.4058	0.4153	0.4394	0.4568		
5	0.3053	0.3591	0.3833	0.3979	0.4081	0.4340	0.4529		
10	0.2653	0.3234	0.3513	0.3688	0.3812	0.4134	0.4377		
25	0.1325	0.1629	0.1808	0.1922	0.1983	0.2229	0.2435		
50	0.1182	0.1459	0.1632	0.1733	0.1792	0.2056	0.2263		

Table 3.1 (f). Values of	Λ (s ² s ²)	for	l = 5.0	
	$\Delta_{W}(\mathbf{S}_{F(R7)} \mathbf{S}_{u})$	101	I = 3.0 .	

	Table 3.1 (i). Values of $\Delta_w(S_{F(RZ)} S_u)$ for $I = 5.0$.									
$p \xrightarrow{m}$	5	10	15	20	25	50	100			
1	0.36823	0.4227	0.4379	0.4463	0.4519	0.4649	0.4733			
2	0.3636	0.4120	0.4301	0.44025	0.4469	0.4629	0.4737			
3	0.3471	0.4012	0.4217	0.4331	0.4407	0.4587	0.4710			
4	0.3329	0.3914	0.4139	0.4265	0.4348	0.4546	0.4681			
5	0.3207	0.3825	0.4067	0.4203	0.4293	0.4508	0.4654			
10	0.2788	0.3474	0.3771	0.3943	0.4059	0.4341	0.4536			
25	0.0177	0.0222	0.0244	0.0260	0.0273	0.0305	0.0332			
50	0.0162	0.0198	0.0220	0.0235	0.0247	0.0278	0.0309			

Table 3.1 (g). Values of $\Delta_{w}(s_{F(BZ)}^{2}|s_{w}^{2})$ for l = 10.0.

				$V = E(RZ) \Gamma$	<i>µ</i> /		
$p \xrightarrow{m}$	5	10	15	20	25	50	100
1	0.3842	0.4247	0.4390	0.4771	0.4522	0.4645	0.4729
2	0.3688	0.4176	0.4343	0.4432	0.4490	0.4627	0.4718
3	0.3545	0.4103	0.4291	0.4392	0.4456	0.4605	0.7404
4	0.3417	0.4030	0.4239	0.4350	0.4421	0.4583	0.4689
5	0.3303	0.3959	0.4188	0.4308	0.43855	0.4560	0.4674
10	0.2886	0.3649	0.3946	0.4107	0.4211	0.4447	0.4597
25	0.0015	0.0018	0.0020	0.0021	0.0022	0.0025	0.0027
50	0.0013	0.0016	0.0018	0.0019	0.0020	0.0023	0.0025

Table 3.2 (a). Values of $\Delta_{m}(s_{E(S)}^{2}|s_{m}^{2})$ for l = 0.0.

Tuble of (u) values of $\Delta_{w}(S_{F(S)} S_{u})$ for $1 = 0.01$							
$p \xrightarrow{m}$	5	10	15	20	25	50	100
1	0.3690	0.4023	0.4145	0.4207	0.4243	0.4291	0.4250
2	0.3689	0.4075	0.4243	0.4342	0.4409	0.4571	0.4675
3	0.3645	0.4025	0.4197	0.4301	0.4372	0.4553	0.4681
4	0.3620	0.3988	0.4159	0.4264	0.4338	0.4525	0.4662
5	0.3605	0.3961	0.4130	0.4235	0.4310	0.4502	0.4644
10	0.3595	0.3897	0.4048	0.4148	0.4220	0.4420	0.4578
25	0.3652	0.3885	0.3993	0.4068	0.4126	0.4304	0.4468
50	0.3724	0.3932	0.4012	0.4064	0.4103	0.4234	0.4380

Table 3.2 (b). Values of $\Delta_{w}(\mathbf{s}_{F(S)}^{2} | \mathbf{s}_{u}^{2})$ for l = 0.1.

Table 3.2 (b). Values of $\Delta_{W}(S_{E(S)} S_{u})$ for $1 = 0.1$.								
$p \xrightarrow{m}$	5	10	15	20	25	50	100	
1	0.3706	0.4038	0.4161	0.4223	0.4260	0.4311	0.4277	
2	0.3702	0.4086	0.4252	0.4350	0.4416	0.4577	0.4680	
3	0.3658	0.4034	0.4206	0.4309	0.4380	0.4558	0.4686	
4	0.3632	0.3999	0.4169	0.4273	0.4346	0.4531	0.4666	
5	0.3618	0.3972	0.4140	0.4245	0.4318	0.4508	0.4649	
10	0.3605	0.3907	0.4058	0.4157	0.4229	0.4427	0.4583	
25	0.3658	0.3892	0.4001	0.4075	0.4133	0.4310	0.4474	
50	0.3728	0.3936	0.4017	0.4069	0.4108	0.4240	0.4385	

Table 3.2 (c). Values of $\Delta_{w}(s_{E(S)}^{2}|s_{u}^{2})$ for l = 0.3.

$\frac{1}{2} \frac{1}{2} \frac{1}$								
$p \xrightarrow{m}$	5	10	15	20	25	50	100	
1	0.3734	0.4067	0.4190	0.4254	0.4291	0.4350	0.4326	
2	0.3726	0.4106	0.4269	0.4365	0.4430	0.4588	0.4690	
3	0.3683	0.4057	0.4224	0.4325	0.4395	0.4569	0.4693	
4	0.3657	0.4021	0.4188	0.4290	0.4362	0.4543	0.4675	
5	0.3641	0.3994	0.4159	0.4262	0.4334	0.4520	0.4657	
10	0.3624	0.3927	0.4046	0.4174	0.4245	0.4440	0.4593	
25	0.3670	0.3906	0.4016	0.4090	0.4147	0.4322	0.4484	
50	0.3735	0.3946	0.4028	0.4080	0.4119	0.4251	0.4394	

Table 3.2 (d). Values of $\Delta_{W}(\mathbf{S}_{E(S)} \mathbf{S}_{u})$ for $T = 0.5$.								
$p \xrightarrow{m}$	5	10	15	20	25	50	100	
1	0.3762	0.4093	0.4217	0.4282	0.4320	0.4385	0.4371	
2	0.3750	0.4124	0.4285	0.4380	0.4443	0.4598	0.4699	
3	0.3706	0.4077	0.4242	0.4341	0.4409	0.4579	0.4701	
4	0.3680	0.4041	0.4206	0.4307	0.4376	0.4554	0.4683	
5	0.3664	0.4014	0.4178	0.4279	0.4350	0.4532	0.4666	
10	0.3643	0.3946	0.4094	0.4191	0.4261	0.4452	0.4602	
25	0.3681	0.3920	0.4030	0.4104	0.4161	0.4335	0.4494	
50	0.3742	0.3955	0.4038	0.4090	0.4130	0.4261	0.4403	

Table 3.2 (e). Values of $\Delta_{w}(s_{F(S)}^{2}|s_{w}^{2})$ for l = 1.0.

Tuble of $E(S) \to \frac{1}{2} (S) = \frac{1}{2} (S) $							
p m	5	10	15	20	25	50	100
1	0.3820	0.4149	0.4274	0.4340	0.4382	0.4458	0.4466
2	0.3800	0.4166	0.4320	0.4411	0.4472	0.4621	0.4719
3	0.3759	0.4121	0.4280	0.4375	0.4440	0.4602	0.4718
4	0.3733	0.4087	0.4247	0.4343	0.4410	0.4579	0.4701
5	0.3716	0.4061	0.4219	0.4317	0.4385	0.4558	0.4685
10	0.3686	0.3990	0.4136	0.4231	0.4299	0.4482	0.4624
25	0.3709	0.3953	0.4064	0.4138	0.4195	0.4364	0.4517
50	0.3760	0.3978	0.4063	0.4116	0.4157	0.4287	0.4426

	Table 3.2 (1). Values of $\Delta_{w}(S_{F(S)} S_{u})$ for $T = 5.0$.								
$p \xrightarrow{m}$	5	10	15	20	25	50	100		
1	0.4017	0.4335	0.4460	0.4532	0.4579	0.4691	0.4761		
2	0.4000	0.4325	0.4457	0.4532	0.4583	0.4707	0.4792		
3	0.3981	0.4307	0.4440	0.4518	0.4570	0.4698	0.4787		
4	0.3965	0.4291	0.4425	0.4504	0.4557	0.4687	0.4779		
5	0.3952	0.4276	0.4411	0.4490	0.4544	0.4678	0.4772		
10	0.3912	0.4222	0.4355	0.4435	0.4491	0.4633	0.4738		
25	0.3876	0.4153	0.4270	0.4343	0.4396	0.4540	0.4658		
50	0.3873	0.4127	0.4227	0.4287	0.4331	0.4456	0.4572		

Table 3.2 (f). Values of $\Delta_{w}(s_{F(S)}^{2}|s_{w}^{2})$ for l = 5.0.

Table 3.2 (g). Values of $\Delta_{w}(s_{E(S)}^{2}|s_{w}^{2})$ for l = 10.0.

$\Delta_{w}(S_{F(S)} S_{u})$ for $I = 10.0$.								
$p \xrightarrow{m}$	5	10	15	20	25	50	100	
1	0.4000	0.4309	0.4432	0.4502	0.4549	0.4663	0.4741	
2	0.3996	0.4306	0.4430	0.4501	0.4548	0.4663	0.4742	
3	0.3991	0.4302	0.4426	0.4497	0.4545	0.4663	0.4741	
4	0.3986	0.4297	0.4422	0.4493	0.4541	0.4658	0.4739	
5	0.3982	0.4292	0.4417	0.4489	0.4538	0.4655	0.4737	
10	0.3963	0.4270	0.4386	0.4469	0.4518	0.4639	0.4725	
25	0.3929	0.4223	0.4343	0.4414	0.4463	0.4589	0.4683	
50	0.3908	0.4186	0.4296	0.4361	0.4406	0.4525	0.4623	

Concluding Remark: Even though the scale equivariant (but not location in variant) estimators $\boldsymbol{s}_{E(BZ)}^2$ and $\boldsymbol{s}_{E(S)}^2$ are better than \boldsymbol{s}_u^2 (UMVUE) in terms of risk, the latter is much superior to formers in terms of PNC, and therefore, apart from being affine equivariant, the UMVUE seems more appealing as an estimator of \boldsymbol{s}^2 .

<u>Acknowledgement</u>: The first author's research has been supported by a research grant from the National Science Council (nsc-89-2118-M-163-001).

REFERANCES

- 1. Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators. Annals of Statistics, 2, 21-38.
- 2. Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. *Annals of Mathematical Statistics*, 39, 29-48.
- Pal, N., Ling, C. and Lin, J. J. (1998). "Estimation of a normal variance-A critical review", *Statistical Papers*, Vol. 39, 389-404.
- 4. Rao, C. R. (1981). Some comments on the minimum mean square error as a criterion of estimation. In *Statistics and Related Topics* (M. Csorgo, D. A. Dawson, J. N. K. Rao and A. K. Md. E. Saleh, eds.), North-Holland, Amsterdam.
- 5. Rao, C. R., Keating, J. P. and Mason, R.L. (1986). The Pitman Nearness Criterion and its determination, *Communications in Statistics, Theory and Methods*, 15, 3173-3191.
- 6. Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. *Annals of the Institute of Statistical Mathematics*, 16, 155-160.