
COMPARISON OF NORMAL VARIANCE ESTIMATORS 
IN TERMS OF PITMAN NEARNESS CRITERION 

 

Jyh-Jiuan Lin 1*, Nabendu Pal 2and Ching-Hui Chang3 

 

1 Department of Statistics 

Tamkang University, Tamsui, Taipei, Taiwan, R.O.C. 

  
2Department of Mathematics 

University of Louisiana at Lafayette+ 

Lafayette, Louisiana 70504-1010, USA 

 
3Department of Applied Statistics, 

Ming Chuan University, Taoyuan, Taiwan, R.O.C. 

 

 

 

 

 

ABSTRACT 

 For estimating a normal variance under squared error loss function it is well known that the best affine 

(location and scale) equivariant estimator, which is better than the maximum likelihood estimator as well as the 

unbiased estimator, is also inadmissible. The improved estimators, e.g., Stein type, Brown type and 

Brewster-Zidek type, are all scale equivariant but not location invariant. Lately a good amount of research has 

been done to compare the improved estimators in terms of risk, but very little attention had been paid to compare 

these estimators in terms of Pitman nearness criterion. In this paper we have undertaken a comprehensive study to 

compare various variance estimators in terms of Pitman nearness criterion, which has long been over due, and 

have made some interesting observations in the process. 
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1.  INTRODUCTION 

 Assume that we have independent random observations X  and S  such that ),,,( 21= pXXXX L  follow 
a ),( 2

pp IN σθ  (p-dimensional normal) distribution and )( 2σS follow a 2
1−mχ  (chi-square with )1( −m  d. f.) 

distribution. Consider the problem of estimation of 2σ  efficiently. 
 The above-described model is encountered if one has independent and identically distributed (iid) observations 

nXXX ,,, 21 L  from a ),( 2
pp IN σθ  distribution. The data can be reduced by sufficiency principle, and one needs 

to focus only on XnX = , )/(
1

nXX
n

i
i=

=
and

2

1
−=

=

n

i
i XXS . Note that X  follows ),( 2

pp IN σµ  and 
2

1
2 ~ −mS χσ  with θµ n=  and )1()1( −=− npm . 

 Similarly, in a linear model setup 111 += nppnn XY β  where 1n  follows ),0( 2
nn IN σ  distribution, let 

β  be the least squares estimate of β  and ppM  (p. d.) be such that )( XXMM = , then )( βM  plays the role of X  
and S  plays the role of error sum of squares (SSE) for suitable choices of θ  and m . 
    Even though this article deals with estimation of 2σ , the techniques discussed here can be used, with suitable 
modification, for estimating ασ 2  for any 0>α . In particular, one can take 2/1=α  to estimate σ , the normal 
standard deviation. The special case p = 2 of the above setup has many applications in defense research and 
development while estimating the accuracy of a weapon system. Accuracy of a weapon system is measured by CEP, 
called Circular Probable Error. For example, in a test range a new surface to surface missile in being tested and the 
location of the target is known, say, )0,0(=O .  From a fixed distance when missiles are test fixed, we observe the 
points of impact, i. e., bivariate locations nXXX ,,, 21 L  which are assumed to follow a bivariate normal distribution 
with mean ),( 21= µµµ  and diagonal dispersion matrix 2

2 Iσ . When the system is ‘in order’ (or ‘in focus’), the 
mean µ  is expected to be 0, the target location; and the system is ‘out of focus’ if µ  is different from O  and 
usually unknown. The radius of the circular area centered at µ  which gives probability mass of 0.5 is called the CEP 
of the weapon system (particular type of missiles). It can be shown that CEP is proportional to σ , and hence CEP 
estimation essentially boils down to estimation of σ . 
 In classical statistics, usual estimators of 2σ  are (i) the unique minimum variance unbiased estimator (UMVUE) 
given by 

 )1(2 −= mSuσ ;    (1.1) 
 

and (ii) the maximum likelihood estimator (MLE) given by 
 

 )1(2 −+= pmSmlσ . (1.2) 
 

 In a decision-theoretic setup the two most commonly used loss functions are 
 

 2222 )1(),( −= σσωσSL  (1.3) 
 

 −= )(),( 222 σσωσEL ln 1)( 22 −σσ  (1.4) 
 

where 2σ  is an estimator of 2σ  and ),( 2σθω = . The loss functions SL  and EL  are called respectively the 
squared error loss (SEL) and the entropy loss (EL). 
 If we consider the group ΑG  of affine transformations (i.e., ),(),( 2 SabaXSX + , 0>a , 

−= pb p dimensional real space), then the affine equivariant estimators have the form cSc =2σ , where 0>c  is 
a constant. Since the group ΑG  (and the corresponding induced group ΑG  acting on 

{ }0,),( 22 >==Ω σθσθω p  such that ),(),( 222 σθσθ aba + , 0>a , pb ) is transitive, an affine 
equivariant estimator 2

cσ  has constant risk on Ω . Therefore, one can find the best affine equivariant estimator 
(BAEE) of 2σ  by minimizing the risk of 2

cσ  with respect to (w. r. t.) c . The BAEEs of 2σ  under SL  and EL  
are respectively. 

 )1(2 += mSSσ    and   )1(22 −== mSuE σσ   (1.5) 
 

 Interestingly, 2
Sσ  ( 2

Eσ ) is inadmissible under SL  ( EL ), and improved estimators are only scale equivariant but 
not location invariant. Stein (1964) showed that under SL , an improved estimator of 2σ  can be found as  
 

 =2
)(SSσ min { } )1()( ,)1( 2 ++++ pmXSmS , (1.6) 

 
which is uniformly better than 2

Sσ . Brown (1968) proposed a similar but somewhat different estimator of 2σ  under 
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SL  of the form 
                { }SrFImrFIcBS )()1()( 0

1
00

2
)( ++<= −σ ,   (1.7) 

 
where 00 >r  is any constant, SXF

2
=  and )( 000 rcc =  is  a suitable constant dependent on 0r , and 

1
0 )1( −+< mc . However, both 2

)(SSσ  and 2
)(BSσ  are nonanalytic and hence inadmissible. Brown’s technique was 

further extended by Brewster and Zidek (1974) who obtained an admissible improved estimator of 2σ  as 
 

               { } )1()(1 )(
2

)( +−= mSUBZSBZS φσ , (1.8) 
 

where SXF /2= , 1)1( −+= FU  and 
 

             
dyyy

UUpm
U

mp
U

mp

BZS 2/)1(12/1

2/)1(2/1

)(
)1(

)1()1(2
)(

+−

+−

−

−++
=φ . (1.9) 

 
For a comprehensive review on normal variance estimation and related topics see Pal, Ling and Lin (1998). Estimators 
analogous to (1.6), (1.7) and (1.8) under the loss EL  can be derived. Such estimators are mentioned in Section 3 for 
further analysis. 
 While emphasis had been given to compare various variance estimators in terms of risk, very little attention had 
been paid to do the same in terms of another important criterion namely, the Pitman nearness criterion (PNC). 
 
Definition 1.1. Given two estimators, say 2

1σ  and 2
2σ , of 2σ , 2

1σ  is said to be better than 2
2σ  in terms of PNC if  

 
 ( ) 5.0)()()( 222

2
222

1
2
2

2
1 −−=∆ σσσσσσω P  

 
                       i.e., ( ) 5.0)1()1()( 222

2
222

1
2
2

2
1 −−=∆ σσσσσσω P .               (1.10) 

  
 The major difference between the usual risk criterion and the PNC is that the latter is nontransitive i.e., if 2

1σ  is 
better than 2

2σ  in terms of PNC, and 2
2σ  is better than 2

3σ  in terms of PNC, then it does not imply that 2
1σ  is 

better than 2
3σ  in terms of PNC. As a result, comparison under PNC can sometimes be more complicated and a bit 

confusing. 
    The renewed interest in PNC was due to Rao (1981), who claimed that the PNC was more appropriate than the 
quadratic loss function for evaluating an estimator. For further general discussion on this topic one can see Rao, Keating 
and Mason (1986). 
 In Section 2 we first consider comparison of three affine equivariant estimators, e.g., 2

mlσ , 22
Eu σσ =  and 2

Sσ , 
in terms of PNC. It appears, quite interestingly, that the unbiased estimator emerges as the most preferable among the 
three affine equivariant estimators. In Section 3 we compare 22

Eu σσ =  against 2
)(SEσ  and 2

)(BZEσ , Stein type and 
Brewster-Zidek type improved estimators under EL  respectively. Interestingly it is found that both 2

)(SEσ  and 
2

)(BZEσ  are much inferior to 2
uσ  (UMVUE) in terms of PNC. It turns out that 2

uσ  is better (PNC) than other 
variance estimators and this is the main contribution of our investigation. 
 
2. COMPARISON OF AFFINE EQUIVARIANT ESTIMATORS 
 Take two affine equivariant estimators Sc1

2
1 =σ  and Sc2

2
2 =σ . Then 2

1σ  is closer to 2σ  than 2
2σ  with 

probability  
           ( )222

2
222

1
2
2

2
1 )1()1()( −−=∆ σσσσσσ ωω P . (2.1) 

 
The probability )( 2

2
2
1 σσω∆  can be simplified further as 

 
 −−−=∆ 0)(2))(()()( 212

2
2

2
12

2
2

2
1 cc

S
cc

S
P

σσ
σσ ωω  

 
 

                                  
<+

>+
= −

−

21
1

21
2

21
1

21
2

,))(2(

,))(2(

ccifccSP

ccifccSP

σ

σ

.   
               (2.2) 

 
 
Call )(2 21

* ccc += . Since 2σS  is a 2
1−mχ  random variable we have 

 
 

<

>
=∆

−

−

21
*2

1

21
*2

12
2

2
1

,)(

,)(
)(

ccifcP

ccifcP

m

m

χ
χ

σσω
.

 (2.3) 
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Also, form the expression (2.1) it is conveniently noted that )(1)( 2

1
2
2

2
2

2
1 σσσσ ωω ∆−=∆ . 

 
2.1  Computation of ω∆ ’s 

(1) Comparison of 2
mlσ  and 2

Sσ . 
Take 1

1 )1( −+= mc  and 1
2 )1( −++= pmc . Then define )22()1)(1(2*

1 +++++= pmpmmc . Then from (2.3), 
 

 )()( *
1

2
1

22 cP mmlS =∆ −χσσω .  (2.4) 
 

(2) Comparison of 2
uσ  and 2

mlσ . 
Take 1

1 )1( −−= mc  and 1
2 )1( −++= pmc . Define )2()1)(1(2*

2 pmpmmc +++−= . Form (2.3) it is readily seen 
that  

 )()( *
2

2
1

22 cP mmlu =∆ −χσσω .   (2.5) 
 

(3) Comparison of 2
uσ  and 2

Sσ . 
Take 1

1 )1( −−= mc  and 1
2 )1( −+= mc . Also define mmc )1( 2*

3 −= . Therefore, from (2.3) we have 
 

)()( *
3

2
1

22 cP mSu =∆ −χσσω .                              (2.6) 
 

of m  and p . Note that while )( 22
mlS σσω∆  and )( 22

mlu σσω∆  are dependent on both m  and p , )( 22
Su σσω∆  

is free from p . 
 

 
Figure2.1.  3-D graph of )( 22

mlS σσω∆ .             Figure2.2.  3-D graph of )( 22
mlu σσω∆ . 

 
Table 2.1. Values of )( 22

mlS σσω∆  for various m  and p . 

p   m 2 3 4 5 10 15 20 25 50 100 

1 0.9359 0.8916 0.8586 0.8328 0.7557 0.7153 0.6895 0.6712 0.6236 0.5884 
2 0.9471 0.9093 0.8800 0.8564 0.7820 0.7407 0.7135 0.6938 0.6414 0.6017 
3 0.9545 0.9216 0.8956 0.8743 0.8041 0.7631 0.7352 0.7147 0.6585 0.6147 
4 0.9596 0.9305 0.9075 0.8883 0.8230 0.7829 0.7549 0.7339 0.6748 0.6274 
5 0.9633 0.9373 0.9167 0.8994 0.8391 0.8005 0.7728 0.7516 0.6905 0.6399 
6 0.9661 0.9426 0.9240 0.9084 0.8529 0.8612 0.7891 0.7680 0.7054 0.6520 
7 0.9683 0.9468 0.9300 0.9158 0.8649 0.8301 0.8038 0.7830 0.7196 0.6639 
8 0.9701 0.9502 0.9349 0.9220 0.8753 0.8426 0.8173 0.7969 0.7332 0.6754 
9 0.9715 0.9531 0.9390 0.9272 0.8844 0.8537 0.8295 0.8098 0.7461 0.6866 
10 0.9728 0.9554 0.9424 0.9317 0.8924 0.8637 0.8407 0.8216 0.7584 0.6975 
20 0.9788 0.9676 0.9604 0.9551 0.9379 0.9245 0.9121 0.9001 0.8525 0.7905 
30 0.9810 0.9721 0.9672 0.9641 0.9564 0.9508 0.9449 0.9388 0.9081 0.8571 
40 0.9821 0.9744 0.9707 0.9688 0.9659 0.9643 0.9620 0.9592 0.9411 0.9032 
50 0.9828 0.9759 0.9728 0.9716 0.9716 0.9722 0.9719 0.9710 0.9610 0.9344 
100 0.9842 0.9788 0.9771 0.9772 0.9822 1.0000 1.0000 0.9903 0.9924 0.9897 
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2
uσ  

2
mlσ  2

Sσ  PNC 

PNC PNC 

 
Table 2.2. Values of )( 22

mlu σσω∆  for various m  and p . 
p   m 2 3 4 5 10 15 20 25 50 100 

1 0.7941 0.7603 0.7385 0.7219 0.6721 0.6457 0.6286 0.6163 0.5843 0.5603 
2 0.8033 0.7769 0.7593 0.7452 0.6985 0.6711 0.6526 0.6390 0.6021 0.5737 
3 0.8096 0.7889 0.7752 0.7636 0.7213 0.6940 0.6746 0.6601 0.6193 0.5868 
4 0.8141 0.7981 0.7877 0.7785 0.7410 0.7145 0.6949 0.6798 0.6358 0.5996 
5 0.8176 0.8053 0.7978 0.7907 0.7583 0.7330 0.7135 0.6981 0.6517 0.6121 
6 0.8203 0.8111 0.8060 0.8008 0.7734 0.7497 0.7306 0.7151 0.6670 0.6243 
7 0.8225 0.8159 0.8130 0.8095 0.7867 0.7648 0.7464 0.7310 0.6816 0.6364 
8 0.8243 0.8199 0.8188 0.8168 0.7985 0.7785 0.7608 0.7457 0.6956 0.6481 
9 0.8258 0.8233 0.8238 0.8232 0.8090 0.7909 0.7741 0.7595 0.7090 0.6595 
10 0.8270 0.8262 0.8282 0.8288 0.8184 0.8022 0.7864 0.7723 0.7218 0.6707 
20 0.8338 0.8422 0.8525 0.8605 0.8759 0.8748 0.8689 0.8613 0.8222 0.7668 
30 0.8365 0.8488 0.8629 0.8743 0.9023 0.9097 0.9103 0.9080 0.8843 0.8374 
40 0.8379 0.8524 0.8686 0.8820 0.9170 0.9292 0.9336 0.9345 0.9228 0.8874 
50 0.8388 0.8546 0.8723 0.8868 0.9263 0.9413 0.9479 0.9507 0.9469 0.9221 
100 0.8407 0.8595 0.8800 0.8972 0.9455 0.9653 0.9749 0.9802 0.9879 0.9865 

 
Table 2.3. Values of )( 22

Su σσω∆  for various m  and all p . 
=m  2 3 4 5 10 15 20 25 50 100 

All p  0.7793 0.7364 0.7102 0.6916 .06414 0.6173 0.6024 0.5921 0.5658 0.5468 
 

 
 
 
 
 
 
 

 
           Figure2.3.  3-D graph of )( 22

Su σσω∆ .       Figure 2.4. Comparison of 2
uσ , 2

Sσ  and 2
mlσ . 

 
Remark 2.1. 
(1) From the above Table 2.1-2.3, it is clear that 
 
(i) 2

Sσ  is better than 2
mlσ  (in PNC); 

 
(ii) 2

uσ  is better than 2
mlσ  (in PNC); and 

 
(iii) 2

uσ  is better than 2
Sσ  (in PNC). 

 
 The above diagram Figure 2.4 gives a better visual comparison of the three above-mentioned estimators. We thus 
conclude that 2

uσ  (UMVUE as well as the BAEE under EL ) is the best among the three affine equivariant estimators 
we have discussed above. 
 
(2) In Tables 2.1 and 2.2, for a fixed ` m ’, the values of )( 22

mlS σσω∆  and )( 22
mlu σσω∆  are both increasing as p  

increases. This is due to the fact that in (2.4) and (2.5), both *
1c  and *

2c  are increasing functions of p  for a fixed 
` m ’. However, such a simple trend does not occur always if one varies m  for a fixed ` p ’. Table 2.1 shows that 

)( 22
mlS σσω∆  decreases monotonically as m  increases ( p  fixed) in most of the cases ( 501 p ). Only for `vary 

large p ’ ( 100=p ), the values first decrease, then increase and then finally decrease with increasing m . In Table 2.2, 
values of )( 22

mlu σσω∆  are steadily decreasing as m  increases for 81 p . For 9p , these values again show a 
“sine curve trend” (i.e., increase-decrease-increase) as m  increases. In Table 2.3, )( 22

Su σσω∆  decreases monotonically as 
m  increases. 
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2.2 Asymptotic values of ω∆ ’s. 
 In this subsection we will see the limiting values of ω∆ ’s ((2.4) - (2.6)) when (i) p  fixed and m ; (ii) 

= pm . 
 Note that ))1(( 2

1 −− mmχ  can be treated as the average of )1( −m  iid 2
1χ  random variates. To be precise, let 

121 ,,, −mYYY L  be iid 2
1χ -random variables. Then −=

−

=

1

1
)1(

m

i
i mYY  is equivalent to ))1(( 2

1 −− mmχ  as far as 
probability distribution is concerned. Since 2

1χ -distribution has mean 1 and variance 2, by Central Limit Theorem, 
 

 Y = )1(
2

1
−

−
Y

m
 is asymptotically )1,0(N . (2.7) 

 
We will use (2.7) to study (2.4) - (2.6) asymptotically. 

(1) p  fixed and large m . 
 Note that by using the representation of Y  in (2.7), 
 
(i) )()( *

1
2

1
22 cP mmlS =∆ −χσσω   (from (2.4)) 

 
 

−−+

−+++
−

−
=

2)22(

1)434(
)1(

2
1

2 pmpm

mpmmp
Y

m
P  

 
 )0)1,0((NP   (for fixed p  and pm >> ) 

 
(ii) )()( *

2
2

1
22 cP mmlu =∆ −χσσω   (from (2.5)) 

 
 

+

−+
−

−
=

2)2(

1)2(
)1(

2
1

pm

mp
Y

m
P  

 
 )0)1,0((NP  (for fixed p  and pm >> ) 
 
 5.0=  

Similarly, 
 

(iii) 5.0
2

1
)1(

2
1

)( 22 −
−

−
=∆

m

m
Y

m
PSu σσω  for large m .  

 
This tells that, in Tables 2.1 - 2.3, each row converges to 0.5 (for any fixed p ). 

(2) m  = p  = large 
 Interestingly, we get quite different results when m  and p  increase simultaneously. This will explain why the 
diagonal elements )( pm =  in Tables 2.1 and 2.2 are converging to 1. 
 By setting pm = , we get 
 
(i) 

−−

−++
−

−
=∆

2)23(

1)4(
)1(

2
1

)(
2

2
22

mm

mmm
Y

m
PmlS σσω  1 as m ; 

 
and 
 
(ii) 

−+
−

−
=∆

)3(2

1)2(
)1(

2
1

)( 22

m

mm
Y

m
Pmlu σσω   1 as m . 

 
 
3. COMPARISON WITH SCALE EQUIVARIANT SHRINKAGE ESTIMATORS 
 In Section 2 we found that the unbiased estimator 2

uσ , which is also the BAEE under EL  (i.e., 2
Eσ ), is the 

most preferable in terms of PNC, among the three affine equivariant estimators. But in a decision theoretic setup, under 
the loss EL  the estimator 22

Eu σσ =  is dominated by the Stein type estimator 
 

 =2
)(SEσ min { })1()(),1( 2 −++− pmXSmS , (3.1) 

 
and the Brewster-Zidek type estimator 
 

                 { } )1()(1 )(
2

)( −−= mSUBZEBZE φσ , (3.2) 
where )( 2XSSU +=  and 
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dyyy

UUpm
U

mp
U

mp

BZE 2/)3(12/1

2/)3(2/1

)(
)1(

)1()1(2
)(

−−

−−

−

−−+
=φ . (3.3) 

 
 The estimator 2

)(SEσ  can be expressed as (similar to 2
)(BZEσ ) 

 
                  { } )1()(1 )(

2
)( −−= mSUSESE φσ , (3.4) 

where 
 

               =)()( USEφ max
−+

−
−

Upm

m

)1(
)1(

1,0 . (3.5) 
 

 Both the improved estimators in (3.2) and (3.4) have the general structure ))(1(22
* Uu φσσ −= , where 

1)(0 < Uφ , and φ  is nondecreasing in U . So, the probability that ))(1(22
* Uu φσσ −=  is closer to 2σ  than 2

uσ  
is so to 2σ  is  
 
 [ ]222222

*
22

* )()()( σσσσσσω −−=∆ uu P    
 

                                 −
−−

= )1
)1(

(2)
)1(

)((
22

m

S

m

S
UP

σσ
φ .              (3.6) 

 
First we simplify the expression (3.6), and then using specific choices for )(Uφ  (i.e., )(SEφ , )(BZEφ ), we get the 
desired probabilities. 
 For notational simplicity let 2

1 σSU =  and 
22

2 σXU = . Note that 1U  and 2U  follow respectively 
2

1−mχ  and )(2 λχ p  (noncentral Chi-square distribution with p  df and noncentrality parameter 22 σµλ = ), and 
they are independent. We use the representation: 2

2
2 )( Jpp += χλχ  where J  follows Poisson )2(λ . Given jJ = , 

2U  follows 2
2 jp+χ ; and hence )( 21 UU +  follows 2

21 jpm +−+χ  which is independent of )( 211 UUUU += , U 
follows ))2(,2)1(( jpmBeta +−  distribution. Expression (3.6) can be written as 
 

[ ])1)1()((2)1()()()( 2121
22

* −−+−+=∆ mUUUmUUUUPu φσσω  
 
 [ ])1(2))(2()( 21 −−+= mUUUUP φ  
 
 

−
−

−= +−+
= ))(2(

)1(2
!

)2(
)2exp( 2

21
0 UU

m
P

j jpm

j

j ϕ
χ

λ
λ , 

 
 (where U  is a ))2(,2)1(( jpmBeta +−  random variable) 

 
du

uu

m
P

jBeta

uu

j jpmpm

jj

j

pm

−
−

+

−
−= +−+−

−+−

=

−

))(2(
)1(2

),(

)1(

!
)2(

)2exp( 2
21

22
1

111
0

0

22
1

φ
χ

λ
λ .                 (3.7) 

 
 

 By using )()( )( UU BZEφφ =  and )()( )( UU SEφφ =  in (3.7) we get the expressions for )( 22
)( uBZE σσω∆  and 

)( 22
)( uSE σσω∆  respectively. 

 In Table 3.1 (a)-(g) and 3.2 (a)-(g) we have computed the values of )( 22
)( uBZE σσω∆  and )( 22

)( uSE σσω∆  for 
0.10,0.5,0.1,5.0,3.0,1.0,0.0=λ , and various combinations of m  and p . Note that all the tabulated values 

are less than 0.5. 
 

Table 3.1 (a). Values of )( 22
)( uBZE σσω∆  for 0.0=λ . 

p 
   m

 5 10 15 20 25 50 100 
1 0.3610 0.3938 0.4066 0.4134 0.4174 0.4238 0.4211 
2 0.3461 0.3886 0.4076 0.4191 0.4270 0.4467 0.4599 
3 0.3278 0.3741 0.3953 0.4083 0.4173 0.4405 0.4575 
4 0.3130 0.3620 0.3847 0.3988 0.4086 0.4341 0.4528 
5 0.3008 0.3518 0.3757 0.3906 0.4011 0.4284 0.4487 
10 0.2616 0.3165 0.3438 0.3612 0.3737 0.4070 0.4327 
25 0.2121 0.2661 0.2978 0.3156 0.3322 0.3669 0.4040 
50 0.1977 0.2387 0.2662 0.2827 0.2994 0.3389 0.3762 
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Table 3.1 (b). Values of )( 22
)( uBZE σσω∆  for 1.0=λ . 

p 
   m

 5 10 15 20 25 50 100 
1 0.3619 0.3950 0.4079 0.4148 0.4190 0.4258 0.4238 
2 0.3447 0.3893 0.4083 0.4197 0.4276 0.4472 0.4604 
3 0.3283 0.3748 0.3960 0.4090 0.4180 0.4411 0.4578 
4 0.3135 0.3628 0.3855 0.3995 0.4093 0.4346 0.4532 
5 0.3013 0.3525 0.3765 0.3914 0.4019 0.4290 0.4491 
10 0.2620 0.3173 0.3445 0.3620 0.3744 0.4077 0.4332 
25 0.2063 0.2548 0.2832 0.3016 0.3122 0.3523 0.3855 
50 0.1858 0.2296 0.2521 0.2689 0.2838 0.3217 0.3565 

 
Table 3.1 (c). Values of )( 22

)( uBZE σσω∆  for 3.0=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3634 0.3972 0.4104 0.4175 0.4219 0.4295 0.4286 
2 0.3475 0.3906 0.4096 0.4210 0.4288 0.4482 0.4613 
3 0.3292 0.3762 0.3974 0.4103 0.4193 0.4421 0.4586 
4 0.3144 0.3642 0.3870 0.4010 0.4107 0.4357 0.4541 
5 0.3022 0.3540 0.3781 0.3929 0.4033 0.4301 0.4500 
10 0.2627 0.3187 0.3461 0.3635 0.3760 0.4090 0.4342 
25 0.1873 0.2333 0.2539 0.2699 0.2868 0.3198 0.3460 
50 0.1680 0.2057 0.2295 0.2422 0.2563 0.2941 0.3208 

 
Table 3.1 (d). Values of )( 22

)( uBZE σσω∆  for 5.0=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3648 0.3993 0.4128 0.4201 0.4246 0.4329 0.4331 
2 0.3484 0.3918 0.4108 0.4221 0.4299 0.4492 0.4622 
3 0.3302 0.3776 0.3988 0.4116 0.4205 0.4430 0.4593 
4 0.3154 0.3656 0.3885 0.4024 0.4121 0.4368 0.4549 
5 0.3031 0.3555 0.3796 0.3944 0.4047 0.4313 0.4509 
10 0.2634 0.3200 0.3476 0.3651 0.3775 0.41032 0.4352 
25 0.1686 0.2074 0.2313 0.2454 0.2579 0.2874 0.3142 
50 0.1509 0.1880 0.2048 0.2194 0.23203 0.2638 0.2935 

 
Table 3.1 (e). Values of )( 22

)( uBZE σσω∆  for 0.1=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3681 0.4038 0.4178 0.4255 0.4304 0.4401 0.4425 
2 0.3505 0.3948 0.4137 0.4249 0.4325 0.4514 0.4642 
3 0.3324 0.3809 0.4020 0.4147 0.4234 0.4454 0.4611 
4 0.3176 0.3692 0.3920 0.4058 0.4153 0.4394 0.4568 
5 0.3053 0.3591 0.3833 0.3979 0.4081 0.4340 0.4529 
10 0.2653 0.3234 0.3513 0.3688 0.3812 0.4134 0.4377 
25 0.1325 0.1629 0.1808 0.1922 0.1983 0.2229 0.2435 
50 0.1182 0.1459 0.1632 0.1733 0.1792 0.2056 0.2263 

 
Table 3.1 (f). Values of )( 22

)( uBZE σσω∆  for 0.5=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.36823 0.4227 0.4379 0.4463 0.4519 0.4649 0.4733 
2 0.3636 0.4120 0.4301 0.44025 0.4469 0.4629 0.4737 
3 0.3471 0.4012 0.4217 0.4331 0.4407 0.4587 0.4710 
4 0.3329 0.3914 0.4139 0.4265 0.4348 0.4546 0.4681 
5 0.3207 0.3825 0.4067 0.4203 0.4293 0.4508 0.4654 
10 0.2788 0.3474 0.3771 0.3943 0.4059 0.4341 0.4536 
25 0.0177 0.0222 0.0244 0.0260 0.0273 0.0305 0.0332 
50 0.0162 0.0198 0.0220 0.0235 0.0247 0.0278 0.0309 
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Table 3.1 (g). Values of )( 22
)( uBZE σσω∆  for 0.10=λ . 

p 
 m

 5 10 15 20 25 50 100 
1 0.3842 0.4247 0.4390 0.4771 0.4522 0.4645 0.4729 
2 0.3688 0.4176 0.4343 0.4432 0.4490 0.4627 0.4718 
3 0.3545 0.4103 0.4291 0.4392 0.4456 0.4605 0.7404 
4 0.3417 0.4030 0.4239 0.4350 0.4421 0.4583 0.4689 
5 0.3303 0.3959 0.4188 0.4308 0.43855 0.4560 0.4674 
10 0.2886 0.3649 0.3946 0.4107 0.4211 0.4447 0.4597 
25 0.0015 0.0018 0.0020 0.0021 0.0022 0.0025 0.0027 
50 0.0013 0.0016 0.0018 0.0019 0.0020 0.0023 0.0025 

 
Table 3.2 (a). Values of )( 22

)( uSE σσω∆  for 0.0=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3690 0.4023 0.4145 0.4207 0.4243 0.4291 0.4250 
2 0.3689 0.4075 0.4243 0.4342 0.4409 0.4571 0.4675 
3 0.3645 0.4025 0.4197 0.4301 0.4372 0.4553 0.4681 
4 0.3620 0.3988 0.4159 0.4264 0.4338 0.4525 0.4662 
5 0.3605 0.3961 0.4130 0.4235 0.4310 0.4502 0.4644 
10 0.3595 0.3897 0.4048 0.4148 0.4220 0.4420 0.4578 
25 0.3652 0.3885 0.3993 0.4068 0.4126 0.4304 0.4468 
50 0.3724 0.3932 0.4012 0.4064 0.4103 0.4234 0.4380 

 
Table 3.2 (b). Values of )( 22

)( uSE σσω∆  for 1.0=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3706 0.4038 0.4161 0.4223 0.4260 0.4311 0.4277 
2 0.3702 0.4086 0.4252 0.4350 0.4416 0.4577 0.4680 
3 0.3658 0.4034 0.4206 0.4309 0.4380 0.4558 0.4686 
4 0.3632 0.3999 0.4169 0.4273 0.4346 0.4531 0.4666 
5 0.3618 0.3972 0.4140 0.4245 0.4318 0.4508 0.4649 
10 0.3605 0.3907 0.4058 0.4157 0.4229 0.4427 0.4583 
25 0.3658 0.3892 0.4001 0.4075 0.4133 0.4310 0.4474 
50 0.3728 0.3936 0.4017 0.4069 0.4108 0.4240 0.4385 

 
Table 3.2 (c). Values of )( 22

)( uSE σσω∆  for 3.0=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3734 0.4067 0.4190 0.4254 0.4291 0.4350 0.4326 
2 0.3726 0.4106 0.4269 0.4365 0.4430 0.4588 0.4690 
3 0.3683 0.4057 0.4224 0.4325 0.4395 0.4569 0.4693 
4 0.3657 0.4021 0.4188 0.4290 0.4362 0.4543 0.4675 
5 0.3641 0.3994 0.4159 0.4262 0.4334 0.4520 0.4657 
10 0.3624 0.3927 0.4046 0.4174 0.4245 0.4440 0.4593 
25 0.3670 0.3906 0.4016 0.4090 0.4147 0.4322 0.4484 
50 0.3735 0.3946 0.4028 0.4080 0.4119 0.4251 0.4394 

 
Table 3.2 (d). Values of )( 22

)( uSE σσω∆  for 5.0=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.3762 0.4093 0.4217 0.4282 0.4320 0.4385 0.4371 
2 0.3750 0.4124 0.4285 0.4380 0.4443 0.4598 0.4699 
3 0.3706 0.4077 0.4242 0.4341 0.4409 0.4579 0.4701 
4 0.3680 0.4041 0.4206 0.4307 0.4376 0.4554 0.4683 
5 0.3664 0.4014 0.4178 0.4279 0.4350 0.4532 0.4666 
10 0.3643 0.3946 0.4094 0.4191 0.4261 0.4452 0.4602 
25 0.3681 0.3920 0.4030 0.4104 0.4161 0.4335 0.4494 
50 0.3742 0.3955 0.4038 0.4090 0.4130 0.4261 0.4403 
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Table 3.2 (e). Values of )( 22
)( uSE σσω∆  for 0.1=λ . 

 

 
Table 3.2 (f). Values of )( 22

)( uSE σσω∆  for 0.5=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.4017 0.4335 0.4460 0.4532 0.4579 0.4691 0.4761 
2 0.4000 0.4325 0.4457 0.4532 0.4583 0.4707 0.4792 
3 0.3981 0.4307 0.4440 0.4518 0.4570 0.4698 0.4787 
4 0.3965 0.4291 0.4425 0.4504 0.4557 0.4687 0.4779 
5 0.3952 0.4276 0.4411 0.4490 0.4544 0.4678 0.4772 
10 0.3912 0.4222 0.4355 0.4435 0.4491 0.4633 0.4738 
25 0.3876 0.4153 0.4270 0.4343 0.4396 0.4540 0.4658 
50 0.3873 0.4127 0.4227 0.4287 0.4331 0.4456 0.4572 

 
Table 3.2 (g). Values of )( 22

)( uSE σσω∆  for 0.10=λ . 
p 

 m
 5 10 15 20 25 50 100 

1 0.4000 0.4309 0.4432 0.4502 0.4549 0.4663 0.4741 
2 0.3996 0.4306 0.4430 0.4501 0.4548 0.4663 0.4742 
3 0.3991 0.4302 0.4426 0.4497 0.4545 0.4663 0.4741 
4 0.3986 0.4297 0.4422 0.4493 0.4541 0.4658 0.4739 
5 0.3982 0.4292 0.4417 0.4489 0.4538 0.4655 0.4737 
10 0.3963 0.4270 0.4386 0.4469 0.4518 0.4639 0.4725 
25 0.3929 0.4223 0.4343 0.4414 0.4463 0.4589 0.4683 
50 0.3908 0.4186 0.4296 0.4361 0.4406 0.4525 0.4623 

 
Concluding Remark : Even though the scale equivariant (but not location in variant) estimators 2

)(BZEσ  and 2
)(SEσ  

are better than 2
uσ  (UMVUE) in terms of risk, the latter is much superior to formers in terms of PNC, and therefore, 

apart from being affine equivariant, the UMVUE seems more appealing as an estimator of 2σ . 
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p 
 m

 5 10 15 20 25 50 100 
1 0.3820 0.4149 0.4274 0.4340 0.4382 0.4458 0.4466 
2 0.3800 0.4166 0.4320 0.4411 0.4472 0.4621 0.4719 
3 0.3759 0.4121 0.4280 0.4375 0.4440 0.4602 0.4718 
4 0.3733 0.4087 0.4247 0.4343 0.4410 0.4579 0.4701 
5 0.3716 0.4061 0.4219 0.4317 0.4385 0.4558 0.4685 
10 0.3686 0.3990 0.4136 0.4231 0.4299 0.4482 0.4624 
25 0.3709 0.3953 0.4064 0.4138 0.4195 0.4364 0.4517 
50 0.3760 0.3978 0.4063 0.4116 0.4157 0.4287 0.4426 


