COMPARISON OF NORMAL VARIANCE ESTIMATORS IN TERMS OF PITMAN NEARNESS CRITERION

Jyh-Jiuan Lin ${ }^{1 *}$, Nabendu Pal ${ }^{2}$ and Ching-Hui Chang ${ }^{3}$
${ }^{1}$ Department of Statistics
Tamkang University, Tamsui, Taipei, Taiwan, R.O.C.
${ }^{2}$ Department of Mathematics
University of Louisiana at Lafayette ${ }^{+}$
Lafayette, Louisiana 70504-1010, USA
${ }^{3}$ Department of Applied Statistics, Ming Chuan University, Taoyuan, Taiwan, R.O.C.

Abstract

For estimating a normal variance under squared error loss function it is well known that the best affine (location and scale) equivariant estimator, which is better than the maximum likelihood estimator as well as the unbiased estimator, is also inadmissible. The improved estimators, e.g., Stein type, Brown type and Brewster-Zidek type, are all scale equivariant but not location invariant. Lately a good amount of research has been done to compare the improved estimators in terms of risk, but very little attention had been paid to compare these estimators in terms of Pitman nearness criterion. In this paper we have undertaken a comprehensive study to compare various variance estimators in terms of Pitman nearness criterion, which has long been over due, and have made some interesting observations in the process.

Keywords and phrases: Affine equivariance, loss function, risk function, non-central chi-square distribution

* Corresponding author (e-mail: jjilin@stat.tku.edu.tw).
${ }^{+}$Formerly University of Southwestern Louisiana

1. INTRODUCTION

Assume that we have independent random observations X and S such that $X=\left(X_{1}, X_{2}, \cdots, X_{p}\right)$ follow a $N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ (p-dimensional normal) distribution and $\left(S / \sigma^{2}\right)$ follow a χ_{m-1}^{2} (chi-square with ($m-1$)d. f.) distribution. Consider the problem of estimation of σ^{2} efficiently.

The above-described model is encountered if one has independent and identically distributed (iid) observations $X_{1}, X_{2}, \cdots, X_{n}$ from a $N_{p}\left(\theta, \underline{\sigma}^{2} I_{p}\right)_{n}$ distribution. The data can be reduced by sufficiency principle, and one needs to focus only on $X=\sqrt{n} X, \bar{X}=\left({ }_{i=1}^{n} X_{i} / n\right)$ and $S={ }_{i=1}^{n}\left\|X_{i}-\bar{X}\right\|^{2}$. Note that X follows $N_{p}\left(\mu, \sigma^{2} I_{p}\right)$ and $S / \sigma^{2} \sim \chi_{m-1}^{2}$ with $\mu=\sqrt{n} \theta$ and $\left(m^{i=1}-1\right)=p(n-1)$.

Similarly, in a linear model setup $Y_{n 1}=X_{n p} \beta_{p 1}+_{n 1}$ where ${ }_{n 1}$ follows $N_{n}\left(0, \sigma^{2} I_{n}\right)$ distribution, let β be the least squares estimate of β and $M_{p p}$ (p.d.) be such that $M M=(X X)$, then ($M \beta$) plays the role of X and S plays the role of error sum of squares (SSE) for suitable choices of θ and m.

Even though this article deals with estimation of σ^{2}, the techniques discussed here can be used, with suitable modification, for estimating $\sigma^{2 \alpha}$ for any $\alpha>0$. In particular, one can take $\alpha=1 / 2$ to estimate σ, the normal standard deviation. The special case $p=2$ of the above setup has many applications in defense research and development while estimating the accuracy of a weapon system. Accuracy of a weapon system is measured by CEP, called Circular Probable Error. For example, in a test range a new surface to surface missile in being tested and the location of the target is known, say, $O=(0,0)$. From a fixed distance when missiles are test fixed, we observe the points of impact, i. e., bivariate locations $X_{1}, X_{2}, \cdots, X_{n}$ which are assumed to follow a bivariate normal distribution with mean $\mu=\left(\mu_{1}, \mu_{2}\right)$ and diagonal dispersion matrix $\sigma^{2} I_{2}$. When the system is 'in order' (or 'in focus'), the mean μ is expected to be 0 , the target location; and the system is 'out of focus' if μ is different from O and usually unknown. The radius of the circular area centered at μ which gives probability mass of 0.5 is called the CEP of the weapon system (particular type of missiles). It can be shown that CEP is proportional to σ, and hence CEP estimation essentially boils down to estimation of σ.

In classical statistics, usual estimators of σ^{2} are (i) the unique minimum variance unbiased estimator (UMVUE) given by

$$
\begin{equation*}
\sigma_{u}^{2}=S /(m-1) \tag{1.1}
\end{equation*}
$$

and (ii) the maximum likelihood estimator (MLE) given by

$$
\begin{equation*}
\sigma_{m l}^{2}=S /(m+p-1) \tag{1.2}
\end{equation*}
$$

In a decision-theoretic setup the two most commonly used loss functions are

$$
\begin{align*}
& L_{S}\left(\sigma^{2}, \omega\right)=\left(\sigma^{2} / \sigma^{2}-1\right)^{2} \tag{1.3}\\
& L_{E}\left(\sigma^{2}, \omega\right)=\left(\sigma^{2} / \sigma^{2}\right)-\ln \left(\sigma^{2} / \sigma^{2}\right)-1 \tag{1.4}
\end{align*}
$$

where σ^{2} is an estimator of σ^{2} and $\omega=\left(\theta, \sigma^{2}\right)$. The loss functions L_{S} and L_{E} are called respectively the squared error loss (SEL) and the entropy loss (EL).

If we consider the group G_{A} of affine transformations (i.e., $(X, S)\left(a X+b, a^{2} S\right), a>0$, $b \quad{ }^{p}=p$-dimensional real space), then the affine equivariant estimators have the form $\sigma_{c}^{2}=c S$, where $c>0$ is a constant. Since the group G_{A} (and the corresponding induced group G_{A} acting on $\Omega=\left\{\omega=\left(\theta, \sigma^{2}\right) \mid \theta \quad{ }^{p}, \sigma^{2}>0\right\}$ such that $\left.\left(\theta, \sigma^{2}\right) \quad\left(a \theta+b, a^{2} \sigma^{2}\right), a>0, b \quad{ }^{p}\right)$ is transitive, an affine equivariant estimator σ_{c}^{2} has constant risk on Ω. Therefore, one can find the best affine equivariant estimator (BAEE) of σ^{2} by minimizing the risk of σ_{c}^{2} with respect to (w. r. t.) c. The BAEEs of σ^{2} under L_{S} and L_{E} are respectively.

$$
\begin{equation*}
\sigma_{S}^{2}=S /(m+1) \quad \text { and } \quad \sigma_{E}^{2}=\sigma_{u}^{2}=S /(m-1) \tag{1.5}
\end{equation*}
$$

Interestingly, $\sigma_{S}^{2}\left(\sigma_{E}^{2}\right)$ is inadmissible under $L_{S}\left(L_{E}\right)$, and improved estimators are only scale equivariant but not location invariant. Stein (1964) showed that under L_{S}, an improved estimator of σ^{2} can be found as

$$
\begin{equation*}
\sigma_{S(S)}^{2}=\min \left\{S /(m+1),\left(S+\|X\|^{2}\right) /(m+p+1)\right\} \tag{1.6}
\end{equation*}
$$

which is uniformly better than σ_{S}^{2}. Brown (1968) proposed a similar but somewhat different estimator of σ^{2} under
L_{S} of the form

$$
\begin{equation*}
\sigma_{S(B)}^{2}=\left\{c_{0} I\left(F<r_{0}\right)+(m+1)^{-1} I\left(F \quad r_{0}\right)\right\} S \tag{1.7}
\end{equation*}
$$

where $r_{0}>0$ is any constant, $F=\|X\|^{2} / S$ and $c_{0}=c_{0}\left(r_{0}\right)$ is a suitable constant dependent on r_{0}, and $c_{0}<(m+1)^{-1}$. However, both $\sigma_{S(S)}^{2}$ and $\sigma_{S(B)}^{2}$ are nonanalytic and hence inadmissible. Brown's technique was further extended by Brewster and Zidek (1974) who obtained an admissible improved estimator of σ^{2} as

$$
\begin{equation*}
\sigma_{S(B Z)}^{2}=\left\{1-\phi_{S(B Z)}(U)\right\} S /(m+1) \tag{1.8}
\end{equation*}
$$

where $F=\|X\|^{2} / S, U=(1+F)^{-1}$ and

$$
\begin{equation*}
\phi_{S(B Z)}(U)=\frac{2(m+p+1)^{-1}(1-U)^{p / 2} U^{(m+1) / 2}}{{ }_{U}^{1}(1-y)^{p / 2-1} y^{(m+1) / 2} d y} \tag{1.9}
\end{equation*}
$$

For a comprehensive review on normal variance estimation and related topics see Pal, Ling and Lin (1998). Estimators analogous to (1.6), (1.7) and (1.8) under the loss L_{E} can be derived. Such estimators are mentioned in Section 3 for further analysis.

While emphasis had been given to compare various variance estimators in terms of risk, very little attention had been paid to do the same in terms of another important criterion namely, the Pitman nearness criterion (PNC).

Definition 1.1. Given two estimators, say σ_{1}^{2} and σ_{2}^{2}, of $\sigma^{2}, \sigma_{1}^{2}$ is said to be better than σ_{2}^{2} in terms of PNC if

$$
\begin{array}{cc}
\Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)=P\left(\left(\sigma_{1}^{2}-\sigma^{2}\right)^{2}\right. & \left.\left(\sigma_{2}^{2}-\sigma^{2}\right)^{2}\right) \\
\text { i.e., } \Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)=P\left(\left(\sigma_{1}^{2} / \sigma^{2}-1\right)^{2}\right. & \left.\left(\sigma_{2}^{2} / \sigma^{2}-1\right)^{2}\right) \tag{1.10}
\end{array} 0.5 .
$$

The major difference between the usual risk criterion and the PNC is that the latter is nontransitive i.e., if σ_{1}^{2} is better than σ_{2}^{2} in terms of PNC, and σ_{2}^{2} is better than σ_{3}^{2} in terms of PNC, then it does not imply that σ_{1}^{2} is better than σ_{3}^{2} in terms of PNC. As a result, comparison under PNC can sometimes be more complicated and a bit confusing.

The renewed interest in PNC was due to Rao (1981), who claimed that the PNC was more appropriate than the quadratic loss function for evaluating an estimator. For further general discussion on this topic one can see Rao, Keating and Mason (1986).

In Section 2 we first consider comparison of three affine equivariant estimators, e.g., $\sigma_{m l}^{2}, \sigma_{u}^{2}=\sigma_{E}^{2}$ and σ_{S}^{2}, in terms of PNC. It appears, quite interestingly, that the unbiased estimator emerges as the most preferable among the three affine equivariant estimators. In Section 3 we compare $\sigma_{u}^{2}=\sigma_{E}^{2}$ against $\sigma_{E(S)}^{2}$ and $\sigma_{E(B Z)}^{2}$, Stein type and Brewster-Zidek type improved estimators under L_{E} respectively. Interestingly it is found that both $\sigma_{E(S)}^{2}$ and $\sigma_{E(B Z)}^{2}$ are much inferior to σ_{u}^{2} (UMVUE) in terms of PNC. It turns out that σ_{u}^{2} is better (PNC) than other variance estimators and this is the main contribution of our investigation.

2. COMPARISON OF AFFINE EQUIVARIANT ESTIMATORS

Take two affine equivariant estimators $\sigma_{1}^{2}=c_{1} S$ and $\sigma_{2}^{2}=c_{2} S$. Then σ_{1}^{2} is closer to σ^{2} than σ_{2}^{2} with probability

$$
\begin{equation*}
\Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)=P_{\omega}\left(\left(\sigma_{1}^{2} / \sigma^{2}-1\right)^{2} \quad\left(\sigma_{2}^{2} / \sigma^{2}-1\right)^{2}\right) \tag{2.1}
\end{equation*}
$$

The probability $\Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)$ can be simplified further as

$$
\begin{align*}
& \Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)=P_{\omega}\left(\frac{S}{\sigma^{2}}\right)\left(c_{1}^{2}-c_{2}^{2}\right)\left(\frac{S}{\sigma^{2}}\right)-2\left(c_{1}-c_{2}\right) \quad 0 \\
& =\begin{array}{ll}
P\left(S / \sigma^{2}\right. & \left.2\left(c_{1}+c_{2}\right)^{-1}\right),
\end{array} \quad \text { if } c_{1}>c_{2} \tag{2.2}\\
& P\left(S / \sigma^{2} \quad 2\left(c_{1}+c_{2}\right)^{-1}\right), \quad \text { if } c_{1}<c_{2} \text {. }
\end{align*}
$$

Call $c^{*}=2 /\left(c_{1}+c_{2}\right)$. Since S / σ^{2} is a χ_{m-1}^{2} random variable we have

$$
\Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)=\begin{array}{lll}
P\left(\chi_{m-1}^{2}\right. & \left.c^{*}\right), & \text { if } c_{1}>c_{2} \tag{2.3}\\
P\left(\chi_{m-1}^{2}\right. & \left.c^{*}\right), & \text { if } c_{1}<c_{2}
\end{array}
$$

Also, form the expression (2.1) it is conveniently noted that $\Delta_{\omega}\left(\sigma_{1}^{2} \mid \sigma_{2}^{2}\right)=1-\Delta_{\omega}\left(\sigma_{2}^{2} \mid \sigma_{1}^{2}\right)$.

2.1 Computation of Δ_{ω} 's

(1) Comparison of $\sigma_{m l}^{2}$ and σ_{S}^{2}.

Take $c_{1}=(m+1)^{-1}$ and $c_{2}=(m+p+1)^{-1}$.Then define $c_{1}^{*}=2(m+1)(m+p+1) /(2 m+p+2)$. Then from (2.3),

$$
\begin{equation*}
\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)=P\left(\chi_{m-1}^{2} \quad c_{1}^{*}\right) . \tag{2.4}
\end{equation*}
$$

(2) Comparison of σ_{u}^{2} and $\sigma_{m l}^{2}$.

Take $c_{1}=(m-1)^{-1}$ and $c_{2}=(m+p+1)^{-1}$. Define $c_{2}^{*}=2(m-1)(m+p+1) /(2 m+p)$. Form (2.3) it is readily seen that

$$
\begin{equation*}
\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{m l}^{2}\right)=P\left(\chi_{m-1}^{2} \quad c_{2}^{*}\right) . \tag{2.5}
\end{equation*}
$$

(3) Comparison of σ_{u}^{2} and σ_{S}^{2}.

Take $c_{1}=(m-1)^{-1}$ and $c_{2}=(m+1)^{-1}$. Also define $c_{3}^{*}=\left(m^{2}-1\right) / m$. Therefore, from (2.3) we have

$$
\begin{equation*}
\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{S}^{2}\right)=P\left(\chi_{m-1}^{2} \quad c_{3}^{*}\right) \tag{2.6}
\end{equation*}
$$

of m and p. Note that while $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)$ and $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{m l}^{2}\right)$ are dependent on both m and $p \quad, \Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{S}^{2}\right)$ is free from p.

Figure2.1. 3-D graph of $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)$.

Figure 2.2. 3-D graph of $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{m l}^{2}\right)$.

Table 2.1. Values of $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)$ for various m and p.

$p \boldsymbol{m}^{m}$	2	3	4	5	10	15	20	25	50	100
1	0.9359	0.8916	0.8586	0.8328	0.7557	0.7153	0.6895	0.6712	0.6236	0.5884
2	0.9471	0.9093	0.8800	0.8564	0.7820	0.7407	0.7135	0.6938	0.6414	0.6017
3	0.9545	0.9216	0.8956	0.8743	0.8041	0.7631	0.7352	0.7147	0.6585	0.6147
4	0.9596	0.9305	0.9075	0.8883	0.8230	0.7829	0.7549	0.7339	0.6748	0.6274
5	0.9633	0.9373	0.9167	0.8994	0.8391	0.8005	0.7728	0.7516	0.6905	0.6399
6	0.9661	0.9426	0.9240	0.9084	0.8529	0.8612	0.7891	0.7680	0.7054	0.6520
7	0.9683	0.9468	0.9300	0.9158	0.8649	0.8301	0.8038	0.7830	0.7196	0.6639
8	0.9701	0.9502	0.9349	0.9220	0.8753	0.8426	0.8173	0.7969	0.7332	0.6754
9	0.9715	0.9531	0.9390	0.9272	0.8844	0.8537	0.8295	0.8098	0.7461	0.6866
10	0.9728	0.9554	0.9424	0.9317	0.8924	0.8637	0.8407	0.8216	0.7584	0.6975
20	0.9788	0.9676	0.9604	0.9551	0.9379	0.9245	0.9121	0.9001	0.8525	0.7905
30	0.9810	0.9721	0.9672	0.9641	0.9564	0.9508	0.9449	0.9388	0.9081	0.8571
40	0.9821	0.9744	0.9707	0.9688	0.9659	0.9643	0.9620	0.9592	0.9411	0.9032
50	0.9828	0.9759	0.9728	0.9716	0.9716	0.9722	0.9719	0.9710	0.9610	0.9344
100	0.9842	0.9788	0.9771	0.9772	0.9822	1.0000	1.0000	0.9903	0.9924	0.9897

Table 2.2. Values of $\Delta_{\omega}\left(\sigma_{\mu}^{2} \mid \sigma_{m l}^{2}\right)$ for various m and p.

$p \quad m$	2	3	4	5	10	15	20	25	50	100
1	0.7941	0.7603	0.7385	0.7219	0.6721	0.6457	0.6286	0.6163	0.5843	0.5603
2	0.8033	0.7769	0.7593	0.7452	0.6985	0.6711	0.6526	0.6390	0.6021	0.5737
3	0.8096	0.7889	0.7752	0.7636	0.7213	0.6940	0.6746	0.6601	0.6193	0.5868
4	0.8141	0.7981	0.7877	0.7785	0.7410	0.7145	0.6949	0.6798	0.6358	0.5996
5	0.8176	0.8053	0.7978	0.7907	0.7583	0.7330	0.7135	0.6981	0.6517	0.6121
6	0.8203	0.8111	0.8060	0.8008	0.7734	0.7497	0.7306	0.7151	0.6670	0.6243
7	0.8225	0.8159	0.8130	0.8095	0.7867	0.7648	0.7464	0.7310	0.6816	0.6364
8	0.8243	0.8199	0.8188	0.8168	0.7985	0.7785	0.7608	0.7457	0.6956	0.6481
9	0.8258	0.8233	0.8238	0.8232	0.8090	0.7909	0.7741	0.7595	0.7090	0.6595
10	0.8270	0.8262	0.8282	0.8288	0.8184	0.8022	0.7864	0.7723	0.7218	0.6707
20	0.8338	0.8422	0.8525	0.8605	0.8759	0.8748	0.8689	0.8613	0.8222	0.7668
30	0.8365	0.8488	0.8629	0.8743	0.9023	0.9097	0.9103	0.9080	0.8843	0.8374
40	0.8379	0.8524	0.8686	0.8820	0.9170	0.9292	0.9336	0.9345	0.9228	0.8874
50	0.8388	0.8546	0.8723	0.8868	0.9263	0.9413	0.9479	0.9507	0.9469	0.9221
100	0.8407	0.8595	0.8800	0.8972	0.9455	0.9653	0.9749	0.9802	0.9879	0.9865

Table 2.3. Values of $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{S}^{2}\right)$ for various m and all p.

$m=$	2	3	4	5	10	15	20	25	50	100
All p	0.7793	0.7364	0.7102	0.6916	.06414	0.6173	0.6024	0.5921	0.5658	0.5468

Figure 2.3. 3-D graph of $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{S}^{2}\right)$.

Figure 2.4. Comparison of $\sigma_{u}^{2}, \sigma_{S}^{2}$ and $\sigma_{m l}^{2}$.

Remark 2.1.

(1) From the above Table 2.1-2.3, it is clear that
(i) σ_{S}^{2} is better than $\sigma_{m l}^{2}$ (in PNC);
(ii) σ_{u}^{2} is better than $\sigma_{m l}^{2}$ (in PNC); and
(iii) σ_{u}^{2} is better than σ_{S}^{2} (in PNC).

The above diagram Figure 2.4 gives a better visual comparison of the three above-mentioned estimators. We thus conclude that σ_{u}^{2} (UMVUE as well as the BAEE under L_{E}) is the best among the three affine equivariant estimators we have discussed above.
(2) In Tables 2.1 and 2.2, for a fixed ' m ', the values of $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)$ and $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{m l}^{2}\right)$ are both increasing as p increases. This is due to the fact that in (2.4) and (2.5), both c_{1}^{*} and c_{2}^{*} are increasing functions of p for a fixed ' m '. However, such a simple trend does not occur always if one varies m for a fixed ' p '. Table 2.1 shows that $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)$ decreases monotonically as m increases (p fixed) in most of the cases ($\left.\begin{array}{lll}1 & p & 50\end{array}\right)$. Only for `vary large $p^{\prime}(p=100)$, the values first decrease, then increase and then finally decrease with increasing m. In Table 2.2, values of $\left.\Delta_{\omega}\left(\sigma_{u}^{2}\right) \sigma_{m l}^{2}\right)$ are steadily decreasing as m increases for $1 \quad p \quad 8$. For p, these values again show a "sine curve trend" (i.e., increase-decrease-increase) as m increases. In Table 2.3, $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{S}^{2}\right)$ decreases monotonically as m increases.
2.2 Asymptotic values of Δ_{ω} 's.

In this subsection we will see the limiting values of Δ_{ω} 's ((2.4) - (2.6)) when (i) p fixed and m; (ii) $m=p$

Note that $\left(\chi_{m-1}^{2} /(m-1)\right)$ can be treated as the average of $(m-1)$ iid χ_{1}^{2} random variates. To be precise, let $Y_{1}, Y_{2}, \cdots, Y_{m-1}$ be iid χ_{1}^{2}-random variables. Then $\bar{Y}={ }_{i}^{m-1} Y_{i} /(m-1)$ is equivalent to $\left(\chi_{m-1}^{2} /(m-1)\right)$ as far as probability distribution is concerned. Since χ_{1}^{2}-distribution hīs ${ }^{1}$ mean 1 and variance 2, by Central Limit Theorem,

$$
\begin{equation*}
Y=\sqrt{\frac{m-1}{2}}(\bar{Y}-1) \text { is asymptotically } N(0,1) . \tag{2.7}
\end{equation*}
$$

We will use (2.7) to study (2.4) - (2.6) asymptotically.
(1) p fixed and large m.

Note that by using the representation of Y in (2.7),
(i) $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)=P\left(\begin{array}{ll}\chi_{m-1}^{2} & \left.c_{1}^{*}\right) \quad \quad(f r o m(2.4))\end{array}\right.$

$$
\left.\begin{array}{rl}
= & P \sqrt{\frac{m-1}{2}}(\bar{Y}-1) \\
& P(N(0,1) \quad 0)
\end{array} \quad(\text { for fixed } p \text { and } m \gg p) \text { (2m+4m+3p+4) } \sqrt{m-1}\right)
$$

(ii) $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{m l}^{2}\right)=P\left(\chi_{m-1}^{2} \quad c_{2}^{*}\right) \quad$ (from (2.5))

$$
\begin{aligned}
= & P \sqrt{\frac{m-1}{2}}(\bar{Y}-1) \quad \frac{(p+2) \sqrt{m-1}}{(2 m+p) \sqrt{2}} \\
& P(N(0,1) \quad 0) \quad(\text { for fixed } p \text { and } m \gg p) \\
= & 0.5
\end{aligned}
$$

Similarly,
(iii) $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{S}^{2}\right)=P \sqrt{\frac{m-1}{2}}(\bar{Y}-1) \quad \frac{\sqrt{m-1}}{\sqrt{2} m} \quad 0.5$ for large m.

This tells that, in Tables 2.1-2.3, each row converges to 0.5 (for any fixed p).
(2) $m=p=$ large

Interestingly, we get quite different results when m and p increase simultaneously. This will explain why the diagonal elements ($m=p$) in Tables 2.1 and 2.2 are converging to 1 .

By setting $m=p$, we get
(i) $\Delta_{\omega}\left(\sigma_{S}^{2} \mid \sigma_{m l}^{2}\right)=P \sqrt{\frac{m-1}{2}}(\bar{Y}-1) \frac{\left(m^{2}+m+4\right) \sqrt{m-1}}{\left(3 m^{2}-m-2\right) \sqrt{2}} \quad 1$ as $m \quad$;
and
(ii) $\Delta_{\omega}\left(\sigma_{u}^{2} \mid \sigma_{m l}^{2}\right)=P \sqrt{\frac{m-1}{2}}(\bar{Y}-1) \frac{(m+2) \sqrt{m-1}}{\sqrt{2}(3 m)} \quad 1$ as $m \quad$.

3. COMPARISON WITH SCALE EQUIVARIANT SHRINKAGE ESTIMATORS

In Section 2 we found that the unbiased estimator σ_{u}^{2}, which is also the BAEE under L_{E} (i.e., σ_{E}^{2}), is the most preferable in terms of PNC, among the three affine equivariant estimators. But in a decision theoretic setup, under the loss L_{E} the estimator $\sigma_{u}^{2}=\sigma_{E}^{2}$ is dominated by the Stein type estimator

$$
\begin{equation*}
\sigma_{E(S)}^{2}=\min \left\{S /(m-1),\left(S+\|X\|^{2}\right) /(m+p-1)\right\}, \tag{3.1}
\end{equation*}
$$

and the Brewster-Zidek type estimator

$$
\begin{equation*}
\sigma_{E(B Z)}^{2}=\left\{1-\phi_{E(B Z)}(U)\right\} S /(m-1), \tag{3.2}
\end{equation*}
$$

where $U=S /\left(S+\|X\|^{2}\right)$ and

$$
\begin{equation*}
\phi_{E(B Z)}(U)=\frac{2(m+p-1)^{-1}(1-U)^{p / 2} U^{(m-3) / 2}}{\stackrel{1}{U}^{1}(1-y)^{p / 2-1} y^{(m-3) / 2} d y} . \tag{3.3}
\end{equation*}
$$

The estimator $\sigma_{E(S)}^{2}$ can be expressed as (similar to $\sigma_{E(B Z)}^{2}$)

$$
\begin{equation*}
\sigma_{E(S)}^{2}=\left\{1-\phi_{E(S)}(U)\right\} S /(m-1) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{E(S)}(U)=\max 0,1-\frac{(m-1)}{(m+p-1) U} . \tag{3.5}
\end{equation*}
$$

Both the improved estimators in (3.2) and (3.4) have the general structure $\sigma_{*}^{2}=\sigma_{u}^{2}(1-\phi(U))$, where $0<\phi(U) 1$, and ϕ is nondecreasing in U. So, the probability that $\sigma_{*}^{2}=\sigma_{u}^{2}(1-\phi(U))$ is closer to σ^{2} than σ_{u}^{2} is so to σ^{2} is

$$
\begin{align*}
\Delta_{\omega}\left(\sigma_{*}^{2} \mid \sigma_{u}^{2}\right) & =P\left[\begin{array}{ll}
\left(\sigma_{*}^{2}-\sigma^{2}\right)^{2} & \left(\sigma_{u}^{2}-\sigma^{2}\right)^{2}
\end{array}\right] \\
& =P \phi(U)\left(\frac{S / \sigma^{2}}{(m-1)}\right) \tag{3.6}
\end{align*} \quad 2\left(\frac{S / \sigma^{2}}{(m-1)}-1\right) .
$$

First we simplify the expression (3.6), and then using specific choices for $\phi(U)$ (i.e., $\left.\phi_{E(S)}, \phi_{E(B Z)}\right)$, we get the desired probabilities.

For notational simplicity let $U_{1}=S / \sigma^{2}$ and $U_{2}=\|X\|^{2} / \sigma^{2}$. Note that U_{1} and U_{2} follow respectively χ_{m-1}^{2} and $\chi_{p}^{2}(\lambda)$ (noncentral Chisquare distribution with p df and noncentrality parameter $\lambda=\|\mu\|^{2} / \sigma^{2}$), and they are independent. We use the representation: $\chi_{p}^{2}(\lambda)=\chi_{p+2 J}^{2}$ where J follows Poisson ($\lambda / 2$). Given $J=j$, U_{2} follows $\chi_{p+2 j}^{2}$; and hence $\left(U_{1}+U_{2}\right)$ follows $\chi_{m+p-1+2 j}^{2}$ which is independent of $U=U_{1} /\left(U_{1}+U_{2}\right), U$ follows $\operatorname{Beta}((m-1) / 2,(p / 2)+j)$ distribution. Expression (3.6) can be written as

$$
\left.\begin{array}{rl}
\Delta_{\omega}\left(\sigma_{*}^{2} \mid \sigma_{u}^{2}\right) & =P\left[\begin{array}{ll}
U \phi(U)\left(U_{1}+U_{2}\right) /(m-1) & 2\left(U\left(U_{1}+U_{2}\right) /(m-1)-1\right)
\end{array}\right] \\
& =P\left[\left(U_{1}+U_{2}\right) U(2-\phi(U))\right. \\
& 2(m-1)
\end{array}\right] \begin{array}{ll}
j=0 & \exp (-\lambda / 2) \frac{(\lambda / 2)^{j}}{j!} P \chi_{m+p-1+2 j}^{2} \frac{2(m-1)}{U(2-\varphi(U))}
\end{array}
$$

(where U is a $\operatorname{Beta}((m-1) / 2,(p / 2)+j)$ random variable)

$$
\begin{equation*}
=\operatorname{j=0}^{\exp (-\lambda / 2)} \frac{(\lambda / 2)^{j}}{j!} \frac{{ }_{0}^{1} u^{\frac{m-1}{2}-1}(1-u)^{\frac{p}{2}+j-1}}{\operatorname{Beta}\left(\frac{m-1}{2}, \frac{p}{2}+j\right)} P \chi_{m+p-1+2 j}^{2} \frac{2(m-1)}{u(2-\phi(u))} d u . \tag{3.7}
\end{equation*}
$$

By using $\phi(U)=\phi_{E(B Z)}(U)$ and $\phi(U)=\phi_{E(S)}(U)$ in (3.7) we get the expressions for $\Delta_{\omega}\left(\sigma_{E(B Z)}^{2} \mid \sigma_{u}^{2}\right)$ and $\Delta_{\omega}\left(\sigma_{E(S)}^{2} \sigma_{u}^{2}\right)$ respectively.

In Table 3.1 (a) (g) and 3.2 (a)-(g) we have computed the values of $\Delta_{\omega}\left(\sigma_{E(B Z)}^{2} \mid \sigma_{u}^{2}\right)$ and $\Delta_{\omega}\left(\sigma_{E(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.0,0.1,0.3,0.5,1.0,5.0,10.0$, and various combinations of m and p. Note that all the tabulated values are less than 0.5 .

Table 3.1 (a). Values of $\left.\Delta_{\omega}\left(\sigma_{F(B 7)}^{2}\right) \sigma_{u}^{2}\right)$ for $\lambda=0.0$.

Table 3.1 (a). Values of $\left.\Delta_{\omega}\left(\sigma_{F(B 7)}^{2}\right) \boldsymbol{\sigma}_{u}^{2}\right)$ for $\lambda=0.0$.							
$p)^{m}$	5	10	15	20	25	50	100
1	0.3610	0.3938	0.4066	0.4134	0.4174	0.4238	0.4211
2	0.3461	0.3886	0.4076	0.4191	0.4270	0.4467	0.4599
3	0.3278	0.3741	0.3953	0.4083	0.4173	0.4405	0.4575
4	0.3130	0.3620	0.3847	0.3988	0.4086	0.4341	0.4528
5	0.3008	0.3518	0.3757	0.3906	0.4011	0.4284	0.4487
10	0.2616	0.3165	0.3438	0.3612	0.3737	0.4070	0.4327
25	0.2121	0.2661	0.2978	0.3156	0.3322	0.3669	0.4040
50	0.1977	0.2387	0.2662	0.2827	0.2994	0.3389	0.3762

Table 3.1 (b). Values of $\Delta_{G}\left(\sigma_{E(B Z)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.1$.

$p)^{m}$	5	10	15	20	25	50	100
1	0.3619	0.3950	0.4079	0.4148	0.4190	0.4258	0.4238
2	0.3447	0.3893	0.4083	0.4197	0.4276	0.4472	0.4604
3	0.3283	0.3748	0.3960	0.4090	0.4180	0.4411	0.4578
4	0.3135	0.3628	0.3855	0.3995	0.4093	0.4346	0.4532
5	0.3013	0.3525	0.3765	0.3914	0.4019	0.4290	0.4491
10	0.2620	0.3173	0.3445	0.3620	0.3744	0.4077	0.4332
25	0.2063	0.2548	0.2832	0.3016	0.3122	0.3523	0.3855
50	0.1858	0.2296	0.2521	0.2689	0.2838	0.3217	0.3565

Table 3.1 (c). Values of $\Delta_{\omega}\left(\sigma_{F(B Z)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.3$.

p	5	10	15	20	25	50	100
1	0.3634	0.3972	0.4104	0.4175	0.4219	0.4295	0.4286
2	0.3475	0.3906	0.4096	0.4210	0.4288	0.4482	0.4613
3	0.3292	0.3762	0.3974	0.4103	0.4193	0.4421	0.4586
4	0.3144	0.3642	0.3870	0.4010	0.4107	0.4357	0.4541
5	0.3022	0.3540	0.3781	0.3929	0.4033	0.4301	0.4500
10	0.2627	0.3187	0.3461	0.3635	0.3760	0.4090	0.4342
25	0.1873	0.2333	0.2539	0.2699	0.2868	0.3198	0.3460
50	0.1680	0.2057	0.2295	0.2422	0.2563	0.2941	0.3208

Table 3.1 (d). Values of $\left.\Delta_{\omega}\left(\sigma_{E(B Z)}^{2}\right) \sigma_{u}^{2}\right)$ for $\lambda=0.5$.

p^{m}	5	10	15	20	25	50	100
1	0.3648	0.3993	0.4128	0.4201	0.4246	0.4329	0.4331
2	0.3484	0.3918	0.4108	0.4221	0.4299	0.4492	0.4622
3	0.3302	0.3776	0.3988	0.4116	0.4205	0.4430	0.4593
4	0.3154	0.3656	0.3885	0.4024	0.4121	0.4368	0.4549
5	0.3031	0.3555	0.3796	0.3944	0.4047	0.4313	0.4509
10	0.2634	0.3200	0.3476	0.3651	0.3775	0.41032	0.4352
25	0.1686	0.2074	0.2313	0.2454	0.2579	0.2874	0.3142
50	0.1509	0.1880	0.2048	0.2194	0.23203	0.2638	0.2935

Table 3.1 (e). Values of $\Delta_{\omega}\left(\sigma_{F(B Z)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=1.0$.

p	5	10	15	20	25	50	100
1	0.3681	0.4038	0.4178	0.4255	0.4304	0.4401	0.4425
2	0.3505	0.3948	0.4137	0.4249	0.4325	0.4514	0.4642
3	0.3324	0.3809	0.4020	0.4147	0.4234	0.4454	0.4611
4	0.3176	0.3692	0.3920	0.4058	0.4153	0.4394	0.4568
5	0.3053	0.3591	0.3833	0.3979	0.4081	0.4340	0.4529
10	0.2653	0.3234	0.3513	0.3688	0.3812	0.4134	0.4377
25	0.1325	0.1629	0.1808	0.1922	0.1983	0.2229	0.2435
50	0.1182	0.1459	0.1632	0.1733	0.1792	0.2056	0.2263

Table 3.1 (f). Values of $\Delta_{\omega}\left(\sigma_{F(B Z)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=5.0$.

$p{ }^{m}$	5	10	15	20	25	50	100
1	0.36823	0.4227	0.4379	0.4463	0.4519	0.4649	0.4733
2	0.3636	0.4120	0.4301	0.44025	0.4469	0.4629	0.4737
3	0.3471	0.4012	0.4217	0.4331	0.4407	0.4587	0.4710
4	0.3329	0.3914	0.4139	0.4265	0.4348	0.4546	0.4681
5	0.3207	0.3825	0.4067	0.4203	0.4293	0.4508	0.4654
10	0.2788	0.3474	0.3771	0.3943	0.4059	0.4341	0.4536
25	0.0177	0.0222	0.0244	0.0260	0.0273	0.0305	0.0332
50	0.0162	0.0198	0.0220	0.0235	0.0247	0.0278	0.0309

Table 3.1 (g). Values of $\Delta_{\omega}\left(\sigma_{F(B)}^{2} \mid \sigma_{\mu}^{2}\right)$ for $\lambda=10.0$.

p^{m}	5	10	15	20	25	50	100
1	0.3842	0.4247	0.4390	0.4771	0.4522	0.4645	0.4729
2	0.3688	0.4176	0.4343	0.4432	0.4490	0.4627	0.4718
3	0.3545	0.4103	0.4291	0.4392	0.4456	0.4605	0.7404
4	0.3417	0.4030	0.4239	0.4350	0.4421	0.4583	0.4689
5	0.3303	0.3959	0.4188	0.4308	0.43855	0.4560	0.4674
10	0.2886	0.3649	0.3946	0.4107	0.4211	0.4447	0.4597
25	0.0015	0.0018	0.0020	0.0021	0.0022	0.0025	0.0027
50	0.0013	0.0016	0.0018	0.0019	0.0020	0.0023	0.0025

Table 3.2 (a). Values of $\Delta_{0}\left(\sigma_{F(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.0$.

p^{m}	5	10	15	20	25	50	100
1	0.3690	0.4023	0.4145	0.4207	0.4243	0.4291	0.4250
2	0.3689	0.4075	0.4243	0.4342	0.4409	0.4571	0.4675
3	0.3645	0.4025	0.4197	0.4301	0.4372	0.4553	0.4681
4	0.3620	0.3988	0.4159	0.4264	0.4338	0.4525	0.4662
5	0.3605	0.3961	0.4130	0.4235	0.4310	0.4502	0.4644
10	0.3595	0.3897	0.4048	0.4148	0.4220	0.4420	0.4578
25	0.3652	0.3885	0.3993	0.4068	0.4126	0.4304	0.4468
50	0.3724	0.3932	0.4012	0.4064	0.4103	0.4234	0.4380

Table 3.2 (b). Values of $\Delta_{\omega}\left(\sigma_{E(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.1$.

$p{ }^{m}$	5	10	15	20	25	50	100
1	0.3706	0.4038	0.4161	0.4223	0.4260	0.4311	0.4277
2	0.3702	0.4086	0.4252	0.4350	0.4416	0.4577	0.4680
3	0.3658	0.4034	0.4206	0.4309	0.4380	0.4558	0.4686
4	0.3632	0.3999	0.4169	0.4273	0.4346	0.4531	0.4666
5	0.3618	0.3972	0.4140	0.4245	0.4318	0.4508	0.4649
10	0.3605	0.3907	0.4058	0.4157	0.4229	0.4427	0.4583
25	0.3658	0.3892	0.4001	0.4075	0.4133	0.4310	0.4474
50	0.3728	0.3936	0.4017	0.4069	0.4108	0.4240	0.4385

Table 3.2 (c). Values of $\Delta_{\omega}\left(\sigma_{E(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.3$.

p^{m}	5	10	15	20	25	50	100
1	0.3734	0.4067	0.4190	0.4254	0.4291	0.4350	0.4326
2	0.3726	0.4106	0.4269	0.4365	0.4430	0.4588	0.4690
3	0.3683	0.4057	0.4224	0.4325	0.4395	0.4569	0.4693
4	0.3657	0.4021	0.4188	0.4290	0.4362	0.4543	0.4675
5	0.3641	0.3994	0.4159	0.4262	0.4334	0.4520	0.4657
10	0.3624	0.3927	0.4046	0.4174	0.4245	0.4440	0.4593
25	0.3670	0.3906	0.4016	0.4090	0.4147	0.4322	0.4484
50	0.3735	0.3946	0.4028	0.4080	0.4119	0.4251	0.4394

Table 3.2 (d). Values of $\Delta_{\omega}\left(\sigma_{E(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=0.5$.

p	5	10	15	20	25	50	100
1	0.3762	0.4093	0.4217	0.4282	0.4320	0.4385	0.4371
2	0.3750	0.4124	0.4285	0.4380	0.4443	0.4598	0.4699
3	0.3706	0.4077	0.4242	0.4341	0.4409	0.4579	0.4701
4	0.3680	0.4041	0.4206	0.4307	0.4376	0.4554	0.4683
5	0.3664	0.4014	0.4178	0.4279	0.4350	0.4532	0.4666
10	0.3643	0.3946	0.4094	0.4191	0.4261	0.4452	0.4602
25	0.3681	0.3920	0.4030	0.4104	0.4161	0.4335	0.4494
50	0.3742	0.3955	0.4038	0.4090	0.4130	0.4261	0.4403

Table 3.2 (e). Values of $\Delta_{0}\left(\sigma_{F(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=1.0$.

p^{m}	5	10	15	20	25	50	100
1	0.3820	0.4149	0.4274	0.4340	0.4382	0.4458	0.4466
2	0.3800	0.4166	0.4320	0.4411	0.4472	0.4621	0.4719
3	0.3759	0.4121	0.4280	0.4375	0.4440	0.4602	0.4718
4	0.3733	0.4087	0.4247	0.4343	0.4410	0.4579	0.4701
5	0.3716	0.4061	0.4219	0.4317	0.4385	0.4558	0.4685
10	0.3686	0.3990	0.4136	0.4231	0.4299	0.4482	0.4624
25	0.3709	0.3953	0.4064	0.4138	0.4195	0.4364	0.4517
50	0.3760	0.3978	0.4063	0.4116	0.4157	0.4287	0.4426

Table 3.2 (f). Values of $\Delta_{\omega}\left(\sigma_{E(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=5.0$.

$p{ }^{m}$	5	10	15	20	25	50	100
1	0.4017	0.4335	0.4460	0.4532	0.4579	0.4691	0.4761
2	0.4000	0.4325	0.4457	0.4532	0.4583	0.4707	0.4792
3	0.3981	0.4307	0.4440	0.4518	0.4570	0.4698	0.4787
4	0.3965	0.4291	0.4425	0.4504	0.4557	0.4687	0.4779
5	0.3952	0.4276	0.4411	0.4490	0.4544	0.4678	0.4772
10	0.3912	0.4222	0.4355	0.4435	0.4491	0.4633	0.4738
25	0.3876	0.4153	0.4270	0.4343	0.4396	0.4540	0.4658
50	0.3873	0.4127	0.4227	0.4287	0.4331	0.4456	0.4572

Table $3.2(\mathrm{~g})$. Values of $\Delta_{\omega}\left(\sigma_{F(S)}^{2} \mid \sigma_{u}^{2}\right)$ for $\lambda=10.0$.

$p{ }^{m}$	5	10	15	20	25	50	100
1	0.4000	0.4309	0.4432	0.4502	0.4549	0.4663	0.4741
2	0.3996	0.4306	0.4430	0.4501	0.4548	0.4663	0.4742
3	0.3991	0.4302	0.4426	0.4497	0.4545	0.4663	0.4741
4	0.3986	0.4297	0.4422	0.4493	0.4541	0.4658	0.4739
5	0.3982	0.4292	0.4417	0.4489	0.4538	0.4655	0.4737
10	0.3963	0.4270	0.4386	0.4469	0.4518	0.4639	0.4725
25	0.3929	0.4223	0.4343	0.4414	0.4463	0.4589	0.4683
50	0.3908	0.4186	0.4296	0.4361	0.4406	0.4525	0.4623

Concluding Remark: Even though the scale equivariant (but not location in variant) estimators $\sigma_{E(B Z)}^{2}$ and $\sigma_{E(S)}^{2}$ are better than σ_{u}^{2} (UMVUE) in terms of risk, the latter is much superior to formers in terms of PNC, and therefore, apart from being affine equivariant, the UMVUE seems more appealing as an estimator of σ^{2}.

Acknowledgement: The first author's research has been supported by a research grant from the National Science Council (nsc-89-2118-M-163-001).

REFERANCES

1. Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators. Annals of Statistics, 2, 21-38.
2. Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Annals of Mathematical Statistics, 39, 29-48.
3. Pal, N., Ling, C. and Lin, J. J. (1998). "Estimation of a normal variance-A critical review", Statistical Papers, Vol. 39, 389-404.
4. Rao, C. R. (1981). Some comments on the minimum mean square error as a criterion of estimation. In Statistics and Related Topics (M. Csorgo, D. A. Dawson, J. N. K. Rao and A. K. Md. E. Saleh, eds.), North-Holland, Amsterdam.
5. Rao, C. R., Keating, J. P. and Mason, R.L. (1986). The Pitman Nearness Criterion and its determination, Communications in Statistics, Theory and Methods, 15, 3173-3191.
6. Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Annals of the Institute of Statistical Mathematics, 16, 155-160.
