
Web Services: The Next Dimension in e-Business Computing

Billy Lim1

1Applied Computer Science Department
Illinois State University

Normal, IL 61790-5150, USA

Abstract

For many years, software reuse and systems interoperability have been primary goals of many information
technology organizations, especially those that rely heavily on computer networks. These organizations have
software applications that use the Internet to transfer data and conduct business transactions. Object-oriented (OO)
technology has been utilized to accomplish these goals with relative success over the years. But there are many
hurdles that OO technology could not overcome. One of them is due to lack of standards. An object (software
component) developed in one vendor’s technology cannot easily communicate with another vendor’s. Another
difficulty is due to the fact that the majority of software applications reside behind firewalls – security barriers that
restrict communication between networks.

Web Service, a self-describing service that can easily be consumed over the Web, is the latest trend in the
industry to address the problems identified above. It is based on a technology called SOAP, which in turn is based
on XML, a technology that is widely known as the language of the next-generation Web. Through XML and HTTP,
both international standards and the latter being a firewall-friendly protocol that everyone uses to surf the Web, it is
now possible for involved parties across networks to communicate and produce/consume a service in a uniform
manner.

This article describes the brand new technologies behind Web services and the opportunities of adopting the
burgeoning technologies in IT organizations. The three major underlying technologies behind Web services are
detailed. Lastly, the various issues and challenges that must be addressed by the stakeholders are also discussed.

1. Introduction
The computer industry has advanced tremendously in the past several decades and has impacted our lives greatly in

its advancement. Many would agree that when comparing the progress of hardware versus software, the former has
advanced more noticeably than the latter. This is partly because there has been lack of standards for developing software
and thus it is extremely difficult to integrate disparate systems to form a larger one to solve an organization’s problem.

For many years, software reuse and systems interoperability have been primary goals of many IT (information
technology) organizations, especially those that rely heavily on computer networks. These organizations have software
applications that use the Internet to transfer data and conduct business transactions. Object-oriented (OO) technology,
which became popular in the 80’s and mainstream in the 90’s, has been utilized to accomplish these goals with relative
success over the years. Nevertheless, there are many hurdles that OO technology could not overcome.

One of them is due to the aforementioned lack of standards. An object (software component) developed in one
vendor’s technology cannot easily communicate with another vendor’s. To help visualize the magnitude of this problem,
think of a VCR and a TV that simply cannot be hooked up because the vendors choose to use different connection
schemes. (That, fortunately, is not the case in the real world or they will be more VCRs that are showing 12:00 on the
panel!) Another difficulty is due to the fact that the majority of software applications reside behind firewalls – security
barriers that restrict communication between networks. Here, even if two systems use the same protocol to communicate,
the security of firewall prevents the communication to take place.

Web Service [1, 2, 3, 4, 5, 6, 7] is the latest buzzword in the industry right now to address the problems identified
above. It is based on a technology that is in the final stages of approval by the W3C (World Wide Web Consortium), the
international standard body that oversees all Web related technologies. It also has strong support from major players such
as Microsoft, IBM, Sun Microsystems, Hewlett-Packard, and Oracle. As such, it is projected to be a strong technology
that many IT organizations will investigate and adopt if proven viable. In fact, Gartner’s Group VP Daryl Plummer
compared Web Services with previous attempts and stated that this time things may be different because “With Web
Services, all the major vendors are on board with their support.”

In a nutshell, Web Services can simply be thought of as self-describing services that are HTTP (Hypertext Transfer
Protocol)-addressable. This means that one can shop for a software service much like one can shop for goods on the Web,
using exactly the same protocol. Web Services relies on SOAP (Simple Object Access Protocol), WSDL (Web Service
Description Language), and UDDI (Universal Description, Discovery, and Integration) as the underlying technologies for
involved parties to communicate and produce/consume a Web service, as shown in Figure 1. Here, a scenario that shows a
brokerage house registering its stock quote service with a registry and a financial software finding and consuming the
service is depicted.

Behind the scene, SOAP uses HTTP as the protocol to transmit its message, which is in XML (eXtensible Markup
Language) format. This powerful combination of HTTP and XML, both standards of W3C, provides a fully extensible
mode of communication between software systems. The interoperability and scalability of Web Services means that
developers can rapidly create large applications and larger Web Service from smaller ones. This adds another dimension
to the Web; instead of just person-to-person or person-to-system, it also handles system-to-system.

Given that HTTP is a firewall friendly protocol and XML is becoming more and more popular as a standard for
data exchange, it is not surprising that Web Services has received so much attention in the industry, including a brand
new Web Services Journal for the coverage of the topic [8]. It is the buzz that all major IT corporations are talking
about and it is also the centerpiece of the .NET campaign of Microsoft Corporation [9], a technology that Microsoft is
staking its future in, with $4 billion initial investment.

This new way of application development is mimicking how hardware vendors have been producing hardware
components for years. Now, the software vendors even have the Web, one of the most important revolutions in the
computer industry, on their side. As stated by Bill Gates, Chairman and Chief Software Architect of Microsoft, “The
power of the XML Web Services model is amazing. A company offering an online electronic-payment service can
expose its service to partners, so that they can deliver it as part of their own offering – regardless of what platform they
are using. An airline can link its online reservation system to that of a car-rental partner, so travelers can book a car at
the same time they book a flight. An online auction company can notify bidders when they are outbid or have won an
auction, or could partner with other firms to offer alternative shipping, fulfillment or payment options. XML Web
services help your business break free of its boundaries.” [9]

Recent studies on Web services have also shown the growth and acceptance of the technology. According to
ZapThink, a market research firm, the market for Web Services platforms, application development suites, and
management tools is expanding from a $ 380 million (US) market in 2001 to over $ 15.5 billion (US). Also, recent
survey by market research firm TechMatrix (of 450 IT professionals and consultants) finds that 65% of small and
midsize companies and 35% of large companies have adopted Web services to automate business processes between
trading partners and for internal application integration.

2. Web Services: Technical Underpinnings

Web Services is the next chapter in solving the distributed computing challenge. Earlier attempts at this were
proprietary solutions from Microsoft, Sun Microsystems, and the Object Management Group, an industry consortium.
These attempts include the Distributed Component Object Model (DCOM), Remote Method Invocation (RMI), and the
Common Object Request Broker Architecture (CORBA). All these suffer the drawbacks of being proprietary,
excessively complex, or unsuited to connect applications over the Internet where the requirement is for 'loosely coupled'
versus the 'tightly coupled' systems, the former being one that is more appropriate to link applications that reside behind
the firewall of a single organization.

The technical underpinnings of Web Services aim to reinforce the philosophy of being 'standard' by adopting the
building block approach of using prior Internet protocols and standards as components of Web Services. As given in
Section 1, the building blocks include HTTP, adopted as the transport protocol, and XML, used as the message format

w bind to service

v find service
u publish service
(e.g., stock quote)

Figure 1: Life Cycle of a Web Service Execution (Registry, Lookup, and Consumption)

Service Registry (e.g.,
IBM UDDI service)

Service Provider
(e.g., Brokerage
House)

Service Requester
(e.g., XYZ Financial
Software) w bind to service

of the messages that are transferred between co-operating applications. The other pieces of the technical puzzles are
described below.

SOAP

The Web Services communications protocol, Simple Object Access Protocol (SOAP), is an adaptation of XML-
RPC and is what facilitates the machine-to-machine communication nature of Web Services. Using existing protocols
that can easily traverse firewalls, such as HTTP, means that many of the problems that exist when attempting to stitch
together applications that reside in separate organizations behind firewalls are avoided.

SOAP arises from the realization that no matter how ingenious the current middleware offerings are, they need a
WAN wrapper. Architecturally, sending messages as plain XML has advantages in terms of ensuring interoperability.
The middleware players seem willing to put up with the costs of parsing and serializing XML in order to scale their
approach to wider networks.

Figure 2 below shows an example of SOAP messages – a request and a response. As can be seen, a SOAP message
consists of a SOAP envelope, which in turns contains an optional SOAP header and a mandatory SOAP body. Here, a
request to a stock quote service for Microsoft (stock symbol “MSFT”) is made and the response of $58 as the price is
given.

SOAP Request SOAP Response
POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml;
Content-Length: 323
SOAPAction: Some-Namespace-URI#GetLastTradePrice

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-Namespace-URI">
 <symbol>MSFT</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HTTP/1.1 200 OK
Content-Type: text/xml;
charset="utf-8“
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse
 xmlns:m="Some-Namespace-URI">
 <Price>58</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

UDDI

UDDI provides a mechanism for clients to dynamically find other Web services. Using a UDDI interface,
businesses can dynamically connect to services provided by external business partners. A UDDI registry has two kinds
of clients: businesses that want to publish a service (and its usage interfaces) and clients who want to obtain services of
a certain kind and bind programmatically to them. Table 1 below is an overview of what UDDI provides [10]. UDDI is
layered over SOAP and assumes that requests and responses are UDDI objects sent around as SOAP messages.

Information Operations Detailed information (supported by lower-level API)

White pages : Information such as the
name, address, telephone number, and
other contact information of a g iven
business

Publish: How the provider
of a Web service registers
itself.

Business information: Contained in a BusinessEntity object,
which in turn contains information about services, categories,
contacts, URLs, and other things necessary to interact with a
given business.

Yellow pages : Information that
categorizes businesses. This is based
on existing (non-electronic) standards

Find: How an application
finds a particular Web
service.

Service information: Describes a group of Web services.
These are contained in a BusinessService object

Green pages : Technical information
about the Web services provided by a
given business.

Bind: How an application
connects to, and interacts
with, a Web service after
it's been found

Binding information: The technical details necessary to
invoke a Web service. This includes URLs, information about
method names, argument types, and so on. The
BindingTemplate object represents this data.

Figure 2: SOAP envelopes representing a request and a response

 Service Specification Detail: This is metadata about the
various specifications imp lemented by a given Web service.
These are called tModels in the UDDI specification

Table 1: Basic concepts behind UDDI

WSDL

WSDL (Web Service Description Language) provides a way for service providers to describe the basic format of
Web service requests over different protocols or encodings. WSDL is used to describe what a Web service can do,
where it resides, and how to invoke it. In other words, a WSDL document describes a Web service’s interface and
provides users with a point of contact.

A complete WSDL service description describes two pieces of information – an application-level service
description, or abstract interface, and the specific protocol-dependent details that users must follow to access the service
at concrete service end points. This separation accounts for the fact that similar application–level service functionality is
often deployed at different end points with slightly different access protocol details. This separation allows the reuse of
abstract definitions of message interfaces.

Once the complete WSDL description is specified, developers can use WSDL as the input to a proxy generator that
produces client code according to the service requirements. WSDL can also be used as an input to a dynamic invocation
proxy, which can then generate the correct service requests at runtime. This will relieve the user and the developer of
the need to remember or understand all the details of service.

3. Web Services: Practices, Issues, and Challenges

As promising as they are, Web Services is new and there are various open issues that surround this technology.
Concerns such as security, privacy, and authentication capabilities are at the forefront of this. Many in the industry
consider these open issues as the biggest stumbling blocks for Web Services.

To address the security issue, the W3C has issued XML-Signature Syntax and Process as a W3C Recommendation
Design to provide a foundation for secure Web services. The proposed XML Signature standard, developed by a joint
working group formed by W3C and the Internet Engineering Task Force (IETF), represents "a critical foundation on top
of which we will be able to build more secure Web services," said Tim Berners-Lee, W3C director. XML Signature,
which use the latest advances in applied mathematics cryptography to create and verify XML Signatures, offers "basic
data integrity and authentication tools" that are designed to provide the level of security the W3C considers essential for
Web services applications, said Berners-Lee.

From the vendor’s viewpoint, IBM, Microsoft, and VeriSign have published WS-Security, a Web Services security
specification. This represents an effort toward interoperable Web services that companies can deploy without the fear of
exposing sensitive data or violating privacy practices. Rather than a complete security solution, WS-Security is a
building block to be used in conjunction with other Web services and application specific protocols to accommodate a
wide variety of security models and encryption technologies. This is an attempt to ensure that the proposal does not
further concern the skeptics in the industry, who have already expressed concern that the current specification could
lead to a move to set up a “toll way” for using Web services.

Another issue that needs to be resolved has to do with contracts and billing. The service providers will clearly want
to earn revenue based upon service consumption. Thus, negotiated contract between the consumer and the provider
must be established. This may involve a potentially large number of contracts and hence the management of the
contracts and scalability will be a challenge. This problem is exacerbated by the need to maintain different pricing
models based on different characteristics and usage. This is because there are no widely deployed standards for usage
and billing today.

Another challenge is to more tightly integrate Web Services with the ideas and practices from distributed systems,
the Web, database systems, and XML. This may prompt a new design, architecture, and/or engineering of middleware
that support Web Services. This is the focus of the upcoming issue of IEEE Internet Computing (January/February
2003) entitled “Middleware for Web Services.”

The above describes the current practices, issues, and challenges of Web Services. Based on the current state of
technologies, the IDC predicts that Web Services will enter most organizations in three distinct phases. The “adoption
table” is given in Table 2 below.

Timeframe Activities
2002 (within the firewall) Simplified app integration

Increased developer productivity
2004 (contained external users) Simplified business-partner connectivity

Richer app functionality
Subscription-based services

2006 to 2008 (fully dynamic
search and use)

Casual / ad-hoc use of services
New business models possible
Commoditization of software
Pervasive use in nontraditional devices

Table 2: Phases of Web Services penetration into organizations

4. Summary and Conclusions

This paper overviews the technologies behind Web Services and hints the opportunities of adopting the burgeoning
technologies in IT organizations. The three major underlying technologies behind Web services, SOAP, UDDI, and
WSDL, are detailed. It also describes the various issues and challenges that must be addressed by the stakeholders
before Web Services can become ubiquitous. This is because building an ecosystem of fully integrated Web services
(like the “fully dynamic search and use” phase given in Table 1 above) is much more complex than some have led
others to believe. They are numerous characteristics to consider (some are described in Section 3 above) and these must
be accounted for before Web Services can fully fulfill its promises.

While organizations contemplate when and how to leverage Web Services for their businesses, vendors and
standard organizations are busy introducing new technologies to help the organizations take the dive. Researchers are
also busy working on the next step for Web Services. For example, in the special issue of IEEE Intelligent Systems on
“Intelligent Web Services” [11], articles that range from markup languages that enable intelligent service to operate
over Web content to architectures that permit the location and composition of services to enact a variety of goal-
directed behavior over the Web can be found.

With all of the above efforts, it is noteworthy to point out that while many believe it is very likely that the lower-
level Web Services specifications such as SOAP, WSDL, and UDDI will be agreed upon, the more business-critical,
higher-level specifications dealing with security, reliability, transaction control, and business process will be pulled in
many different directions. Thus, the industry may be faced with the possibility that the open nature of Web Services will
become corrupted with proprietary implementations, rendering interoperability a difficult goal to achieve.

If/when that happens, instead of asking "are you implementing Web Services," one will have to ask "what kind of
Web Services are you implementing?" [12]. This will defeat all the inherent benefits and promises of Web Services. In
anticipating this possibility, organizations such as the Web Services Interoperability (WS-I) organization are emerging
to help pull some order to this chaos by specifying profiles of specification stacks that are applicable to different
implementation scenarios.

References

1. Benfield , S., “Web Services: XML’s Killer App,” Java Developers’ Journal, Vol. 6, No. 4., 2001.
2. Kiely, D., “WSDL for Defining Web Services,” Cover Story, XML Magazine, Vol. 2, No. 4, August/September,

2001.
3. McCright, A., “Writing Your First Web Service: A Tutorial,” Web Services Journal, June, 2001.
4. McDougall, P., “Decoding Web Services,” InformationWeek , Oct 1, pp. 28-37
5. Dyck, T., “Web Services Wave” (the Cover Story: Web Services Wake-Up Call), eWeek , Vol. 18, No. 35,

September, 2001.
6. Booch, G., “Web Services: The Economic Argument,” Software Development, Vol. 9, No. 11, November, 2001.
7. Curbera, F., et al., “Unraveling the Web Services Web,” IEEE Internet Computing, march/April, 2002.
8. Web Services Journal, Sys-Con Publications Inc., Montvale, New Jersey.

9. Gates, W., Microsoft .NET Today, an open letter to the Developers & IT Professionals, June 14, 2001.
10. Venu Vasudevan, “A Web Services Primer,” http://www.xml.com/pub/a/2001/04/04/webservices/index.html,

April 04, 2001.
11. Special Issue on “Intelligent Web Services,” IEEE Intelligent Systems, January/February, 2002.
12. Bloomberg, J., Schmelzer, R., “The Pros and Cons of Web Services,” ZapThink Research Report, May 2002.

