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Abstract 

 
In this paper, we propose a novel decision support and data mining mechanism to assist biological and 

medical researchers to identify genes related to various cancers. This approach will streamline future 
biological experiments in bio-pharmaceutical research by elimination of irrelevant genes thereby helping to 
determine a minimum set of useful genes to study. The analysis of genes and cancers is based on the 
state-of-the-art microarray technology that is capable of holding information from more than 10K genes in 
one DNA chip. However, the rich information obtained from a microarray experiment results in an 
underdetermined problem when we have only a small number of cancer cases.  To overcome this problem, 
we have developed a suite of customized feature selection algorithm, a binarize-scoring algorithm, and a 
dynamic threshold determination algorithm to effectively reduce the dimensionality to a small number of 
genes and still maintain the discrimination power among different cancer types.  

The unique contribution of this work is the development of the dynamic threshold determination (DTD) 
algorithm. This DTD algorithm is designed to compute the thresholds of methylation levels in microarray. It 
is based on a statistical tool – a minimum risk classifier using Bayes decision theorem. The thresholds play 
an important role in this domain because only those genes that pass the thresholds are considered relevant for 
future study. Almost all of the current microarray research depends on predetermined thresholds. This 
human-driven approach is subjective and purely based on a particular domain expert’s experiences. 
Therefore, it is an urgent call for us to develop this systematic approach – the DTD algorithm – to 
dynamically identify methylation thresholds. Those genes that survive the DTD thresholds are classified as 
“hypermethylated” genes, and the rest of genes are “hypomethylated”. We further study the 
“hypermethylated” genes by applying the binarize-scoring approach that has been developed in our previous 
work for ovarian cancer.  

This collaborative research mines a set of data that has 81 cancer cases collected from the Ellis Fischel 
Cancer Center at the University of Missouri, Washington University at Saint Louis, Brigham and Women’s 
Hospital at Harvard Medical School, Indiana University School of Medicine, CRC Beaston Laboratories at 
the University of Glasgow in the UK, University of Bonn, Bonn, Germany, and Campus 
Rhineland-Palatinate, Mainz, Germany. Our ultimate goal is to help biological researchers discover genes 
that significantly correlate with certain cancers and are potentially useful for predicting treatment outcome 
for various cancer patients. An extensive study, based on experiments performed for determining the 
classification rates of selected genes is presented. The experimental results show that genes selected by our 
new approach are more informative than those selected by the traditional feature selection and static 
threshold approaches.  

 

1. Introduction 
With the advent of microarray technologies, it is now possible to identify simultaneously multiple genes “down- or 

up-regulated” during tumorigenesis and classify tumors based on their global patterns of gene expression. This type of 
research provides an unprecedented opportunity to improve our understanding of the molecular mechanisms leading to 
the development of cancer [1] [2]. Motivated by the same concept, we have recently developed a novel microarray 
technique, called differential methylation hybridization (DMH) [3], which allows for the first time a global analysis of 
another type of molecular alteration, i.e., DNA methylation, in cancer. DNA methylation is known to be a frequent 



epigenetic event in cancer cells and has profound effects on the silencing of tumor-suppressor genes and genes 
responsible for genomic stability. Methylation-associated silencing of tumor suppressor genes could result in cells with a 
growth advantage, and clonal expansion of these proliferating cells may bear specific epigenetic signatures reflecting 
different types or stages of various tumor types. Unlike cDNA-based arrays, DMH analysis requires hybridization 
templates that are GC- and CpG-rich and should contain specific methylation-sensitive restriction sites. The CpG island 
microarray consists of individual clones from a human genomic library (CGI, distributed by the UK Human Genome 
Mapping Project) that are enriched in CpG island fragments. Tumor DNA and its paired normal DNA are restricted into 
short fragments by employing a frequent cutter that preserves the GC -rich regions. PCR-linkers are legated to these 
fragments and are later restricted with methylation-sensitive restriction enzymes. CpG islands in tumor DNA are often 
methylated and thus unaffected by the res triction enzyme. CpG islands in normal DNA are often unmethylated and are 
thus restricted away by the enzyme. The remaining intact fragments in both tumor and normal DNA will be amplified by 
linker-PCR and ready for fluorescent-labeling with Cy5 and Cy3, respectively. The hybridization signals between the 
tumor and the normal DNA need to be normalized due to the differential labeling efficiency between the two dyes. Having 
achieved that, CpG island loci having higher fluorescent signals are marked as hypermethylated in tumor and further 
characterized by genomic sequencing. 

 
Microarray technology has been widely used in biological and medical researches during the last several years. In 

cancer research, information residing in a microarray is a collection of supervised data that have class label (cancer type) 
for each sample (patient). In the context of our research presented in this paper, we categorize the existing microarray 
research into two major focuses: 1) understanding the relationship between methylation levels of genes and cancer types 
[4] [5] [6] [9] [10], and 2) selecting genes from the overwhelming number of genes [4] [5] [6] [7] [8] [11] [12] [13] [14]. 
Almost all of these systems overlook the importance of threshold determination, especially in research with experiments 
based on all available genes in a microarray using continuous methylation levels. It is more meaningful to consider only 
the “hypermethylated” genes and discard the “hypomethylated” genes since the former is believed to have a high 
probability of responding to some treatments in cancer research and the latter is not. To identify which gene is 
“hypermethylated” or “hypomethylated”, we need to determine the thresholds for methylation levels. Therefore, instead 
of finding a subjective number from a domain expert, it is necessary to have a systematic approach to calculate the 
threshold. To do that, we developed a dynamic threshold determination (DTD) algorithm that can logically identify the 
methylation thresholds based on statistical measurements. We believe that the DTD algorithm will support and/or suggest 
the predetermined thresholds given by the domain experts. 

 
We also extend our effectively implemented work [4], a binarize -scoring algorithm (BSA), and combine it with our 

newly invented DTD approach. The steps of classifying the cancer types by using the BSA and the DTD include 1) 
supplying the thresholds of methylation level of each gene obtained from the DTD algorithm to the BSA so that we can 
separate the “hypermethylated” and the “hypomethylated”, and 2) eliminating the irrelevant genes that cannot effectively 
classify the cancer types based on the score calculated by the BSA. 

 
By using the state-of-the-art microarray technology, we have faced a known and difficult research problem — an 

underdetermined problem — caused by a small number of the cancer cases with a large number of genes to be studied. 
There are several approaches, presented in the current microarray research, to efficiently select the subset of genes, such 
as 1) statistical approach, i.e. analysis of variance (ANOVA) [6] and principal component analysis (PCA) [7] to mine the 
relationship between some certain genes with a specific cancer type, 2) support vector machine (SVM) approach [5] [13] 
based on a binary classifier, 3) feature selection approach [5] [8] [12], etc. We believe the reduction of dimensionality is 
the first task for gene selection and the biological explanation of one gene at a time is more significant than any linear 
combination of multiple genes. Therefore, to incorporate the existing approaches into our new method, we chose to 
extend a traditional feature selection technique called sequential forward selection (SFS) [17] [18] [19] by using a 
criterion function based on Bayesian classifier [20]. The idea of SFS is to iteratively include the next best gene with 
respect to the set of currently selected genes as long as the true positive gain [21] of the new set of genes is greater than or 
equal to a preset value.  

 
This paper is organized as follows: in Section 2, we review the criterion function used in our algorithms, minimum 

risk classifier using Bayes decision theorem. In Section 3, we discuss a well -known feature selection algorithm – 
sequential forward selection (SFS). Section 4, we discuss our previous approach in gene selection and cancer 
classification – binarize-scoring algorithm (BSA). Then, we discuss the main contribution presented in this paper – the 
dynamic threshold determination (DTD) algorithm in Section 5. We have conducted four experiments that study the 



performance of the DTD with the BSA for selecting relevant genes in comparison to the SFS and the plain BSA. Detailed 
discussion and experimental results are reported in Section 6. This paper is concluded in Section 7. 

 

2. Minimum Risk Classifier Using Bayes Decision Theorem  
In this section, we briefly present the criterion function used in the feature selection and the dynamic threshold 

determination approaches, minimum risk classifier using Bayes decision theorem [15] [16] [20]. 
 
Let ir be the risk function that measures the probability that a sample x misclassified into class iW . We can obtain an 

optimal classification result by minimizing (1 )ir i n . Each ir is calculated by  
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where ijλ is the loss for classifying x into class jW when the actual class of x is iW . It is reasonable to apply 0 -1 loss function 
to determine the value of ijλ . With this setting, the loss of true positive (TP) ( ijλ where i j= ) is 0, and the loss of false 
positive (FP) ( ijλ where i j ) is 1. To compute ir , we need to know the value of ( | )jP W x . By using Bayes theorem, we get 
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where n is the number of classes, ( )kP W is the prior probability of class k that can be calculated by 
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where || ||kW is the number of samples in class kW . In Eq. (2), ( | )jP x W is the probability density function of class jW . It is 
calculated by 
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where d is the dimension of x . jµ , jσ , and | |jσ  are the mean, the covariance, and the determinant of the covariance 
matrix of class j, respectively. 

 
 Therefore, after we know the value of ( )kP W in Eq. (3) and the value of ( | )jP x W  in Eq. (4), we will be able to 
calculate ir in Eq. (1).  

 

3. Feature Selection Algorithm 
To compare our approach to the traditional feature selection approach, we would like to briefly introduce the concept 

of the sequential forward selection (SFS) algorithm in this section. SFS is a well-known feature selection algorithm [17] 
[18] [19] that is capable of selecting a subset of the features while effectively maintaining the classification power. 
Generally, using the entire set of original genes in classifying the cancer type is not as accurate as using only the effective 
ones. The details of SFS and its algorithm are to follow.  

 
 
SFS is a greedy algorithm that starts with an empty set of candidate features. The feature selection procedure first 



picks up the most significant feature from the entire feature set by testing each feature individually in search of the one 
that provides the best performance based on a criterion function. The procedure then picks up a best feature from the 
remaining feature set. This newly selected feature gives the best performance when it combines with the previously 
selected one. The same process will be iteratively executed until the new feature set fails to provide a sufficient gain value.   

 

Sequential Forward Selection Algorithm (Y ){ 
1 //Acquire the set of features, Y  
2 //Initialize the set of selected features, kX , to be an empty set  
3 

kX φ=   
4 while gain( 1kX + ) >= ε {   //ε  is a certain user-defined threshold of gain value 
5  1

argmax( )kx Y Xk k kX X X x+ = + +  
6 1k kX X +=  
7 } 
8 return 1kX +  
9 } 
 
We extend the original SFS algorithm by utilizing Bayesian classifier [20] in calculating gain( 1kX + ) at line 4 and in 

finding argmax( )kx Y X kX x+ at line 5. SFS runs on each subset of features created to find the best feature ( x ) with respect to the 
currently selected set of features ( kX ) from the set of the remaining features ( kY X− ). Then, x  will be combined 
with kX to form the new set of selected features ( 1kX + ). The while loop from lines 4-7 will be executed as long as the 
performance of the new selected feature set, gain( 1kX + ), is greater than or equal to a preset value )(ε . After the 
algorithm terminates, it will return a set of selected features— 1kX + . In Section 6, we will demonstrate the selected genes 
and their classification rates by applying the extended SFS. 

 

4. Binarize -Scoring Algorithm (BSA) 
The BSA approach [4] uses an idea based on the assumption that an “hypermethylated” gene is biologically 

meaningful in cancer studies. If a gene is “hypermethylated”, its methylation level should be higher than a threshold. A 
perfect gene that is “hypermethylated” to only a certain cancer C has all 1’s associated with C and 0’s with other cancers. 
This kind of perfect gene is defined as an ideal vector denoted by Videal . As an example shown in Table 1, the fourth row of 
this table illustrated Videal when C = “Breast cancer”. We will use Videal as a benchmark to select genes in a microarray. 

 
The BSA approach first computes a binary vector called the after-thresholding vector Vgene by applying the following 

threshold process: 
 

 {1 if ( )   threshold( )
0 otherwise

rawgene V iV i =     (5) 

 
Then, the BSA calculates the score of each Vgene by comparing with the ideal vector Videal. The score is obtained by the 
following equation: 
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where idealV  is the compliment of idealV  and geneV  is the compliment of geneV .  |X | is the 1st norm of X. Max (x, y) and 
Min(x,y) return the maximum and minimum values of two scalars (x and y), respectively. If X and Y are vectors, Max (X, 
Y) = Vmax returns a vector that has Vmax[i] = Max(X[i],Y[i]), while Min(X,Y) = Vmin returns a vector that has Vmin[i] = 
Min(X[i],Y[i]). The dividend from Eq. (6) is composed of two terms, | ( , ) |

(| |,| |)

ideal gene

ideal gene

M i n V V

Max V V
 and | ( , ) |

(| |,| |)

ideal gene

ideal gene

M i n V V

Max V V
. The first 

term is to measure how close the after-thresholding vector is to the ideal vector. The second term is to measure how close 
the compliment of the after-thresholding vector is to the compliment of the ideal vector. This is because we are interested 
in a gene that is “hypermethylated” only when it associates with a certain cancer type, but is “hypomethylated” with the 



others. The denominator of Eq. (6) is set to 2 for the purpose of averaging out the summation of these two scores. It is not 
difficult to see that the higher the score obtained from Eq. (6), the more selected the gene is. A perfect gene should have 
binarize-score = 1.0. 
 

We illustrate the BSA process using the example listed in Table 1. In this table, there are 10 samples from three cancer 
categories. The first row contains the raw methylation level of a specific gene Vraw; the second row is the 
after-thresholding vector Vgene of the first row with threshold value 0.8. If we are interested in understanding a specific 
cancer type, we assign 1’s to the elements of the ideal vector ideal

BreastcancerV when the samples have the same cancer label, 
breast cancer in our example.  

 

Table 1 A Binarize-Scoring Example with Threshold = 0.8 

Cancer Type Breast 
cancer 

Breast 
cancer 

Breast 
cancer 

Breast 
cancer 

Lung 
cancer 

Lung 
cancer 

Lung 
cancer 

Ovarian 
cancer 

Ovarian 
cancer 

Ovarian 
cancer 

rawV  1.2 0.5 1.4 0.8 1.1 0.3 0.6 0.04 0.9 0.3 

geneV  1 0 1 1 1 0 0 0 1 0 

ideal
BreastcancerV  1 1 1 1 0 0 0 0 0 0 

 
 From Table 1, we calculate binarize-score by applying Eq. (6) as shown below. 

|),(| geneideal VVMin    = |Min ([1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 0, 0, 1, 0])| 

 = |[1, 0, 1, 1, 0, 0, 0, 0, 0, 0]|  

 = 3  

|),(| geneideal VVMin  = |Min ([0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 1, 0, 0, 0, 1, 1, 1, 0, 1])| 

 = |[0, 0, 0, 0, 0, 1, 1, 1, 0, 1]|  

 = 4 

|)||,(| geneideal VVMax  = Max (|[1, 1, 1, 1, 0, 0, 0, 0, 0, 0]|, |[1, 0, 1, 1, 1, 0, 0, 0, 1, 0]|) 

 = Max (4, 5) 

 =  5 

|)||,(| geneideal VVMax  = Max  (|[0, 0, 0, 0, 1, 1, 1, 1, 1, 1]|, |[0, 1, 0, 0, 0, 1, 1, 1, 0, 1]|) 

 = Max  (6, 5) 

 =  6 

scorebinarize −  = 
2

6

4

5

3 +  = 0.633 

 

Binarize-Scoring Algorithm (D, ct){ 

1 //D is the data matrix with dimension NP (NG+1) where the last 

2 //column is the cancer type. ct is the cancer type to be studied. 

3 NP = number of patient 

4 NG = number of gene 

5 T = user specify threshold 

6 DV raw =  // read data 

7 assign the ideal vector ideal
ctV  

8 for i=1 to NG{ 

9     for j=1 to NP{  



10        if TjV raw
i ][   then  1][ =jV gene

i  

11        else 0][ =jV gene
i  

12     } 

13 binarize-score[i] = CalcBinarizeScore( gene
iV , ideal

ctV )    

14 } 

15 return binarize-score 

16 } 

 
This approach is an efficient tool, yet a simple and straight forward approach. The computational complexity is 

O(NPNG) dominated by the for-loop from line 8-14. Please note that the CalcBinarizeScore( gene
iV , ideal

ctV ) 
function at line 13 is calculated by applying Eq. (6). 

 
However, the limitations of the BSA are: 1) A methylation threshold must be subjectively assigned by the domain 

expert so that we can calculate the after-thresholding vector Vgene, and 2) we can only compare two sets of cancer types: a 
set of patients with a specific cancer type to be studied and another set of patients that have the rest of the cancer types. 
Therefore, instead of obtaining the predetermined thresholds, we implement dynamic threshold determination (DTD) 
algorithm in order to dynamically provide the thresholds to the BSA. Furthermore, the DTD algorithm can also analyze 
multiple cancer types simultaneously. The details are explained in the next section. 

 

5. Dynamic Threshold Determination (DTD) Algorithm and BSA with DTD Algorithm 
Threshold determination is an important issue in analyzing microarray data because a threshold is used to classify 

whether a gene is “hypermethylated” or “hypomethylated”. From the existing approaches cited in Section 1, almost all of 
these systems overlook the importance of threshold determination that should be determined by utilizing statistical 
information calculated fro m the data. The thresholds that are currently used are normally acquired from the domain 
experts. A threshold obtained from an expert is a specific number that will be applied for all genes throughout an entire 
microarray to determine which gene is “hypermethylated”. If a gene is “hypermethylated”, it is believed to have a high 
probability of responding to some treatments in cancer research. We believe it is not a good idea to use only one threshold 
for all genes since the methylation level to identify a gene to be “hypermethylated” or “hypomethylated” can vary based 
on each gene’s characteristic. 

 
Our fundamental idea is to develop an algorithm that, for each gene, can determine a valid interval that will be able to 

classify samples of each cancer type. For this reason, we design a unique approach – dynamic threshold determination 
(DTD) algorithm – that dynamically calculates a pair of gene-cancer thresholds that will then determine the 
corresponding valid interval. The DTD algorithm utilizes the statistical information from a given microarray. We assume 
that each cancer type has a probability density function obtained in Eq. (4). To dynamically determine the thresholds and 
classify cancer types at the same time, we implement a criterion function in the DTD algorithm based on the Bayesian 
classifier [13] previously explained in Section 2 with the assumption that the distribution of the data is Gaussian. We use 
0-1 loss function that minimizes the classification error rate: 0 for true positive and 1 for false positive. While minimizing 
the error rate, we maximize the true positive rate which then yields an optimal solution for classification.  

 
Let C be the set of cancer types in a microarray used in this paper where C={“Oligoastrocytoma(OA)”, “Glioblatoma 

multiforme(GM)”, “Pilocytic astrocytoma(PA)”, “Gangliogloma(GG)”, “Breast(Br)”, “Colon(Colo)”, 
“Endometrium(Endo)”, “Ovary(Ova)”, “Aplastic Anemia(AN)”}, and CC N= . The computational effort of applying the 
DTD algorithm for each gene is 1CN − comparisons that result in a set of 1CN −  thresholds. We further calculate the 
gene-cancer threshold, i

j

g
cT  for ( ,i jg c ) pair, by the following procedures. Let cremaining be the samples that have cancer 

types other than cj and ,
i
j remaining

g
c ct  be the threshold that is obtained by solving the intersection of two probability density 

functions of cj and cremaining of a gene ig . We obtain i

j

g
cT  from the following equation: 
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where avg(.), min(.), and max(.) are functions to obtain the mean, minimum, and maximum of methylation levels i

j

g
cm for 

( ,i jg c ) pair. The pseudo code to describe the DTD algorithm is  listed below: 

 
Dynamic Threshold Determination Algorithm (D){     

1 //D is the data matrix with dimension NP (NG+1) where the last column is the  
2 //cancer type.  
3 NP = total number of patients 
4 NG = number of genes 
5 NC = number of cancer types 
6 Nmax = a large positive number that is greater than the highest methylation level 
7 NP[j]=0 //Initialize NP--number of patients for cancer type cj 
8 Calculate NP[j] //Count number of patients for cancer type cj     
9 for i=1 to NG{  //Calculate the statistics of the data 
10  for j=1 to NC{ 
11      find min[i][j] 
12      find max[i][j] 
13      calculate avg[i][j] 
14      calculate cov[i][j] 
15  } 
16  for j=1 to NC{  //Calculate the threshold for each cancer type  
17 for k=1 to NC{  
18  threshold[i][j][k] = Nmax //Initialize threshold[i][j][k] 
19         if j=k skip          
20  calculate threshold[i][j][k] = Bayes(avg[i][j], avg[i][k],  
21                                                  cov[i][j], cov[i][k]) 
22  } 
23  } 
24 } 
25 for i=1 to NG{        //Determine gene-cancer thresholds, gThres,   
26  for j=1 to NC{      //as shown in Eq.(7) 
27      gThres[i][j] = avg[i][j];      
28      for k=1 to NC{     
29          if j=k skip 
30  if((threshold[i][j][k]    Nmax){  
31  if (avg[i][j] > avg[k][j]){  
32  gThres[i][j] = threshold[i][j][k] 
33  } else skip 
34  } else if ((min[i][j] > min[k][j]) && (max[i][j] > max[k][j])){ 
35  gThres[i][j] = min[i][j] 
36  } else skip 
37  } 
38  } 
39 } 
40 return gThres  

41 } 

 
The DTD algorithm has the computational complexity of O(NGNCNP) where NG, NC, and NP are the number of genes, the 
number of cancer types, and the number of patients, respectively. However, it is always the case that G P CN N N>> > . The 
detailed explanation of the DTD algorithm is to follow. There are two modules in this algorithm. In lines 9-15, the 



algorithm calculates the statistical values of the microarray data set D; minimum, maximum, average, and covariance. 
The second module is to dynamically determine thresholds in lines 16-39. It calculates the possible threshold for each pair 
of the probability density functions (Eq. (4)) of cancer types by using minimum risk classifier (Eq. (1)) based on Bayes 
theorem (Eq. (2)) in lines 16-23. We call the values calculated by a for-loop in lines 16-23 as “candidate thresholds” since 
we need to verify if these values are valid; not equal to the initialize value Nmax, in lines 30. The final threshold for (gi,cj) 
pair is calculated by applying Eq. (7) in lines 25-39. 

 
There are many benefits to applying the DTD algorithm in the context of microarray analysis in cancer research. Fig. 

1 shows the advantages of the DTD over the existing approaches —the sequential forward selection (SFS) algorithm and 
the binarize -scoring algorithm (BSA). The remainder of this section will discuss the performance comparisons among the 
DTD, the SFS, and the BSA in details. 

  

 

Fig. 1 The DTD overcomes disadvantages of the existing approaches, the SFS and the BSA 
 
Biologically, the results from DTD algorithm can be more meaningfully explained than the results from the SFS 

because the latter considers a combination of genes in order to classify the cancer samples, but the former considers only 
an individual gene. Computationally, the DTD algorithm is much more efficient than the SFS. The computational 
complexity of DTD is O(NGNCNP) where NG, NC, and NP are the number of genes, the number of cancer types, and the 
number of patients, respectively. It is always the case that NG dominates the complexity since G P CN N N>> > as we already 
discussed previously. On the other hand, the computational complexity of SFS is dominated by the process of finding 
theargmax( )kx Y X kX x+ at line 5 of the SFS algorithm which results in ( 1)

2
G GN N − computational time. In addition, it also needs to 

evaluate the gain( 1kX + )at line 4 by utilizing the Bayesian classifier [16] which has the computational complexity G PN N . 
In conclusion, the required computational time of the SFS algorithm is ( 1)

2( )( )G GN N
G PN N− . 

 



As mentioned previously, the BSA relies on a static threshold that cannot be adapted to each individual gene’s 
characteristics. Therefore, by applying the DTD algorithm, the BSA can utilize a set of reasonable and computable 
self-determination thresholds based on the likelihood of the data set in its gene selection process.  

 

6. Experimental Results 
We conducted the experiment on prescreened microarray data that contains 97 genes from 81 patients which are 

grouped into 9 cancer types — C, where C={“Oligoastrocytoma(OA)”, “Glioblatoma multiforme(GM)”, “Pilocytic 
astrocytoma(PA)”, “Gangliogloma(GG)”, “Breast(Br)”, “Colon(Colo)”, “Endometrium(Endo)”, “Ovary(Ova)”, 
“Aplastic Anemia(AN)”}. In order to compare the results among the different approaches presented in this paper, we 
benchmark the experimental results based on the binarize -score in Eq (6). The experimental results to be followed are 
designed to compare the selected genes and their classification power among the three approaches: the SFS algorithm 
discussed in Section 3, the BSA discussed in Section 4, and the BSA with the DTD algorithm discussed in Section 5.  
 

6.1 Genes Selected by Sequential Forward Selection (SFS) Algorithm 
We applied the SFS method, mentioned in Section 3, to our data set. We obtained the following genes: 13 

(AutoGen18{SC#5}E9), 15 (AutoGen25{SC#13}C7), 35 (AutoGen1{PY#1}D5), 52 (AutoGen20{SC#7}D10), and 72 
(AutoGen69{CpG-18}G8).  
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Fig. 2 The comparison of the binarize-scores of the selected genes by SFS algorithm 

 
The experiment was then conducted to compare all cancer types simultaneously by using the selected set of genes 

based on their binarize -scores computed by the binarize-scoring algorithm (BSA) with three static thresholds of 0.8, 1.0, 
and 1.2. The range of possible scores is between 0 (minimum) and 1 (maximum). From Fig. 2 and comparing the results 
from the next experiment, no matter how the static thresholds were selected (0.8-1.2), we found that the genes selected by 
the SFS algorithm do not have significant classification power individually.  

    

6.2 The Comparison between the Binarize -scoring Algorithm (BSA) and the Binarize -scoring with the 
Dynamic Threshold Determination (DTD) Algorithm 

To compare the experimental results among the BSA with three static thresholds (T) of 0.8, 1.0, and 1.2 and the BSA 
with the DTD algorithm, we present the selected genes sorted by their binarize-scores of both approaches in Table 2. To 
make our discussion compact, we present only the result of the best 10 genes from each setting. 



 

Table 2 The 10 best genes selected from BSA with static thresholds and BSA with DTD 
Genes from BSA 

with T=0.8 Binarize-score Genes from BSA 
with T=1.0 Binarize-score Genes from BSA 

with T=1.2 Binarize-score Genes from 
BSA with DTD Binarize-score 

73 0.58710 73 0.52628 73 0.59755 40 0.68100 
40 0.56403 40 0.57398 46 0.57341 53 0.66426 
28 0.54292 34 0.48216 35 0.57169 30 0.63910 
35 0.54148 95 0.48718 21 0.57072 86 0.63569 
69 0.53788 35 0.43584 40 0.57066 32 0.62040 
95 0.53620 28 0.53006 95 0.56285 5 0.61304 
11 0.53309 70 0.48070 15 0.55998 29 0.61242 
0 0.53265 69 0.48662 8 0.55180 4 0.61124 

34 0.53173 0 0.49242 76 0.55127 54 0.61020 
46 0.53013 94 0.47586 70 0.55123 57 0.61016 

 
From the experimental results shown in Table 2, we found that gene number 73 (AutoGen36(SC#26}F11) is the top 

ranked gene across three settings with static thresholds: T=0.8, T=1.0, and T=1.2 with the maxima binarize-scores 
0.59755 that is comparable to the binarize -score from the 13-th ranked gene selected by our approach –the BSA with 
DTD algorithm. The best gene selected by the BSA with the DTD algorithm is gene number 40 (AutoGen7{MP#2}B9) 
with a higher binarize-score of 0.681. Overall, the top ten genes selected by our approach outperform those selected by the 
static settings. It is noteworthy to mention that the results from our approach also give much higher classification power 
and identify more relevant genes than the SFS algorithm.  

 
 
Fig. 3 illustrates the binarize -scores of all genes in classifying each cancer using the dynamic thresholds generated by 

the DTD algorithm. The range of the scores is between 0.46754 (the worst gene – AutoGen1{PY#1}D5 –  gene number 
35) and 0.681 (the best gene – AutoGen7{MP#2}B9 – gene number 40) 
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Fig. 3 Binarize-score of each gene (gene number 0-96) using the BSA with DTD algorithm 
 

7. Summary and Future Work 
In this paper, we have presented a new technology to mine microarray data in cancer research to assist biological 

researchers understanding the relationships between genes and cancer types. This unique approach — dynamic threshold 
determination (DTD) algorithm — can help researchers determine the cut-off value that categorizes an element in a 
microarray into either “hypermethylated” or “hypomethylated.” It is also capable of eliminating irrelevant genes that have 



low true positive rates with high false positive rates. It is critically important since the inclusion of irrelevant genes to be 
studied will result in a lengthened verification process in the biological community. We believe the genes selected by our 
approach closely reflect the methylation patterns for certain cancer types.  

 
Research in mining microarray data is ongoing. In addition to the work reported in this paper, there are many research 

issues and interesting directions for future work. The first future work is to mine the microarray data without applying 
feature selection algorithm. To achieve this, we will face a well-known research issue – underdetermined system that has 
too many features (genes), but too few samples (cancer patients). To solve this problem, statistical tools, such as the 
Linear Mixed Model [22], will be studied and evaluated. The second future work is to study the pathways of genes [14] by 
applying association rules [23]. The outcome of the association rule research will provide a concrete idea about the 
relationships among genes. Last but not least, to biologically/clinically evaluate genes selected by our approach, we will 
follow up the results of the improvement from cancer treatment and findings in pharmaceutical research. 
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