
xCalendar: An XML Schema for
Calendaring and Scheduling in e-Business

Rajiv Hiremagalur1, Billy Lim2

1,2Applied Computer Science Department, Illinois State University

Normal, IL 61790-5150

Abstract

As the Internet becomes more and more ubiquitous, there is a growing need for consumers and businesses to exchange
information electronically over the Internet. For example, when businesses merge or when new dealers are added to a
business, the parties involved need to share and exchange information. Calendaring is a representative sample application
where there is a need for exchanging information across business units and enterprises. A standard format for calendaring
allows all parties to easily view each other’s schedule and arrange meetings. The challenge here is to find a technology that
is platform and language independent to serve as the base for developing standard formats to exchange information.

In recent years, XML has already been shown to be one such technology that can be used in the above scenarios.
However, loosely defined XML documents are not very useful and cannot be used to address the aforementioned problem.
The documents must be structured based on formats developed with consensus. XML Schema, a recent W3C
recommendation, is one such framework that allows one to define structures on XML documents. This paper describes an
effort to use XML and XML Schema technologies to develop xCalendar, an exchange format for calendaring and
scheduling using XML Schema. The constraints expressed and enforced in xCalendar are also discussed. In addition,
although XML Schema is very powerful, it has its limitations. The paper also describes the use of XSLT and JAXP
technologies to overcome the limitations of XML Schema to make xCalendar even more flexible and powerful.

1. Introduction
The need to exchange information in businesses dates back to the early days of data processing. For example, in the

health care industry, patient records, insurance claims, and schedules are exchanged between the health care providers,
patients, and insurance agencies. In the airline industry, the flight plans, weather information, and passenger information are
exchanged between the airline companies, FAA (Federal Aviation Administration), ATC (Airline Training Council) and
NWS (National Weather Services). Lastly, in the manufacturing industry, purchase orders, invoices, quotes, and service
plans are exchanged between the manufacturers, dealers, and consumers. With the advent of the Internet, there is a growing
need for consumers and businesses, regardless of the industry they belong to, to exchange information electronically.

Today this information is exchanged using proprietary ASCII or binary formats. Some businesses still rely on paper
format for information exchange. This means of exchange is inflexible and is not amenable to change, whether it has to do
with mergers, new dealers, customers, or agents. When such a change occurs, the proprietary formats utilized can easily
cause conflict. The information exchange needed should be flexible; it must not only be easy to accept a change, it must also
be easy to propagate the change too. In addition, when information is exchanged across expansive networks, there is always
a chance for errors. Error checking will have to be performed while sending and receiving information. If this error
checking code is duplicated then it will be difficult to propagate change.

XML (eXtensible Markup Language) [1] is a language that allows structured representation of information. It also
allows the definition of custom tags, using which information can be structured as elements that are intuitive to businesses
and that business applications can easily process. XML dictates some very simple rules to construct elements. Although
these rules are simple, they are rigid. The specification does not allow the XML parsers to relax any rule. This deterministic
approach helps to develop a strong foundation on which other technologies can be built.

In today’s businesses, it is possible that business groups within the same vertical industry define different custom tags
for the same thing when using XML technology. In this scenario, the purpose of a common format is defeated. To better the
exchange of information, there is a need for a way in which one can define and enforce this common format based on
common consensus among the businesses involved. A common format permits the exchange of information consistently
within business units of an enterprise and across enterprises.

Various technologies exist to allow the structure of an XML document to be defined so that XML documents
exchanged make sense. For many years, the most popular technology has been DTD (Document Type Definition). DTD is
an EBNF-based language with the specific purpose of defining XML document structure. There are, however, many
shortcomings of DTD. First, it is decidedly not an XML document and as such, XML processing programs (e.g., parsers)
cannot process a DTD easily. Second, there is no data typing in DTD and thus all the contents are treated as strings. This
serious shortcoming puts the difficult task of constraint enforcement in the hands of the application developers to verify that

the contents of the XML documents are indeed valid. Finally, DTD does not allow element names to be reused on the same
document. This lack of support for namespaces unnecessarily constraints the use of element names and forces the designers
to choose names that may not be intuitive or natural. All these have led to the development of XML Schema.

2. XML Schema

XML Schema [2], a recent W3C recommendation, is a framework that allows one to define structures on XML
documents. It permits one to express shared vocabularies and allows machines to carry out rules made by people. This
provides a means for defining the structure, content, and semantics of XML documents. In addition to satisfying the needs
of a common exchange formats, XML and XML Schema offer numerous other advantages. They include automated change
propagation, strong support for XML in the developer commun ity, automated error checking, and an incredibly rich set of
APIs for XML-based processing and messaging. For all these reasons, XML has become the lingua franca of data exchange,
replacing the complex and antiquated EDI (Electronic Data Interchange) systems.

Because of its flexibility and power, XML Schema is emerging as a replacement for DTD. The reasons for this shift are
because XML Schema is written in XML and thus it is extensible to future additions, it is much richer and more useful than
DTDs, it supports more than 44 data types, it can create custom data types, and it supports namespaces.

The main purpose of XML Schema is to define the legal building blocks of XML documents. XML Schema defines the
following:

• Elements that can occur in a document
• Attributes that can occur in an element
• Child elements of an element
• Sequence in which child elements can appear
• Number of child elements
• Data types of the elements and attributes
• Default values of elements and attributes

An example of an XML schema is shown below in Figure 1.

A person’s information is represented in the XML instance document. The corresponding schema depicts the structure

of XML documents to be instantiated from this schema. Note that two types of elements can be defined in an XML schema
-- simple and complex elements. Simple elements are those that do not have any child elements whereas complex elements
are the ones that do have child elements. In Figure 1, FirstName, LastName, and Phone are simple elements and Person is a
complex element.

Custom data types can also be created from base data types by restricting one or more facets. For example, a new data
type can be created from the String base data type by restricting the range of values, restricting the length of the value, or
restricting the pattern the value has to match. This allows a large collection of constraints to be specified and enforced so
that XML documents can be validated automatically by XML Schema.

3. xCalendar: Basic Structures

To examine XML Schema is detail and to develop a proof of concept for this burgeoning technology, this project
investigates calendaring systems, where calendaring applications such as Microsoft Outlook, Lotus Notes, and the ones
typically found in PDA and cellular Phones are faced with the challenge of interoperability. The existing ASCII standards
like vCalendar [3] and iCalendar [4] have not been completely successful in establishing a common exchange format.

Instance

<Person>
<FirstName >BILL</FirstName>
<LastName >JOY</LastName >
<Phone> 800-412-3569 </Phone>
</Person>

Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name=“Person">
 <xsd:complexType>
 <xsd:sequence>
 <element name=“FirstName " type="xsd:s tring"/>
 <element name=“LastName " type="xsd:string"/>
 <element name=“Phone“ type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Figure 1: Simple and complex
elements in XML Schema. An
XML schema and an instance
of the schema are shown.

To address the interoperability problem of calendaring systems, this paper proposes the use of xCalendar (for XML
Calendar), an XML Schema specification with external constraints. xCalendar is structured in similar way when compared
to the vCalendar specification. The typical structure of calendaring information is shown below.

 Calendar
 +--- Event
 +--- Summary
 +--- Description
 +--- Attendees
 +--- Location
 +--- Reminder Information
 +--- Audio Alarm
 +--- Audio Content
 +--- Run Time
 +--- Snooze Time
 +--- Repeat Count
 +--- ...
 +--- Recurrence Information
 +--- Recurrence Number
 +--- Recurrence Rule
 +--- Daily
 +--- Weekly
 +--- Monthly By Day
 +--- ...
 +--- Recurrence Date
 +--- ...
 +--- Start Date and Time
 +--- End Date and Time
 +--- ...
 +--- To Do Item
 +--- Free/Busy Time
 +--- Journal Item

The xCalendar XML instance file has the name and location of the xCalendar XML schema specified within the
document. This enables the receiver to fetch the XML schema dynamically and then process the instance document. The
validation of the instance document is a five-step process:

1. Verify that the instance document is well formed.
2. Fetch the XML Schema (XSD File).
3. Verify the XML Schema is well formed.
4. Verify the XML Schema is valid as per the W3C Vocabulary.
5. Verify the instance document is valid as per the XML Schema.
As stated earlier, as powerful as XML is, the value of this technology is limited if no structure is imposed on XML

documents. Thus, structures and constraints need to be integrated into the definition of what constitute a legal XML
document. The xCalendar schema uses the XML Schema language features like complex types and custom data types to
enforce constraints on the instance documents. Some examples are listed below.

One of the elements specified in the xCalendar schema is the DayLightSaving time element. It is depicted in the
schema as an anonymous type, shown below.

Schema
<xsd:element name="DaylightSaving" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="StartDate" type="xsd:dateTime"/>
 <xsd:element name="EndDate" type="xsd:dateTime"/>
 <xsd:element name="TimeZone" type="TimeZoneType"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Instance
<DaylightSaving>
<StartDate>2001-09-26T00:00:00</StartDate>
<EndDate>2001-10-28T02:00:00</EndDate>
<TimeZone>-05:00</TimeZone>
</DaylightSaving>

 Another element specified in the xCalendar schema deals with alarm information. The alarm information is depicted
using a named (as opposed to anonymous, as in the case of DayLightSaving) complex type as it can be used in many alarm
scenarios (e.g., audio alarm, mail alarm, display alarm, and procedure alarm).

The DayOfYear data type is created by restricting the range of values of positive integers.

The days of the week data type is created by restricting the values of the String data type. It uses the enumeration feat ure of
XML Schema.

The time zone data type is created by applying a pattern constraint on the string data type.

Schema
<xsd:complexType name="AlarmType ">
 <xsd:sequence>
 <xsd:element name="RunTime" type="xsd:dateTime"/>
 <xsd:element name="SnoozeTime" type="xsd:time"/>
 <xsd:element name="RepeatCount" type="xsd:nonNegativeInteger"/>
 </xsd:sequence>
</xsd:complexType> Instance

<AAlarm>
 <RunTime>0000 -00-00T00:00:15</RunTime>
 <SnoozeTime>00:10:00</SnoozeTime>
 <RepeatCount>3</RepeatCount>
 <AudioContent>Chimes.wav</AudioContent>
</AAlarm>

XML Schema
<xsd:element name=" DayOfYear">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="366"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

Instance
<DayOfYear>254</DayOfYear> Is Valid
<DayOfYear>0</ DayOfYear> Is Invalid
<DayOfYear>367</DayOfYear> Is Invalid

Schema
<xsd:simpleType name="WeekDayType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUNDAY"/>
 <xsd:enumeration value="MONDAY"/>
 <xsd:enumeration value="TUESDAY"/>
 <xsd:enumeration value="WEDNESDAY"/>
 <xsd:enumeration value="THURSDAY"/>
 <xsd:enumeration value="FRIDAY"/>
 <xsd:enumeration value="SATURDAY"/>
 </xsd:restriction>
</xsd:simpleType>

Instance
< WeekDayType >SUNDAY</ WeekDayType > Is Valid
< WeekDayType >HOLIDAY</ WeekDayType > Is Invalid

The above examples showcase a number of features of XML Schema that have been used in xCalendar to enforce the
constraints specified in the calendaring application considered. Some other XML Schema language constructs have also
been used to enforce other constraints but are not detailed here.

While one can implement most of the constraints using XML Schema, there are constraints that may seem trivial but
are beyond the capability of XML Schema. For example, a constraint that states that the start date of daylight saving time
must be before the end date of daylight saving time is a condition that cannot be expressed using XML Schema.

After examining several ways in which these conditions can be tested, XSLT (XML Stylesheet Language
Transformation) and JAXP (Java API for XML Processing) emerged as the top contenders for addressing this shortcoming
of XML Schema. Thus, xCalendar is complementing the power of XML Schema with two well- supported external
technologies.

XSLT [5] is written in XML and it provides a vocabulary to navigate the XML documents. Action can be assigned
based on matching elements. The language has features to perform conditional action and iteration. Output generated is text
or any other textual derivative. As shown in Figure 2 below, the XSL processor takes two files as input. The XML schema
instance file and the XSL file, which has the actual processing instruction.

JAXP [6] is one of the latest additions to the Java API. It supports processing of XML documents using DOM
(Document Object Model) and SAX (Simple API for XML processing). It allows applications to process XML documents
independent of any particular XML processing platform. A Java program will have to be written for each XML Schema. In
the program, the instance file can be loaded into a DOM object. In this case, the application is a Java program and the
output can be text (plain, HTML, XML, etc.) or binary. Figure 3 depicts such a process.

4. xCalendar: Architecture and Operation

The above describes each of the system components individually. Now let’s examine how these components can be
assembled to reliably exchange xCalendar documents. This paper described only the architecture that uses XSLT to check

Schema
<xsd:simpleType name="TimeZoneType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[-+](0[0-9]|11):[0-5][0-9]"/>
 </xsd:restriction>
</xsd:simpleType> Instance

<TimeZone >-05:00</TimeZone> Is Valid
<TimeZone >*50:00</TimeZone> Is Invalid

XML File XSL File

XSL Processor

HTML, XML, Text…

XML File Constraint Checking
Application

Java VM

HTML, XML, Text, Binary…

JAXP API

Figure 2: XSLT-based
approach to complementing
XML Schema for constraint
checking.

Figure 3: JAXP-based
approach to complementing
XML Schema for constraint
checking.

non-schematic constraints (see Figure 4 below). Here, non-schematic constraints simply refer to the ones that cannot be
expressed using XML Schema. The JAXP architecture is not detailed in this paper.

The XML instance document received is first validated for well-formedness by the XSD Validator. After that, the XSD
Validator uses the schema to check if the XML instance document obeys all the rules specified in the xCalendar XML
schema. For example, if one changes the DaylightSaving element to HaylightSaving, the XSD Validator will throw a
validation error.

Of course, this simple error can be fixed by simply changing HaylightSaving to DaylightSaving. After validating the
instance document against the schema, one can run the XSLT processor to transform the instance document to find non-
schematic errors. The XSL Processor streams the output to a designated output file in XML format (out.xml is the name
used in Figure 5 below). If the XML instance file is valid, the first message in out.xml is “Complete”. This indicates that the
transformation was successful and the instance file is valid.

If the DaylightSaving start date was after the DaylightSaving end date, then the constraint is violated and an error message
would first appear in the XML output file before the “Complete” message. This is depicted in Figure 6 below.

C:\xCalendar>run-xt Birthdays.xml Calendar.xsl out.xml

Running the XSL Processor, XT, with the following specifications:
 - XML File: Birthdays.xml
 - XSL File: Calendar.xsl
 - Output File: out.xml

Done.
C:\xCalendar>type out.xml
<?xml version="1.0" encoding="utf-8"?>
<output>
<message>Complete</message>

</output>

XSD Validator

Events.xml Calendar.xsd

XML is Valid?

XSL Processor

Calendar.xsl

YES

XML is Valid?

YES

NO

XML is Valid XML is Invalid

NO

Figure 4: Constraint validation
using the combination of XML
Schema and XSLT approach.

Figure 5: Testing the XSLT
approach with an XML
instance file and a XSL
transformation file. Here, the
XML file is valid and the result
shown is “complete”

5. Summary and Conclusions

In this paper, we have described XML and XML Schema as a technology for information exchange. The hope is that
we (and others) can build upon the work done here to develop platform and language independent standards for information
exchange in general and calendaring exchange specifically. We will see the need for many more common standards for this
to happen. Once these common standards have been established, there will be easy exchange of information. That is when
we will fully utilize the extensive connected networks that are so prevalently used in our society today.

Based on the experience of this project it is fair to say that there is a tremendous potential for XML and XML Schema
in the arena of information interchange. There are already technologies like SOAP and Web Services being developed based
on this framework. Even with all these developments and the excellent technologies made available, it depends on the
people and the companies to work together to make this dream a reality.

References

1. Extensible Markup Language (XML). Sep 2001. URL: http://www.w3.org/XML/
2. XML Schema. Sep 2001. URL: http://www.w3.org/XML/Schema
3. vCalendar Overview. Dec 2001. URL: http://www.imc.org/pdi/vcal-10.doc
4. Internet Calendaring and Scheduling Core Object Specification (iCalendar). RFC 2445. Nov 1998. URL:

http://www.ietf.org/rfc/rfc2445.txt
5. Extensible Style Sheet, http://www.w3.org/Style/XSL/
6. Java API for XML Processing (JAXP). Dec 2001. URL: http://java.sun.com/xml/jaxp/index.html

C:\xCalendar>run-xt Birthdays.xml Calendar.xsl out.xml

Running the XSL Processor, XT, with the following specifications:
 - XML File: Birthdays.xml
 - XSL File: Calendar.xsl
 - Output File: out.xml

Done.
C:\xCalendar>type out.xml
<?xml version="1.0" encoding="utf-8"?>
<output>
<message>Start Date greater than End Date at Day Light Saving Date
Range</message>
<message>Complete</message>
</output>

Figure 6: Testing the XSLT
approach with an XML
instance file and a XSL
transformation file. Here, the
XML file is invalid and an error
message is shown.

