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Abstract 
 The temporal disaggregation problem consists of deriving high frequency data from less frequent observations 
of a time series. This problem usually occurs when carrying out analysis of the economic situation. Several 
analysts have proposed methodologies to obtain high frequency (say monthly) data from less frequent (say 
quarterly) observations of such an important economic variable as Gross Domestic Product (GDP). 
 This work proposes a model-based solution to this problem. In fact, a method is proposed to disaggregate 
historical values of the unobserved time series in one step. Another method is also suggested to predict its future 
values. The procedures involved are derived from a statistical model that links the unobserved data with a 
preliminarily estimated series and with another series of temporally aggregated values. It is assumed that the 
preliminary series can be estimated by the use of related variables through a Linear Regression Model. This 
procedure produces a preliminary series that does not necessarily satisfy the accounting restrictions that the 
unobserved one is expected to fulfill (e.g. the monthly GDP values must average to the quarterly, observable, 
figure). Thus the accounting restrictions are taken into consideration by means of an already known theoretical 
result that produces the Minimum Mean Square Error Linear Estimator of the unobserved series, given the 
preliminary series. 
 To operationalize the previous result, a time series model for the differences between the preliminary and the 
unobserved series is required. Since that model cannot be obtained from observed data, it is suggested to apply a 
result that leads us to estimate an Auto-Regressive Moving Average (ARMA) model from the aggregated 
differences and then disaggregate this model to get the required model for the unobserved differences. Another 
model is needed to forecast the preliminary series from its own past. Once this model as well as that for the 
differences, have been estimated, it is possible to obtain forecasts of the unobserved series.The already established 
results employed are known to be optimal in a statistical sense and allow the analyst to make inferences about the 
unobserved series. 
 Mexico’s monthly GDP is employed as an illustrative example. In Mexico, GDP is measured only on a 
quarterly basis. However, the basic need of analyzing the economic situation many times requires more frequent 
data. Thus the suggested procedures are applied to derive the monthly figures of GDP.  

 

1. Introduction 
Several analysts have proposed different methodologies to obtain high frequency data (say monthly) from less frequent 

observations (say quarterly) of such an important economic variable as Gross Domestic Product (GDP). Friedman (1962) is 

one of the pioneers in this area and suggested using related variables to estimate the unobserved one from observations on the 

others. His proposal was incomplete since the method does not produce an estimated series satisfying the accounting 

restrictions that the unobserved variable has to fulfill. Some other works did pay attention to the accounting restrictions, but did 

not employ related variables. Such was the case of Cohen, Müller and Padberg (1971). Nowadays the methods proposed by 

Chow and Lin (1971) and Denton (1971) are probably the most frequently used in practice, because they take into account both 

the information provided by related variables and the temporal restrictions on the unobserved series. These methods fail to 

consider the fact that the most important feature of a time series variable is its autocorrelation structure. In contrast, in the 

solutions suggested by Guerrero (1990) and Wei and Stram (1990) the main focus was placed on the use of the appropriate 



autocorrelation structure. Unfortunately, the latter methods are not completely advisable in practice for reasons to be mentioned 

later. Some other works dealing with the temporal disaggregation problem, are those of Hillmer and Trabelsi (1987), Chen, 

Cholette and Dagum (1997) and Nieto (1998). 

This paper presents a practical method that shares some of the most desirable features of the previous ones. In fact, (a) it 

employs related variables to obtain a preliminary series, (b) it includes the appropriate autocorrelation structure, estimated from 

observed data and (c) disaggregates the aggregated series in a statistical optimal way.  

 

2. A Statistical Model 
Let {Zt}, for t = 1,...,mn, be an unobserved series, where n≥1 denotes the number of whole periods (say quarters) and m≥2 is 

the intraperiod frequency (say months, in which case m = 3). Let us suppose that {W t} is a preliminary series of estimates of 

the unobserved data. Given this series we postulate that 

 

Zt=Wt+St,  with {St} an unobserved stationary process with mean zero.     (1) 

      

 
Assumption 1. An Autoregressive and Moving Average (ARMA) model captures the structure of {St}, that is  

  

tStS e)B(S)B( θ=φ                  (2) 

 

where q
q,S1,SS

p
p,S1,SS B...B1)B(   nda   B...B1)B( θ++θ+=θφ−−φ−=φ  are polynomials in the operator B 

such that BXt=Xt-1 for every variable X and t. Those polynomials are prime with the roots of ( ) 0xS =φ  and 0(x)S =θ  

outside the unit circle, in such a way that they correspond to a stationary and invertible process. Besides, {et} is a Gaussian 

white noise process with mean zero and variance 2
eσ . 

 
Assumption 2. The following Autoregressive Integrated and Moving Average (ARIMA) model is valid 

   

tWtW a)B(W)B(d)B( θ=φ                 (3) 

 

where d(B) is a differencing operator that renders { } W)B(d t stationary. Whereas )B(  nda  )B( WW θφ  are the 

autoregressive (AR) and moving average (MA) polynomials whose roots are outside the unit circle. The process {at} is a 

zero-mean Gaussian white noise with variance 2
aσ  and is uncorrelated with {et}. 

Model (2) can be written equivalently as 

 

tSt e)B(S ψ=                    (4) 

 

with ...BB1)B( 2
2,S1,SS +ψ+ψ+=ψ the pure MA polynomial, obtained from the relation )B()B()B( SSS θ=φψ , 

by equating coefficients of powers of B. Expression (4) enables us to write 

 

S=ΨSe                         (5) 

 

with S=(S1,…,Smn)’ and e=(e1,…,emn)’, where the prime sign denotes transposition, and SΨ  is an mn ×mn lower triangular 



matrix with 1’s on the main diagonal, ψS,1  on its first subdiagonal, ψS,2 on its second subdiagonal and so on. For (5) to be 
completely equivalent to (4), for t = 1,…,mn, we require that et=0 for 0t . 

On the other hand, the aggregated data of the unobserved series can be written as {Y1,…,Yn} with  

 

             
=

+−=
m

1j
j)1i(mji ZcY  for i = 1,…,n                       (6) 

 

where the cj’s are known constants, defined by the type of aggregation under consideration. Let us now define the matrix 

C=⊗c’ with ⊗ denoting Kronecker product and c’=(c1,…,cn). If we let Y=(Y1,…,Yn)’ and Z=(Z1,…,Zmn)’ then the whole set of 

restrictions can be written as 

 

                  Y=CZ.                           (7) 

 

3. Optimal Disaggregation 
From (7) and (1) written as Z=W+S, where W=(W1,…,Wmn)’, will allow us to use the Basic Combination Rule of Guerrero 

and Peña (2000). First note that E(Z|W)=W, so that W is the Best Linear Estimator (BLE) of Z based on W. By BLE it will be 

understood a linear estimator with minimum Mean Square Error (MSE). It should be noted that rather than estimator we could 

have used the term predictor, but we reserve the term predictor for the forecasting situation. Moreover, (5) implies that 

ΣS=σe
2ΨSΨ’S. Hence we get the following theoretical result. 

 

Proposition. The BLE of Z, given W and Y, is given by 

 

                ( )WYWZ CA −+= ,                       (8) 

 

with MSE matrix 
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2
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where 

 

               'A SSΨΨ= ( ) 1

SS 'C'C'C −ΨΨ .                    (10) 

 

An estimate of SΨ  can be obtained from the estimated model for the aggregated differences 

 

               D = CS = CZ – CW = Y - CW.                      (11) 

 

That is, we assume that {Di} admits the ARMA model 

 

              iDiD )L(D)L( εθ=φ ,  for  i = 1,…,n                   (12) 

 

with P
DP1DD L...L1)L( φ−−φ−=φ   and  

Q
DQ1DD L...L1)L( θ++θ+=θ  the polynomials in the backshift 

operator L acting on the aggregated variable. We can use here an ARMA model because the temporal aggregation of an 

ARMA process, in this case the process {St}, produces another ARMA process with different orders for its polynomials. Since 

{Di} is obtained from the series {Yi} and {W t}, model (12) can be built by applying standard time series techniques. 



Once that model is built we can use Wei and Stram´s (1990) method to disaggregate it. This method produces a model for 

{St} from (12) when the series {Di} has no hidden periodicity of order m, then the model for the disaggregated series becomes 

tS
E

St
E

SS e)B()B(S)B()B( θΘ=Φφ .                    (13) 

 

where E is the seasonality length. Finally, the weights ψS,1 , ψS,2 , …  used by (5) are obtained by equating the coefficients of 

powers of B in )B()B()B()B()B( S
E

S
E

SSS θΘ=Φφψ . It should also be noticed that the matrix (9) will produce 

different variances for the disaggregated values. Since this might be due in part to the initial conditions et = 0 for t < 0, an 

adjustment to correct for this nonstationarity problem consists in equating all the diagonal elements to the theoretical variance, 

e.g. if t
q

q1t
E e)B1(S)B1( θ++θ+=Φ− …  with 0<q<E,  then ).1/()1()Var(S 22

e
2
q

2
1t Φ−σθ++θ+= …  

 

4. Forecasting Future Disaggregated Values 
The problem to solve now is that of forecasting the vector ZF=(ZmN+1 ,…,ZmN+H)’, with mN≥mn the number of previously 

disaggregated values and H≥1 the forecast horizon. We assume there are no aggregated values {Yi} available for i > N, but we 

count on the estimated vectors W and S. As in Nieto (1998), we consider two different situations about the the series {W t} 

during the forecast horizon. (1) There are no preliminary observations for t>mN and (2) observations WmN+1 ,…,WmN+η, with 

1≤η≤H, are available. In the first case the forecast will be defined as ( )'Z,...,Z )1(
HmN

)1(
1mN

)1(
F ++=Z  with 

 

                hmNhmN
)1(

hmN SWZ +++ +=   for  h = 1,…, H                  (14) 

 

where hmNW +  and hmNS +  are obtained from their respective models. Thus the forecasts satisfy 

 

         hmNWhmNW a)B(W)B(d)B( ++ θ=φ   and hmNShmNS e)B(S)B( ++ θ=φ              (15) 

 

with jhmNjhmN WW −+−+ =  and jhmNjhmN SS −+−+ =  if hj , and 0ea hmNhmN == ++  for 1h . Now, since 
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with the weights ψW coming from )B()B(d)B()B( WWW θ=φψ  and the ψS’s from model (5).  

Expression (16) can be written as 
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)H(
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where the vectors with subindex F are defined in analogy with  ZF, and ΨW
(H) is the lower triangular matrix with elements 1, 

ψW,1, …, ψW,H-1 on its first column, with 0,1, ψW,1, …, ψW,H-2 on its second column and so on, while ΨS
(H) is defined in a similar 

fashion as ΨW
(H). From (17) it follows that 
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in such a way that 
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In the second case we have 
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with jhmNjhmN WW −+−+ =  if η−hj  and jhmNjhmN SS −+−+ =  if hj . Therefore 
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so that 
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with 0η the η×η zero matrix. Hence, the MSE matrix of the forecast vector is  

 

ΨΨ
σ+ΨΨσ= η−η−

η
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In summary, the forecast of ZF is the sum of the forecasts of WF and SF obtained separately. The MSE matrix of this forecast is 

the sum of the corresponding matrices for the individual forecast vectors. 

 

5. Monthly disaggregation of Mexico’s GDP 
In Mexico, as in many other countries, GDP is measured only on a quarterly basis (see Table 1). If monthly data were 

available, the basic need of analysis of GDP in the recent past and the near future could be analyzed. A step in this direction 

was given by INEGI (Instituto Nacional de Estadística, Geografía e Informática, MEXICO) when it started to produce figures 

of the monthly indicator of the global economic activity (IMGAE, Base 1993=100) since January 1993. We thus have access to 

Y = GDP (quarterly) and W = IMGAE (monthly). IMGAE is a general indicator calculated with the same methodology as 

GDP, although with less coverage. It takes into account only the Industrial Sector and the Services Sector of the Mexican 

Economy, but its high intraperiod correlation with GDP will be evident below. When this work was carried out, the available 

data on IMGAE ran from January 1993 to December 1999.  



 

Table 1. Mexico’s Real GDP (in millions of pesos at 1993 prices), 

aggregated preliminary series and estimated series of differences 

  
 Quarter GDP INDIAGR GDPAGR D 

1993 I 1,248,725.34 99.37 1,248,463.50 261.84 
 II 1,260,351.97 100.60 1,263,707.25 -3,355.27 
 III 1,211,579.72 96.73 1,215,916.04 -4,336.32 
 IV 1,304,126.86 103.27 1,296,666.70 7,460.15 
      

1994 I 1,277,838.03 102.37 1,285,542.89 -7,704.85 
 II 1,331,435.05 105.93 1,329,626.16 1,808.89 
 III 1,267,386.31 102.30 1,284,718.90 -17,332.59 
 IV 1,372,142.33 109.00 1,367,529.53 4,612.80 
      

1995 I 1,272.241.55 101.62 1,276,321.16 -4,079.61 
 II 1,209,052.70 96.51 1,213,147.06 -4,094.36 
 III 1,165,580.18 92.62 1,165,076.38 503.80 
 IV 1,275,557.48 100.24 1,259,282.00 16,275.49 
      

1996 I 1,273,078.05 100.81 1,266,356.12 6,721.92 
 II 1,287,401.28 102.22 1,283,766.66 3,634.61 
 III 1,248,655.10 99.53 1,250,431.75 -1,766.65 
 IV 1,366,292.01 107.71 1,351,527.45 14,764.56 
      

1997 I 1,331,526.94 105.64 1,325,992.75 5,534.19 
 II 1,395,247.46 110.66 1,388,018.61 7,228.85 
 III 1,342,047.95 108.06 1,355,948.87 -13,900.92 
 IV 1,457,278.33 115.98 1,453,831.52 3,446.81 
      

1998 I 1,430,820.67 114.01 1,429,452.38 1,368.29 
 II 1,454,490.59 115.82 1,451,850.95 2,639.63 
 III 1,411,536.62 113.81 1,426,933.67 -15,397.06 
 IV 1,495,691.40 119.11 1,492,464.42 3,226.98 
      

1999 I 1,457,161.35 115.95 1,453,470.11 3,691.23 
 II 1,500,167.45 120.05 1,504,081.03 -3,913.58 
 III 1,472,607.44 118.39 1,483,604.18 -10,996.74 
 IV 1,574,096.55 125.41 1,570,398.65 3,697.90 

          
A quarterly indicator, called INDIAGR, was first built by averaging the monthly figures of IMGAE, then a Linear 

Regression Model was fitted to the aggregated data yielding the following results for quarters i = 1,…, 28 (that is, 1993:I to 

1999:IV) with standard errors in parentheses. 

 

          
(188.04)(20231.38)

2.23DW  ,0.9938R,DIAGR12359.80IN20311.79GDP 2
ii ==+=

            (24) 

 
The monthly preliminary data was obtained for t = 1 84,...,  (January 1993 to December 1999) with the equation 

 

.IMGAE80.1235979.20311W tt +=                            (25) 

 

These figures were aggregated to the quarter to get the values of GDPAGRi for i=1,…,28, as well as the differences  

Di=GDPi-GDPAGRi and they are shown in Table 1. Equation (24) shows a strong linear relationship between GDP and 

INDIAGR and the Durbin -Watson statistic does not show evidence of inadequacy. Since the slope coefficient is more than 65 

times its standard error INDIAGR was considered a good predictor of GDP. Even though the intercept is not significantly 



different from zero, it was included in equation (25) to avoid possible biases when predicting {W t}. 

The autocorrelations for series {Di} were calculated from the 28 data points of the series and they allowed us to identify a 

seasonal ARMA model. The estimation results of such a model are 

  

ii
4 D)L6001.01( ε=−   with =σε 6905.45                  (26) 

                  (0.1730) 

 

and Ljung-Box statistic Q’(5)=4.95. When comparing this value against a χ2 distribution with 2 degrees of freedom, there is no 

reason to doubt of the model adequacy. In order to disaggregate this model, the following seasonal AR polynomial was defined 

 

12B6001.01)B( −=Φ                       (27) 

 

and a deseasonalized series was obtained from {Di} by applying the filter 

 

                     4iii D6001.0DFD −−=   for  i = 5, . . ., 28.                 (28) 

 

The nonseasonal AR and MA polynomials of the disaggregated series of differences were identified by analyzing the sample 

autocorrelation function of {FDi}. None of these autocorrelations was significantly different from zero. Hence, according to 

Wei and Stram´s (1990) method, the polynomial orders must be p = 0 and q = p + 1 = 1. 

Since the aggregation in the present case is of the form 
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then the variance and autocovariances of the aggregated and disaggregated series become 
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where )k(0)k( FSFD γ==γ  for 1,0k . The following system of equations was then obtained 
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which, given that 75.47647902)0(FD =γ  and 91.8187991)1()0()1( FDFDFD =ργ=γ , yields 

  

=
−

=
γ
γ

91.73691927

38.44687805

91.8187991

75.47647902

90

123

)1(

)0(

FS

FS
.                (33) 



 

This result is inadmissible because it leads to estimate the first autocorrelation of series {FSt} as 

6490.1)0(/)1()1( FSFSFS =γγ=ρ , which does not make any sense since for an MA(1) model the first autocorrelation 

must satisfy |ρFS(1)|≤0.5. A possible explanation of that result is that some hidden periodicity of order m=3 exists in {FSt}. 

Thus the MA polynomial was assumed of order q=3, so that γFD(k)=0 for k≠0, ±1 and γFS(k)=0 for k≠0, ±3. The corresponding 

system of equations became  
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with solution 
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These autocovariances enabled us to estimate the MA(3) parameter of the model for {FSt}. Since the theoretical 

autocovariances for that model are 2
e

2
3FS )1()0( σθ+=γ  and  2

e3FS )3( σθ=γ , the estimator 3θ  comes out by solving  

 

                 0)3()0()3( 2
3FS3FSFS =θγ+θγ−γ                   (36) 

 

Thus we obtained 1772.03 =θ  or 6420.53 =θ  so that 3θ  is chosen to be the former value, in order to ensure 

invertibility of the model. Hence the estimated model for {St} is given by 

 

t
3

t
12 e)B1772.01(S)B60001.01( +=−                  (37) 

 

with 3FS
2
e /)3( θγ=σ = 138589937.5 . This model is of type t

3
t

E e)B1(S)B1( θ+=Φ−  so that the following 

weights for the pure MA representation are obtained ψ3+12(j-1)=Φj-1θfor j = 1, 2, ..., ψ12j=Φj for j=0,1,... and ψj=0 otherwise. 

Finally, a correction for nonconstant variance is obtained by modifying the diagonal elements of ΨSΨS’ so that they take on the 

values Var(St)/σ2
e=(1+θ2)/(1-Φ2).  

Once the estimated model for series {St} is known, the Proposition can be applied to disaggregate the GDP directly. The 

corresponding results of such an application are shown in Figure 1. This figure shows in particular that the preliminary and the 

direct disaggregated series follow each other very closely. Next we can forecast Mexico’s GDP, and to that end we require an 

ARIMA model for the preliminary series {W t}. An estimated model for that series became 

 

        t
1210

t
12 a)B8684.01)(B3438.01(W)B1)(B1( −−=−− ,   =σ a 23462.34           (38) 

(0.1241) (0.0895) 

 

This model is empirically supported since the Ljung - Box statistic Q’=19.93 with 15 degrees of freedom, when compared 

against a Chi-square distribution produced a significance level of 0.17. Such a model was then employed to forecast the 

preliminary series. Table 2 contains the GDP forecasts together with their standard errors, prediction limits and annual rate of 

growth, when no preliminary observations are yet available for the forecast horizon (January, 2000 to December, 2000).  
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Figure 1. Monthly disaggregation of Mexico's Real GDP (in millions of pesos at 1993 prices).
Preliminary series and disaggregated series, with 95% limits.
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Table 2. Forecasting results for Mexico’s Real GDP (with 0 preliminary observations) 
Year 90% 

Limit 
Forecasts  
 

90% 
Limit 

Standard 
error 

2000 1,482,411.56 1,525,593.09 1,568,774.62 26,250.17 
 1,458,401.34 1,516,317.33 1,574,233.32 35,207.29 
 1,521,916.28 1,591,514.26 1,661,112.24 42,308.80 
 1,447,215.58 1,526,872.83 1,606,530.08 48,423.86 
 1,459,792.00 1,548,306.93 1,636,821.87 53,808.47 
 1,473,325.45 1,569,888.96 1,666,452.47 58,701.22 
 1,427,837.11 1,531,828.11 1,635,819.11 63,216.41 
 1,402,266.54 1,513,188.78 1,624,111.03 67,429.94 
 1,375,613.78 1,493,058.92 1,610,504.07 71,395.22 
 1,476,694.97 1,600,319.31 1,723,943.66 75,151.58 
 1,468,618.97 1,594,810.54 1,721,002.12 76,712.20 
 1,485,695.86 1,614,403.47 1,743,111.08 78,241.71 
Average  1,552,175.21   

 

 

6. Conclusions  
The proposed procedures are supported by several intermediate and already known results that are optimal to solve a 

specific part of the problem of temporal disaggregation and forecasting o f an unobservable time series. Each of those results is 

derived on the basis of assumptions that must be empirically validated to maintain its optimality. The most important 

assumptions were mentioned when deriving the theoretical results here employed. However, another assumption that must be 

taken into account is that the models for the series of differences is unaffected by structural breaks. Even if no abrupt structural 

changes occur it is appropriate to check for gradual changes in the series and adapt the models accordingly. Besides, whenever 

possible, the related variables should be improved to cover more sectors and geographic regions. Finally, the application here 

detailed for disaggregating Mexico’s Real GDP could also be carried out with Mexico´s Current GDP. Such an application 

would basically imply working first with the GDP Implicit Deflator to disaggregate it and then deriving the disaggregated 

Current GDP from the disaggregated figures of Real GDP and its Implicit Deflator. Many other applications can be devised for 



this methodology when analyzing National Accounts, including multiple time series (simultaneous) disaggregation. 
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