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Abstract

The temporal disaggregation problem consists of deriving high frequency data from less frequent observations
of a time series. This problem usualy occurs when carrying out anadyss of the economic Stuation. Severd
andysts have proposed methodologies to obtain high frequency (say monthly) data from less frequent (say
quarterly) observations of such an important economic variable as Gross Domestic Product (GDP).

This work proposes a model-based solution to this problem. In fact, a method is proposed to disaggregate
historica vaues of the unobserved time series in one step. Another method is also suggested to predict its future
values. The procedures involved are derived from a datisticdl model that links the unobserved data with a
preliminarily estimated series and with another series of temporaly aggregated values. It is assumed that the
preliminary series can be estimated by the use of related variables through a Linear Regresson Modd. This
procedure produces a preiminary series that does not necessarily satisfy the accounting restrictions that the
unobserved one is expected to fulfill (eg. the monthly GDP values must average to the quarterly, observable,
figure). Thus the accounting redtrictions are taken into consideration by means of an dready known theoretica
result that produces the Minimum Mean Square Error Linear Estimator of the unobserved series, given the
preliminary series.

To operationaize the previous result, atime series model for the differences between the preliminary and the
unobserved series is required. Since that model cannot be obtained from observed data, it is suggested to apply a
result that leads us to edimate an Auto-Regressve Moving Average (ARMA) modd from the aggregeted
differences and then disaggregate this modd to get the required modd for the unobserved differences. Another
mode is needed to forecast the preliminary series from its own past. Once this mode as well as that for the
differences, have been estimated, it is possible to obtain forecasts of the unobserved series.The dready established
results employed are known to be optimal in astatistical sense and alow the analyst to make inferences about the
unobserved series.

Mexico's monthly GDP is employed as an illugrative example. In Mexico, GDP is measured only on a
quarterly basis. However, the basic need of analyzing the economic situation many times requires more frequent
data. Thus the suggested procedures are applied to derive the monthly figures of GDP.

1. Introduction

Several analysts have proposed different methodologies to obtain high frequency data (say monthly) from less frequent
observations (say quarterly) of such an important economic variable as Gross Domestic Product (GDP). Friedman (1962) is
one of the pioneersin this area and suggested using related variables to estimate the unobserved one from observations on the
others. His proposal was incomplete since the method does not produce an estimated series satisfying the accounting
restrictionsthat the unobserved variable hasto fulfill. Some other works did pay attention to the accounting restrictions, but did
not employ related variables. Such was the case of Cohen, Miiller and Padberg (1971). Nowadays the methods proposed by
Chow and Lin (1971) and Denton (1971) are probably the most frequently usedin practice, because they takeinto account both
the information provided by related variables and the temporal restrictions on the unobserved series. These methods fail to
consider the fact that the most important festure of a time series variable is its autocorrelation structure. In contrast, in the
solutions suggested by Guerrero (1990) and Wei and Stram (1990) the main focus was placed on the use of the appropriate



autocorrelation structure. Unfortunately, the latter methods are not completely advisable in practice for reasons to be mentioned
later. Some other works dealing with the temporal disaggregation problem, are those of Hillmer and Trabelsi (1987), Chen,
Cholette and Dagum (1997) and Nieto (1998).

This paper presents a practical method that shares some of the most desirable features of the previous ones. In fact, (a) it
employsrelated variablesto obtain apreliminary series, (b) it includes the appropriate autocorrelation structure, estimated from
observed data and (c) disaggregates the aggregated seriesin a statistical optimal way.

2. A Statistical Model
Let{Z}, fort=1,...mn, bean unobserved series, where n3 1 denotesthe number of whole periods (say quarters) and m? 2 is
the intraperiod frequency (say months, in which case m = 3). Let us suppose that {W,} isapreliminary series of estimates of

the unobserved data. Given this series we postulate that

Zi=W+S,, with {S} an unobserved stationary process with mean zero. (N

Assumption 1. An Autoregressive and Moving Average (ARMA) model captures the structure of { S}, that is

f<(B)S =ds(B)e, @

wheref g(B) =1- f 5B~ ...- f5,B” and qg(B)=1+(g;B+...+ gg4B? arepolynomialsin the operator B

such that BX;=X.. for every variable X and t. Those polynomials are prime with the roots of f s (X) =0 and g5(x) =0

outside the unit circle, in such away that they correspond to a stationary and invertible process. Besides, {g} is a Gaussian

. . . . 2
white noise process with mean zero and varianceS .

Assumption 2. The following Autoregressive Integrated and Moving Average (ARIMA) model isvalid
fw(B)d(B)W, =q,,(B)a, ©)

where d(B) is a differencing operator that renders {d(B)W,} stationary. Wheress f,(B) and q,(B) are the

autoregressive (AR) and moving average (MA) polynomials whose roots are outside the unit circle. The process {g} isa
zero-mean Gaussian white noise with variance S i and is uncorrelated with {e}.

Model (2) can be written equivalently as

S =y (B, @)

withy ¢(B) =1+y 4, B+y s,sz +...the pure MA polynomial, obtained from the relation Y ¢ (B)f < (B) = q<(B),

by equating coefficients of powers of B. Expression (4) enables usto write

S=Y e ®)

with S=(S,,...,Sm)’ and e=(ey,...,.em)’, where the prime sign denotes transposition, and YS isan mn” mn lower triangular



matrix with 1's on the main diagonal, ys; on its first subdiagonal, y s, on its second subdiagona and so on. For (5) to be
completely equivalent to (4), for t =1,...,mn, werequirethat e=0for t 0.

On the other hand, the aggregated data of the unobserved series can be written as{ Y1,...,Y,} with

m

Yi = CZ,iys fori=1..n (6)

=1

where the ¢'s are known constants, defined by the type of aggregation under consideration. Let us now define the matrix
C=Ac’ with A denoting Kronecker product andc' =(cy,...,G). If welet Y=(Y1,...,Yy) and Z=(Z,,...,Zm) thenthewholeset of
restrictions can be written as

Y=CZ. )

3. Optimal Disaggregation

From (7) and (1) written asZ=W+S, where W=(W4,....W )", will allow usto use the Basic Combination Rule of Guerrero
and Pefia (2000). First note that E(Z|W)=W, so that W isthe Best Linear Estimator (BLE) of Z based on W. By BLE it will be
understood alinear estimator with minimum Mean Square Error (M SE). It should be noted that rather than estimator we could
have used the term predictor, but we reserve the term predictor for the forecasting situation. Moreover, (5) implies that
Se=s2Y sY 's. Hence we get the following theoretical result.

Proposition. The BLE of Z, given W and Y, isgiven by

Z=W+A(Y - Cw), ®
with MSE matrix
MSE(Z) =5 2(1,un - AC)Y Yy ©
where
A=Y Y C(Cy Y e (10)

Anestimateof Y 5 can be obtained from the estimated model for the aggregated differences

D=CS=CZ-CW=Y-CW. 11)

That is, we assume that { D;} admitsthe ARMA model

f,(L)D, =q,(L)e,, for i=1,..n (12)

with f o(L)=1-f_ ,L-..-f_ L7 ad qy(L)=1+q,,L +...+qDQLQ the polynomials in the backshift

operator L acting on the aggregated variable. We can use here an ARMA model because the temporal aggregation of an
ARMA process, inthiscasethe process{ S}, produces another ARMA process with different ordersforitspolynomials. Since
{D;} isobtained from the series{Y;} and {W}, model (12) can be built by applying standard time series techniques.



Once that modédl is built we can use Wei and Stram’s (1990) method to disaggregate it. This method produces a model for
{S} from (12) when the series{ D;} has no hidden periodicity of order m, then the model for the disaggregated series becomes

fs(B)F s(B%)S, = Qs(B*)as(B)e, - (13)

where E is the seasonality length. Finally, the weightsy s, Ys2, ... used by (5) are obtained by equating the coefficients of
powers of B iny ¢(B)f s(B)F <(BF) = Q4(BF)gs(B) . It should also be noticed that the matrix (9) will produce

different variances for the disaggregated values. Since this might be due in part to the initial conditionsq = 0 for t < 0, an
adjustment to correct for this nonstationarity problem consistsin equating al the diagona eementsto the theoretical variance,

eg.if (1- FBF)S, =(1+q,+...+q,B")e, with 0<q<E, then Var(S,) =(1+q; +...+0qg)s./(1- F?).

4. Forecasting Future Disaggregated Values

The problem to solve now is that of forecasting the vector Ze=(Zmny1,- .- Zmwt)» With mN2 mn the number of previously
disaggregated values and H23 1 the forecast horizon. We assume there are no aggregated values{ Y;} availablefori > N, but we
count on the estimated vectors W and S. Asin Nieto (1998), we consider two different situations about the the series { W}
during the forecast horizon. (1) There are no preliminary observations for t>mN and (2) observations W i . - .\ W mnh, With

1£h£H, areavailable. In the first case the forecast will be definedas Z & = (Zﬁ},ﬂ +1,...,Z£},L+H)' with
1) - -
Ziion =Wonsn TS for h=1..H (14)

where W, ., and S ., areobtained from their respective models. Thus the forecasts satisfy

f w(B)AB)W ., =0y (B)a,y., and f(B)S,., =ds(B)ey . 15

with Wi = Wigan and Sian =Sinen; if 1 hoand @, =€., =0 for h 1.Now, since
h-1 h-1

Winin = Wiyen = Y wjQn+n-; and Siven = Sonen =Y s Cn +h- | (16)
j=0 i=0

with the weightsy v comingfrom 'y ,, (B)f ,, (B)d(B) = q,, (B) and the y 5'sfrom mode! (5).

Expression (16) can be written as
W.-W.=Y{Ma,. and S-S, =YMe, 17)

where the vectors with subindex F are defined in analogy with Zg, and Y isthe lower triangular matrix with elements 1,
Ywi, .-+, Ywpna onitsfirst column, with 0,1, y wa, ..., Y wn-2 Onits second column and so on, whiIeYs(H) isdefinedinasimilar
fashion asY w™). From (17) it follows that

Z.-ZW=W_+S_-W_-S_=Y{a_+Y e, (18)



in such away that
@)= (H) Ha)=c29 Ho H 1L c29 (H o H):
MSE(Z®)=Cov(? {'a, +2 He) =522 (12 (V14529 (o (0,
In the second case we have

(2 — WmN+h + SmN+h if h =1,..., h

7 =
N W + S, If h=h+1,.H

with W0 =W if | h-hand S, =Sy if ] h.Therefore

ZmN+h - Zgl)\Hh = Sf’ﬂN+h - SmN+h if h=1,...,h

(WmN+h - WmN+h) + (SmN+h - SmN+h) if h=h+1..,N

so that

errN +1
h-1
Y si€m +h- |
=0 0 0
ZF_ZS): . +h o :YéH)eF+ (; Y(H'h) aF
mN +h+1 y S,j=mN +h+1- j W
i=0
H-h-1 " Ha
y W,janN+H-j + yS,jenN +H-j
=0 j=0

with Oy the h” h zero matrix. Hence, the M SE matrix of the forecast vector is

0, 0

MSE(Z?) = s2y My Myg2? .
( F) e'S S a 0 Y\S\l/-i_h)Y\SVH_h)

(19

(20

(21)

2

eS)

In summary, theforecast of Z isthe sum of the forecasts of W and S- obtained separately. The MSE matrix of thisforecast is

the sum of the corresponding matrices for the individual forecast vectors.

5. Monthly disaggr egation of Mexico’'s GDP

In Mexico, as in many other countries, GDP is measured only on a quarterly basis (see Table 1). If monthly data were
available, the basic need of anaysis of GDP in the recent past and the near future could be analyzed. A step in this direction
was given by INEGI (Instituto Nacional de Estadistica, Geografia e Informética, MEXICO) when it started to produce figures
of the monthly indicator of the global economic activity (IMGAE, Base 1993=100) since January 1993. We thus have accessto
Y = GDP (quarterly) and W = IMGAE (monthly). IMGAE is a generd indicator calculated with the same methodology as
GDP, dthough with less coverage. It takes into account only the Industrial Sector and the Services Sector of the Mexican
Economy, but its high intraperiod correlation with GDP will be evident below. When this work was carried out, the available

dataon IMGAE ran from January 1993 to December 1999.



Tablel. Mexico's Real GDP (in millions of pesos at 1993 prices),
aggregated preliminary series and estimated series of differences

Quarter GDP INDIAGR GDPAGR D
1993 I 1,248,725.34 99.37 1,248,463.50 261.84
I 1,260,351.97 100.60 1,263,707.25 -3,355.27
" 1,211,579.72 96.73 1,215,916.04 -4,336.32
v 1,304,126.86 103.27 1,296,666.70 7,460.15
1994 I 1,277,838.03 102.37 1,285,542.89 -7,704.85
I 1,331,435.05 10593 1,329,626.16 1,808.89
" 1,267,386.31 102.30 1,284,718.90 -17,332.59
v 1,372,142.33 109.00 1,367,529.53 4,612.80
1995 I 1,272.241.55 101.62 1,276,321.16 -4,079.61
I 1,209,052.70 96.51 1,213,147.06 -4,094.36
" 1,165,580.18 92.62 1,165,076.38 503.80
v 1,275557.48 100.24 1,259,282.00 16,275.49
1996 I 1,273,078.05 100.81 1,266,356.12 6,721.92
[l 1,287,401.28 102.22 1,283,766.66 3,634.61
" 1,248,655.10 9953 1,250,431.75 -1,766.65
v 1,366,292.01 107.71 1,351,527.45 14,764.56
1997 I 1,331,526.94 105.64 1,325992.75 5,534.19
I 1,395,247.46 110.66 1,388,018.61 7,228.85
" 1,342,047.95 108.06 1,355,948.87 -13,900.92
v 1,457,278.33 11598 1,453,831.52 3,446.81
1998 I 1,430,820.67 114.01 1,429,452.38 1,368.29
I 1,454,490.59 11582 1,451,850.95 2,639.63
" 1,411,536.62 11381 1,426,933.67 -15,397.06
v 1,495,691.40 11911 1,492,464.42 3,226.98
1999 I 1,457,161.35 115.95 145347011 3,691.23
I 1,500,167.45 120.05 1,504,081.03 -3,913.58
" 1,472,607.44 118.39 1,483,604.18 -10,996.74
v 1,574,096.55 12541 1,570,398.65 3,697.90

A quarterly indicator, called INDIAGR, was first built by averaging the monthly figures of IMGAE, then a Linear
Regression Model was fitted to the aggregated data yielding the following results for quartersi = 1,..., 28 (that is, 1993: to
1999:1V) with standard errors in parentheses.

GDP, =20311.79+12359.80INDIAGR,, R? =0.9938, DW =2.23

(29
(20231.38) (188.04)
The monthly preliminary datawas obtained for t =1,...,84 (January 1993 to December 1999) with the equation
W, =20311.79+12359.80IMGAE . (25)

These figures were aggregated to the quarter to get the vaues of GDPAGR; for i=1,...,28, as wdll as the differences
Di=GDR-GDPAGR; and they are shown in Table 1. Equation (24) shows a strong linear relationship between GDP and
INDIAGR and the Durbin-Watson statistic does not show evidence of inadequacy. Since the slope coefficient is more than 65
times its standard error INDIAGR was considered a good predictor of GDP. Even though the intercept is not significantly



different from zero, it was included in equation (25) to avoid possible biases when predicting { W} .
The autocorrelations for series { D} were calculated from the 28 data points of the series and they allowed us to identify a
seasonal ARMA model. The estimation results of such amodel are

(1- 0.6001L*)D, =€ with S, =690545 (26)

(0.1730)

and Ljung-Box statistic Q' (5)=4.95. When comparing this value against ac? distribution with 2 degrees of freedom, thereisno
reason to doubt of the model adequacy. In order to disaggregate this model, the following seasonal AR polynomial was defined

F (B) =1- 0.6001B" @
and a deseasonalized series was obtained from { D;} by applying the filter
FD, =D, - 0.6001D. , for i=5,... 28. (28)

The nonseasonal AR and MA polynomials of the disaggregated series of differences were identified by analyzing the sample
autocorrelation function of {FD;}. None of these autocorrelations was significantly different from zero. Hence, according to
Wei and Stram’s (1990) method, the polynomial ordersmustbep=0andg=p+1=1.

Since the aggregation in the present case is of the form

1
FD, = §(1+ B +B?)FS, (29)
then the variance and autocovariances of the aggregated and disaggregated series become

Yo (0) = % (1+ B+ BZ)Zng(Z) = %[gFS(- 2) + Zng(' 1) + 3g|:s(0) + Zng(l) + ng(Z)] (30)

o () =5 0+ B+ B 0s(®) = S0 (D + 205D + 3053 + 2059 + 9G] @0

where O, (K) =0=0(k) for k 0O, 1.Thefollowing system of equations was then obtained

95(0) _ 3/9 4/9 g(0)

= (32
9 (D 0 1/9 g(D
which, giventhat g, (0) = 47647902.75 and g, (1) = 95, (O)r o (1) = 8187991.91, yields
0s(0) 3 - 12 4764790275 _ 44687805.38 -

0D 0 9 818799191 73691927.91



This result is inadmissble because it leads to estimate the first autocorrdation of series {FS} &

I es(D) = 9e5(1) / 95 (0) =1.6490, which does not make any sense since for an MA(1) model the first autocorrelation

must satisfy | s(1)EO.5. A possible explanation of that result is that some hidden periodicity of order m=3 exists in { FS;}.
Thusthe MA polynomia was assumed of order g=3, so that g (k)=0 for k* 0, +1 and g-s(k)=0 for k! O, £3. The corresponding
system of equations became

0-(0) _ 3/9 0 gs(0)

(34
9ro (1) 0 3/9 903

with solution

05(0) 3 0 47647902.75 _ 142943708.30 -
0<(3d 0 3 818799191  24563975.72
These autocovariances enabled us to estimate the MA(3) parameter of the model for {FS}. Since the theoretical

autocovariances for that model are gp(0) = (L+03)s2 and ge(3) = 0,S 2, theestimator ¢, comesout by solving

ng(3) - ng(O)qs + ng(g)qg =0 (36)

Thus we obtained g, = 0.1772 or q, = 5.6420 so that (], is chosen to be the former value, in order to ensure

invertibility of the model. Hence the estimated model for { S} is given by

(1- 0.60001B1%)S, = (1+0.1772B%)e¢, @37

with S2 = g.(3)/q,= 138589937.5 . This model is of type (1- FB®)S = (1+qB®)e, so that the following

weights for the pure MA representation are obtai nedy3+120_1):Fj'quorj =12 ..,y 12,-:Fj for j=0,1,... and y;=0 otherwise.
Finally, acorrection for nonconstant variance is obtained by modifying the diagona elementsof Y sY &' so that they take on the
values Var(S)/s2=(1+9?)/(1-F ).

Once the estimated model for series { S} is known, the Proposition can be applied to disaggregate the GDP directly. The
corresponding results of such an application are shown in Figure 1. Thisfigure showsin particular that the preliminary and the
direct disaggregated series follow each other very closealy. Next we can forecast Mexico's GDP, and to that end we require an
ARIMA model for the preliminary series{ W} . An estimated model for that series became

(1- B)(1- B¥*)W, =(1- 0.3438B")(1- 0.8684B**)a,, s, =2346234 €5)

(0.1241) (0.0895)

This model is empirically supported since the Ljung - Box satistic Q'=19.93 with 15 degrees of freedom, when compared
against a Chi-square distribution produced a significance level of 0.17. Such a model was then employed to forecast the
preliminary series. Table 2 contains the GDP forecasts together with their standard errors, prediction limits and annual rate of
growth, when no preliminary observations are yet available for the forecast horizon (January, 2000 to December, 2000).



Figure 1. Monthly disaggregation of Mexico's Real GDP (in millions of pesos at 1993 prices).
Preliminary series and disaggregated series, with 95% limits.
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Table 2. Forecasting results for Mexico's Real GDP (with 0 preliminary observations)

Year 0% Forecasts 0% Standard
Limit Limit error

2000 1,482,411.56 1,525,593.09 1,568,774.62 26,250.17
1,458,401.34 1,516,317.33 1,574,233.32 35,207.29
1,521,916.28 1,591,514.26 1,661,112.24 42 308.80
1,447,215.58 1,526,872.83 1,606,530.08 48423.86
1,459,792.00 1,548,306.93 1,636,821.87 53,808.47
1,473,325.45 1,569,888.96 1,666,452.47 58,701.22
1,427,837.11 1,531,828.11 1,635,819.11 63,216.41
1,402,266.54 1,513,188.78 1,624,111.03 67,429.94
1,375,613.78 1,493,058.92 1,610,504.07 71,395.22
1,476,694.97 1,600,319.31 1,723,943.66 75,151.58
1,468,618.97 1,594,810.54 1,721,002.12 76,712.20
1,485,695.86 1,614,403.47 1,743,111.08 78,241.71

Average 1,552,175.21

6. Conclusions

The proposed procedures are supported by severa intermediate and already known results that are optimal to solve a
specific part of the problem of temporal disaggregation and forecasting of an unobservable time series. Each of those resultsis
derived on the basis of assumptions that must be empirically vaidated to maintain its optimality. The most important
assumptions were mentioned when deriving the theoretical results here employed. However, another assumption that must be
taken into account isthat the model s for the series of differencesis unaffected by structural breaks. Even if no abrupt structural
changes occur it is appropriate to check for gradua changesin the series and adapt the models accordingly. Besides, whenever
possible, the related variables should be improved to cover more sectors and geographic regions. Finally, the application here
detailed for disaggregating Mexico's Real GDP could also be carried out with Mexico's Current GDP. Such an gpplication
would basically imply working first with the GDP Implicit Deflator to disaggregate it and then deriving the disaggregated
Current GDP from the disaggregated figures of Real GDP and its Implicit Deflator. Many other applications can be devised for



this methodol ogy when analyzing National Accounts, including multiple time series (simultaneous) disaggregation.
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