
A FRAMEWORK FOR MANAGING SOFTWARE ENGINEERING
KNOWLEDGE

Suyeon Kim1), Euiho Suh2), Hyunseok Hwang3)

1) Pohang University of Science and Technology, Korea (tomi@postech.ac.kr)

2) Pohang University of Science and Technology, Korea (ehsuh@postech.ac.kr)
3) Pohang University of Science and Technology, Korea (ieman@postech.ac.kr)

Abstract

Software development is a knowledge-intensive work. The productivity of a software developer and the

quality of the software is highly dependent on the experience and skills of the individual. Knowledge therefore

plays an extremely important role in software engineering.

In this paper, we propose a framework for managing the software knowledge effectively. We identify the

taxonomy of knowledge created during software development life cycle, and then suggest a method for extracting

and sharing the knowledge toward Quality Software Factory. The proposed framework is based on software

development and consulting experiences in many large-scale projects.

Keywords: knowledge management, software engineering knowledge, knowledge extraction, knowledge sharing

1. Introduction

Knowledge sharing and reuse among software developers is a critical factor for the success of software

development projects since the software development life cycle inherently consists of a number of knowledge-intensive

tasks. Land (2001) emphasizes the importance of learning from past development experience to ensure we do not make

the same mistake repeatedly, and to avoid wasting precious resources by reinventing the wheel.

In this paper, we first propose a QSF (Quality Software Factory) model for implementing quality software.

Next , we identify the knowledge created during software development based on the QSF model. We suggest a

framework for managing software engineering knowledge toward QSF. In the proposed framework, we present

knowledge extraction techniques and knowledge sharing methods based on Nonaka’s SECI (Socialization,

Externalization, Combination, Internalization) model. The proposed framework is adopted to several large-scale

projects in the financial industry. Critical success factors for managing SE knowledge are extracted from our

experiences.

2. Quality Software Factory

Software engineering is a problem-solving activity and the chief purpose is to develop quality software

[Nunamaker, 1991].

We established the QSF (quality software factory) model for quality software development. QSF is a concept

for improving software quality by focusing on the quality of all processes in software development, as well as that of

the final software product. QSF can be achieved by providing robust disciplines such as standard, guideline, and quality

assurance functions enforced in all software development activities.

The QSF model (shown in Figure 1) involves the overall methodology of software development life cycle,

including phase, project management, development coordination, quality assurance and role.

Figure 1. Meta-model of software development methodology for QSF

3. Taxonomy of software engineering knowledge

We identify and categorize software engineering knowledge based on the meta-model represented in Figure 1.

Software engineering knowledge can be classified into primary and supporting knowledge. Primary knowledge is

relevant to each phase in the software development life cycle: planning, analysis, design, and construction. Supporting

knowledge covers all knowledge in software engineering management activities. SE management activities include

project management, development coordination, quality assurance, and configuration management. Table 1 represents

taxonomy of software engineering knowledge.

Table 1. Taxonomy of SE knowledge

Primary Knowledge (SE Phase-related)
Planning Business strategy understanding, Information needs, IT strategy

Analysis Domain knowledge, Modeling knowledge (e.g., ER modeling)

Design Design technique (data design, architectural design, procedural design)

Construction Target programming language, Target platform knowledge

Supporting Knowledge (SE Management-related)

Project mgmt Project standard, Role specification, Project scheduling

Dev. coordination Architecture administration (model, repository), Project coordination

Quality assurance Software quality factors and metrics, Review guidelines

Configuration mgmt Software configuration items, SCM process, SCM standards

Project

Phase

Lessons
learned

Project
standard

Guideline

Deliverable

RoleTask/Role
mapping

Technique

Phased
task

Managerial
task

- Project management
- Development coordination
- Quality assurance
- Configuration management

Phase-related

Management-related

- Planning
- Analysis
- Design
- Construction

Task

Both-related

4. Knowledge extraction and sharing

Software engineering knowledge can be extracted from various sources: software developers, domain experts,

methodology experts, existing documents in the company, external information, and project deliverables.

We can extract software experiential data using techniques presented in Table 2.

Table 2. SE knowledge extraction techniques

Primary Knowledge (SE Phase-related)
Planning Interviewing for planning, Executive intensive planning, Questionnaire

Analysis Interviewing for analysis, JRP (Joint Requirements Planning),

Questionnaire

Design JAD (Joint Application Design), Prototyping

Construction Document assembly and production

Supporting Knowledge (SE Management-related)

Project mgmt Project approach selection, Project estimation, Metrification and

reporting

Dev. coordination Model management, Project coordination

Quality assurance Structured walkthrough, Software inspection

Configuration mgmt Version control, Change control, Configuration audit, Status reporting

We placed all knowledge created in each phase of the software development life cycle into a central repository.

Almost project deliverables, including entity relationship diagram and involvement matrices, are stored in the repository

provided by CASE tool automatically.

Supporting knowledge relevant to managerial activities is stored and shared in a web-based collaborative

environment. Human contact, such as training, brainstorming, and review meeting, can be also utilized for transferring

and sharing knowledge among software developers.

We propose methods for sharing software engineering knowledge based on the Nonaka’s SECI model

[Nonaka, 1995]. According to the SECI model, knowledge creation processes are categorized into socialization,

externalization, combination, and internalization, as shown in Table 3.

Table 3. SE knowledge sharing methods

Socialization (implicit->implicit) Externalization (implicit->explicit)
Apprenticeship

Project experience sharing

Training

Modeling process

Documentation

Learning history [Kleiner, 1998]

Internalization (explicit->implicit) Combination (explicit->explicit)

Document investigation

Guideline understanding

Software skill learning

Digitalization of written material

Consolidation of dispersed output

Executive summary reporting

5. Conclusion

All software development projects have a single essential goal: to produce high-quality software. Even the

most jaded software developers will agree that high-quality software is important. To achieve this goal, it is very

important to capture and share software knowledge created during the entire software life cycle because software

development is highly knowledge- and experience-intensive work.

We have proposed a framework for managing software knowledge based on the QSF model. Critical success

factors for QSF extracted from our experiences in the software development can be summarized as follows: making an

effective communication channel, transparent progress management, encouragement of knowledge sharing mind,

efficiency of knowledge store/access procedures and minimization of manual work. We expect that this framework can

be utilized practically and effectively in software development environments.

References

[Boehm, 1981] Barry W. Boehm, Software Engineering Economics, Prentice-Hall, Inc., 1981.

[Kleiner, 1998] Kleinder, A., Roth G., How to make experience your company’s best teacher, Harvard Business Review

on Knowledge Management, Harvard Business School Press, 1998.

[Nonaka, 1995] Nonaka Ikujiro, Hirotaka Takeuchi, The Knowledge-Creating Company, Oxford University Press, 1995.

[Land, 2001] Lesley Pek Wee Land, Aybüke Aurum, Meliha Handzic, Capturing Implicit Software Engineering

Knowledge, Proceedings of Software Engineering Conference, Australia, 108-114, 2001.

[Nunamaker, 1991] Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R., George, J. F., Electronic meeting

systems to support group work, Communications of the ACM, 34(7), 40-61, 1991.

[Lee, 1993] Hing Yang Lee, Software Engineering Knowledge for Software Reuse, Proceedings of the Sixth

International Workshop on Computer-Aided Software Engineering, 263 –269, 1993.

