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Abstract
Negative binomial maximum likelihood regresson models are commonly used to analyze count data when
overdispersion is present. There are various forms of the negative binomia model with different mean-variance
relatiionships, however the most generdly used are those with linear and quadratic relationships. We present a
Newtor+Raphson algorithm for obtaining maximum likelihood estimates of the linear mean-variance negative binomia
(NB1) regression modd. We aso describe the construction of a haf-norma plot with asimulated envel ope for checking
the adequacy of a selected NB1 model. These procedures are illustrated on a set of orange tissue culture data.
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1. Introduction

Negative binomial (NB) models are very widely used for analyzing overdispersed Poisson counts as all important statistical
inferences can be carried out more easily and conveniently than for other types of compound Poisson models (Lawless, 1987).
Applications using the NB distribution can be found in many areas, for instance, economics (Hausman et al., 1984), political
science (King (1988) and King (1989)), psychology (Gardner et al., 1995) and biostatistics (Alexander et al., 2000). The NB
model can be considered as arising from a two-stage model assuming the counts to come from a Poisson distribution with
varying mean. Taking the Poisson mean as a gamma distributed random variable leads to the NB model and we can obtain
various forms of mean-variance relationship, in particular both linear and quadratic, depending on assumptions about the
gamma mixing distribution parameters. The linear mean-variance NB model is obtained by allowing the gamma shape
parameter to vary across observations and keeping the scale parameter constant, whereas the quadratic form arises from taking
the shape parameter as constant and | etting the scale vary. These two variance function model s can lead to different modelsfor
the mean and also different forms of some associated statistics. Here we will denote the NB model with the linear variance by
NB1 and the quadratic variance one by NB2. The NB2 model is a generalized linear model (gim) (Hinde and Demétrio, 1998)
when the shape parameter is known. The parameter estimates for the NB2 model can be easily obtained using a full
Newton-Raphson method, for example asisin Lawless (1987), or an iterative glm fitting procedure as in Hinde and Demétrio
(1998).

This paper concentrates on the maximum likelihood fitting of NB1 models and their application to areal dataset. The paper
beginsin Section 2 with ashort review of Poisson regression. Section 3 describes NB1 models and parameter estimation using a
Newton-Raphson procedure. Methods of selecting an appropriate model are described in Section 4. To check the adequacy of a
selected model we propose the use of ahalf-normal plot with asimulated envelope. Details of the construction of thisplot are
givenin Section 5. In Section 6, we consider the application of the NB1 model to a set of orange tissue-culture data. The paper
concludes with a brief discussion.

2. Poisson regression and Overdispersion
2.1 Poisson Regression Models

Therandom variablesY;, i = 1,... , n, represent counts with meansm, and that X; = (%1, %2,. -, >qp)Tisan associated vector of
covariates, with x;; typically equa 1 to include the usual constant term in the model. The standard Poisson regression model
assumes that Y; ~ Pois(m), and isageneralized linear model with variance function

Va(Y)) = Va(m) = m. @
The m are typically modelled through the canonical log link function by

hi =log(m) = X8



wherel isa p vector of unknown parameters. The maximum likelihood estimate of [ is easily obtained using iteratively

reweighted |east squares (IRLS) and the asymptotic covariance matrix Cov(8 ) is (X "WX) * , where W isann " ndiagonal

matrix withi'" diagonal element W = m , theiterative weight used in the IRLS procedure, see McCullagh and Nelder (1989).

For an appropriate well fitting mode!, we would expect that the residual deviance and the Pearson chi-square (X?) would be
approximately equal to the degrees of freedom (df). If the residual deviance and X? statistic exceed the df, the Poisson regression
model may not be adequate, either through some systematic lack of fit, or because the strong assumption from the Poisson
mode that Var(m) = misinapropriate; in this case the data are described as overdispersed. If theresidual devianceislessthanits
df, it implies that there is underdispersion in the counts, i.e. the observed variance is less than the nominal Poisson variance.
However, in practice, the underdispersion isless common, (McCullagh and Nelder, 1989).

In general, when thereis overdispersion and wefail to takeit into account, it can lead to misinterpretation of the fitted model,
(Cox, 1983 and Hinde and Demétrio, 1998) since the overdispersion produces :

(i) smaler standard errors of the parameter estimates than the true vaues. Therefore we may incorrectly choose
explanatory variables for the model that are not required;

(i) too large areduction of deviance associated with model selection tests. This again leads to selecting overly complex
models.

3. Linear Mean-Variance NB Models
IfY;,i =1, ...,n, are now negative binomial distibuted counts with meanm, and dispersion parameter a with
Y; ~NB1(m, a) , the probability mass function (p.m.f.) is given by

Qy +a'm) _ a¥
yi!G(a-lm) (1+a)y|+a'1n]

fiyi;m,a) = 2
o} otherwise

i =0,1,...,a>0

with E(Y;)= m andVar(Y;)= m (1+a). Whena ® 0, thisNB1 model reducesto a Poisson Model.

3.1 Maximum Likelihood Estimation for the NB1 Distribution

For observed valuesys,..., ¥n, the NB1 log-likelihood, ¢ = ¢(, @), isgiven by

. m 1
= {wloga— y +—= log(1+a) +dgl a’m)—logy}, 3
i=1

wheredlg(y, a) = log Gy + a) — log G(a).

The NB1 is not a standard glm-type exponential family distribution, even when the overdispersion parameter a is known,
and standard glm fitting methods will not apply. So here we consider ageneral Newton-Raphson iterative scheme. Thefirst and
second derivatives with respect to the underlying parameters are
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where ddg(y,a) and dtg(y,a) denote the differences of the di-gamma and tri-gamma functions. These are defined by

ddg(y.a) = = (digly.a))=J(y+a)-J(a)

0, y=0
= y-1
(a+t)t, y>0,
t=0

where J isthe di-gammafunction, and

2
— (digy.a)) =z(y + a) - z(a)
a

dtg(y,a)

0, y=0
= y1
(a+t)’?, y>0,
t=0

where z isthe tri-gamma function.
Let s(B ,a) bethe vector of score functions defined by

s(h ,a) = =

_t
% B.,a) B
s,(B.a) Y

a

and letI(f ,a) bethe(p+1)" (p + 1) observed information matrix, which we partition as

Iy B,a) 144 (F,Q)
I8 ,a) = : ©
L. (a) 1., ¢.a)

2 2 2
: , . . . ‘.
where I, =-— ET isthep” p symmetric matrix , laa =— sz isascalarand I, = I, =— _— isa
17 (p + 1) matrix.
Writing R™M and a(™ as the estimates at the m" iteration, the standard Newton-Raphson iterative scheme gives
(m+1) (m)
B = 3 + [| (m)]'ls(m)’ (10)
a (M) a(m

where I™ and ™ are I(8 ,a) and s(8 ,a) evaluated at 8 = R™ anda = a™. The iteration (10) must be carried out until
convergence, which can be assessed using a stopping rule such as

lal™D —a™ | <7 or |o(™D )M |<T .
The procedure requires good initial values, which can be obtained as follows:



. B ; fit astandard Poisson regression model to obtain B© and initial estimates of the fitted values m?.

. a; equate the Pearson X statistic from the Poisson fit to its expected value under the NB1 model, to give

(0P
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thisisin fact the quasi-likelihood estimate of the overdispersion parameter from the constant overdispersion Poisson
model.

The asymptotic variance of 3 anda are the diagonal elements of (8 ,a), and are automatically provided at the final

iteration. Thisiterative procedureissimply implemented in any computer software that can handle matrices, such as, SPlusand
the free software R (The Comprehensive R Archive Network : http://lib.stat.cmu.edu/R/CRAN/).

4. Selecting an Appropriate Model
Testing the Poisson assumption against the NB1 alternative corresponds to testing Hp: @ = 0 against H; : a > 0. The

commonly used test statistics, the likelihood ratio test (LRT) defined by — 2{ /(L) — ¢(1,a )}, where (1) and /(u,a ) ae
a 2

maximized log-likelihood estimates under the Poisson and NB1 model, respectively, and the Wald test specified by Va@) ,
ar(a

are both applicable here. Although somecareisrequired asthe null hypothesisis on the boundary of the parameter space (e.g.
the null distribution of the LRT is not the usual 012 distribution), and also the alternative hypothesisis one-sided aswe are only

testing for overdespersion.)

Selecting an appropriate model among all possible NB1 regression is straightforward using the standard likelihood criteria,
for example, Akaike information criterion (AIC) (Akaike, 1973) or Baysian information criterion (BIC) givenin Schwarz
(1978). These criteriasimply require the maximized log-likelihood value from the NB1 distribution fit and are defined as:

AIC = =2¢ + 2(number of fitted parameters)
BIC= -2¢ +log(n) "~ (number of fitted parameters).

5. Model Checking

A model diagnostic technique that has been found to be useful for checking the adequacy of fitted models is the use of
half-normal plots with a simulated envelope. This technique was first proposed by (Atkinson, 1985). He applied the plot to
check model adequacy using Pearson residuals or Cook’ s statisticsin normal regression. The technique was further devel oped
for gilms using (standardized) Pearson residuals and (standardized) deviance residuas by Williams (1987). Williams claimed
that the plot can detect both outliers and overdispersion in both Poisson and binomial regression models.

Even though the NB 1 regression model is not aglm, we can define its complete p.m.f. and hence the log-likelihood function.
The associated (standardized) Pearson residual, or the standardized studentized residual, for the NB1 model can be obtained by

using the general definition, y-m (Lawless, 1987). Denoting the standardized Pearson residual for an NB1 fitby r, , the

Var(Y)
i component is

__Yi- M

Foi ,—m i+ra)

NB1 deviance residual s cannot be obtained simply based on the usua deviance expression for gims: —2{ /(ma ;y) —£(y,a;y)}, &

some of the individual corrponents can be negative. Nelder (1991) pointed out that the log-likelihood (3) does not have the



1
property that its mode occurs at m=y unlessy = 0. He usedy; + > as the approximate mode of ¢ and then approximated the

deviance component for y; by

2m log(l+a) y =0

a ' '
1 logl+a

-2 yi + - m %

. _ 1
5 +dlg(y;.a lm)' dig(y;.a l(yi +E) , ¥, >0

Jansakul (2001) explored this approximation and found that y + % is not an adequate approximation of the mode. Her

investigations indicated that thereis no simple form for the mode of 7, but values such asy + k, where

a a
<k< — are
+1/y 2

likely to be closeto giving the mode, and for largey, k » % workswell. Using thissimpleform givesthe deviance residualsrp;

=sgn(y;— m) 4/D; for the NB1 model, where

2mlog(l +a
m log( )’ y. =0
a
Di =
a log(L+a . _ a
2y 2w 2 s qigy a ) - digtyat v+ S L v >0
Following the general procedurefor constructing the half-normal plots with asimulated envelope givenin Vieira

et a. (2000), aplot for checking aselected NB1 model using (standardized) deviance residuals can be constructed asfollows:

- FitaNB1 model to obtain p,a and calculate the ordered absolute values of deviance residualsrp;

- Simulate nineteensamples for the response variable under the fitted model, by first generating &y; where €yj
~Qa'ml),j=1...,19,i =1,..,n cdculatinge; =ey; ~ am " thensimulating Yj; ~ Pois(me;; ) togive Y~
NB1(m,a ), i.e. 19 datasets based on the fitted model.

- Refit the model, using the same explanatory variables, to each sample and calcul ate the ordered absolute values of the

devianceresidudls, rjpy,j=1,...,19,i=1...,n;

- For eachi calculate the minimum, maximum and the mean of the rj*(D’i) ;

- Plot these values and the observedrp j against the half-normal scores (expected order statistics);
F1{G{+n- %) [(@@n+ % )}, where F isthe normal cumulative density function (Demétrio and Hinde, 1997).

If the selected model is adequate, the observedrp j should lie within the simulated envelope.

Demétrio and Hinde (1997) gave aGLIM macro to construct such plots with special emphasis on overdispersed models (i.e.
constant overdispersion Poisson and NB2 models for extra Poisson variation). These are easily adapted for the NB1 deviance
residuals as al that is required are two macros, one to calculate the NB1 deviance residuals and the other to simulate from an
NB1 distribution.

6. Application: An Orange Tissue-culture Experiment
The orange variety Valencia was used in a tissue-culture experiment conducted in Brazil to study the effect of six
carbohydrate sources (maltose, glucose, galactose, lactose, sucrose and glycerol) on the stimulation of somatic embryos



from callus cultures. The response variable is the number of embryos observed after approximately four weeks. The
experiment was a completely randomized block design with the above six sugars at dose levels of 18, 37, 75, 110 and 150
mM for the first five and 6, 12, 24, 36, and 50 nM for the glycerol, and 5 replicates of each treatment, see Tomaz et a.
(2001), for further details of the experiment and histological analyzes. The main interest was in the doseresponse
relationship for the sugars (maltose, galactose and lactose) that produced large numbers of embryos. The number of
embryos produced is highly variable, see Figure 1, with marked differences between the three sugars. Table 1 presentsthe
mean and variance of the number of embryos, classified by sugars and dose levels (excluding 1 missing value). Most of
the sample overdispersion index values (relative to a baseline Poisson distribution) exceed 3, and give strong evidence of
overdispersion. Intheir analysis Tomaz et al. (2001) used a quadratic response function over the dose levelsand asimple
constant overdispersion Poisson model fitted by quasi-likelihood to take account of overdispersion. Here we use this
dataset to illustrate the use of maximum likelihood estimation for the NB1 distribution.
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Figure 1: Orange (Valencia) tissue culture data

Table 1:0range (Valencia) tissue culture data: Mean and variance (Var)
of number of embryos classified by sugars and dose levels

Doselevels (mM)

Sugars 18 37 75 110 150
Mean 233.00 245.33 369.67 407.00 424.33

Maltose Var 2368.00 65433 995233  2356.00 506.33
0.i. 10.16 267 26.92 5.79 119

Mean 47.33 219.33 239.33 174.33 260.50

Lactose Va 22433 131033 585433 123433  2964.50
o.i. 4.74 5.97 24.46 7.08 11.38
Mean 2167 14.00 1833 4.00 75.67
Galactose Va 185.33 76.00 408.33 13.00 508.30
0.1. 855 543 2228 325 6.72
0.i. denotes overdispersion index = T _ 1
Mean

Writing p for the vector of the mean numbers of embryos and taking sugar (S) and dose as factors, fitting the full
interaction Poisson regression model (log( ) = S* DOSE), the residual deviance is 298.04 on 29 df, which as expected



shows strong evidence of overdispersion. The half-normal plot, Figure 2 (a), also indicates greater variation than in the
Poisson model as all the Poisson deviance residuals lie above the upper envel ope.

Fitting the corresponding NB1 model with the full interaction between dose and sugar gives alikelihood ratio test
statistic for overdispersion of 166.59 on 1 df. The model certainly fits the data much better than the Poisson model. This
model is equivalent to fitting a model with an interaction between sugar and a quartic polynomial over the actual dose
levels (log(p) =S* (D + D? + D® + D%). This suggests that we might consider simplifying the model by fitting
lower order polynomialsover thedoselevels. Themodel that seemsbest intermsof both AICandBICis log(p) = S* (D
+D? + D%), see Table 2. Thismodel givesaseparate cubic doserelationship for each of the sugar types. The corresponding
half-normal plot; Figure 2(b) indicates that the model is consistent with the data.

Poisson model : Quartic NBmodel : Cubic
(@ (b)

Deviance Residuals
x
X
Deviance Residuals

Half-normal scores Half-normal scores

Figure 2: Orange (Valencia) tissue culture data : Half-normal Plots based on Poisson and NB1 model

Table 2: Orange (Valencia) tissue-culture data: Statistics for Poisson and NB1 models

S isathree-level factor for sugar
DOSE isafive-level factor for the dose levels
D isavariate for the dose level
Models
Description log() a =20 dfy AIC BIC
Poisson  S* (D+D?+D%+D%" 0 573143 29  603.143  629.906
S* (D+D?+D% 0 648715 32 672715 694125
S* (D +D? 0 950656 35 977.656 993414
S* D 0 1182815 38 1194815 1205520
NB1 S* (D+D?+D*+D% 6331 406552 28 438552  467.099
S* (D +D?+D% 7772 413000 31  439.000 462.194
S* (D +D? 15360 438385 34 458385 476227
S* D 24410 457234 37 471234 483724

S* (D +D?+D* + D% isequivalent to S* DOSE

Figure 3 shows the plot of the predicted mean number of embryos for cubic model. This suggests that the dose
response rel ationship for maltose and gal actose may be approximately linear or quadratic. In order to investigate this, we



fitted NB1 regression models with cubic, quadratic and linear functions over the dose levels, see Table 3. The best model
suggested by AIC and BIC for each sugar isdifferent. Thatisthe NB1 model with alog-linear model inthe doselevelsfor
maltose, alog-quadratic model for galactose and a log-cubic regression model for lactose. The parameter estimates and
their standard errors (given in the parentheses) are given asfollows:

NBmodel : Cubic

] X— Maltose

X
= Ao Lactose x

Galactoge

Number of embryos

a1 = o o

Dose levels

Figure 3: Orange (Valencia) tissue culture data : Observed (symbols) and
estimated (lines) val ues of embryogenic responses

Table 3: Orange (Valencia) tissue-culture data: Statistics for NB1 models classified by sugar

Models
Sugars log(u) a =20 df AlIC BIC
Maltose
D+D%+D3 578 15784 10 16784 17138
D+D? 58 15803 11 16603 16886
D 784 16174 12 167.84 169.82
Lactose
D+D2+D3 901 14217 9 15217 155.37
D+D? 3002 15763 10 16563 16818
D 3652 16030 11 16630 16822
Galactose
D+D2+D3 884 11232 10 1232 12586
D+D?2 1037 11426 11 12226 125.08
D 3106 12772 12 13372 13584
D -D

D denotes a vector of standardized E~)i; D = ,i=1,...,n,where D =n"1&,D;.

' va(D)
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Maltose :log(p)=5.783 +0.226 D
(0.043) (0.040)
a =7.836(3.219)

Lactose :log(p)=5.564—0.604 D—0.636D2 + 0675D°
(0091) (0209 (0.113) (0.135)
a =9.005(3.824)

Galactose :log(u) =1.887+0.045 D +0997D?
(0420) (0.162) (0.244)
a =10.374(4.666)

Discussion

Fitting NB1 models using a Newton-Raphson iterative procedure is conveniently performed in any computer software
that can deal with matrices, in particular, R or SPlus, as the commands for cal culating di-gamma and tri -gamma functions

are also available. Moreover, the correct asymptotic covariance matrix of the parameter estimates Cov(R3,a ) is

automatically provided at thefinal iteration.

The half-normal plot with a simulated envelope using the approximated deviance residuals seems to be very useful
check on the adequacy of the linear-mean variance negative binomial model. The plot can also be used to check the
correct form of the variance function and seems to give some suggestion whether the NB1 or the NB2 variance function is
appropriate. An investigation of thiswill be reported elsewhere.

Acknowledgements: The authors are grateful to M.L. Tomaz and B. M. J. Mendes for providing orange Valencia tissue
culture data.
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