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Abstract 
Negative binomial maximum likelihood regression models are commonly used to analyze count data when 

overdispersion is present. There are various forms of the negative binomial model with different mean-variance 
relationships, however the most generally used are those with linear and quadratic relationships. We present a 
Newton-Raphson algorithm for obtaining maximum likelihood estimates of the linear mean-variance negative binomial 
(NB1) regression model. We also describe the construction of a half-normal plot with a simulated envelope for checking 
the adequacy of a selected NB1 model. These procedures are illustrated on a set of orange tissue culture data. 
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1. Introduction 
Negative binomial (NB) models are very widely used for analyzing overdispersed Poisson counts as all important statistical 

inferences can be carried out more easily and conveniently than for other types of compound Poisson models (Lawless, 1987). 
Applications using the NB distribution can be found in many areas, for instance, economics (Hausman et al., 1984), political 
science (King (1988) and King (1989)), psychology (Gardner et al., 1995) and biostatistics (Alexander et al., 2000). The NB 
model can be considered as arising from a two-stage model assuming the counts to come from a Poisson distribution with 
varying mean.  Taking the Poisson mean as a gamma distributed random variable leads to the NB model and we can obtain 
various forms of mean-variance relationship, in particular both linear and quadratic, depending on assumptions about the 
gamma mixing distribution parameters. The linear mean-variance NB model is obtained by allowing the gamma shape 
parameter to vary across observations and keeping the scale parameter constant, whereas the quadratic form arises from taking 
the shape parameter as constant and letting the scale vary. These two variance function models can lead to different models for 
the mean and also different forms of some associated statistics. Here we will denote the NB model with the linear variance by 
NB1 and the quadratic variance one by NB2. The NB2 model is a generalized linear model (glm) (Hinde and Demétrio, 1998) 
when the shape parameter is known. The parameter estimates for the NB2 model can be easily obtained using a full 
Newton-Raphson method, for example as is in Lawless (1987), or an iterative glm fitting procedure as in Hinde and Demétrio 
(1998). 

This paper concentrates on the maximum likelihood fitting of NB1 models and their application to a real dataset. The paper 
begins in Section 2 with a short review of Poisson regression. Section 3 describes NB1 models and parameter estimation using a 
Newton-Raphson procedure. Methods of selecting an appropriate model are described in Section 4. To check the adequacy of a 
selected model we propose the use of a half-normal plot with a simulated envelope. Details of the construction of this plot are 
given in Section 5.  In Section 6, we consider the application of the NB1 model to a set of orange tissue-culture data. The paper 
concludes with a brief discussion. 

 
2. Poisson regression and Overdispersion 
2.1 Poisson Regression Models 

The random variables Yi, i = 1,… , n, represent counts with means µi, and that xi = (xi1, xi2,…, xip)T is an associated vector of 
covariates, with xi1 typically equal 1 to include the usual constant term in the model. The standard Poisson regression model 
assumes that Yi ∼ Pois(µi), and is a generalized linear model with variance function 
 
 Var(Yi) = Var(µi) = µi. (1) 
The µi are typically modelled through the canonical log link function by 

 

 ηi = log(µi) = ßT
ix  
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where ß  is a p vector of unknown parameters. The maximum likelihood estimate of ß  is easily obtained using iteratively 

reweighted least squares (IRLS) and the asymptotic covariance matrix Cov(ß ) is 1)( −XWX T  , where W is an n × n diagonal 

matrix with ith diagonal element iW = iµ , the iterative weight used in the IRLS procedure, see McCullagh and Nelder (1989). 

For an appropriate well fitting model, we would expect that the residual deviance and the Pearson chi-square (X2) would be 
approximately equal to the degrees of freedom (df). If the residual deviance and X2 statistic exceed the df, the Poisson regression 
model may not be adequate, either through some systematic lack of fit, or because the strong assumption from the Poisson 
model that Var(µi) = µi is inapropriate; in this case the data are described as overdispersed. If the residual deviance is less than its 
df, it implies that there is underdispersion in the counts, i.e. the observed variance is less than the nominal Poisson variance. 
However, in practice, the underdispersion is less common, (McCullagh and Nelder, 1989). 

In general, when there is overdispersion and we fail to take it into account, it can lead to misinterpretation of the fitted model, 
(Cox, 1983 and Hinde and Demétrio, 1998) since the overdispersion produces : 

 
(i) smaller standard errors of the parameter estimates than the true values. Therefore we may incorrectly choose 

explanatory variables for the model that are not required; 
(ii) too large a reduction of deviance associated with model selection tests. This again leads to selecting overly complex 

models. 
 

3. Linear Mean-Variance NB Models 
 If Yi, i = 1, …, n, are now negative binomial distibuted counts with mean µi, and dispersion parameter α with  
Yi ∼ NB1(µi, α) , the probability mass function (p.m.f.) is given by 
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                                        0,                        otherwise 
 
with E(Yi) = iµ  and Var(Yi) = iµ (1 + α). When α → 0, this NB1 model reduces to a Poisson Model. 
 
3.1 Maximum Likelihood Estimation for the NB1 Distribution 
 For observed values y1,…, yn, the NB1 log-likelihood, l = l( µ , α), is given by 

 l = 
=

n

1i

{yi log a – +
α
µ i

iy log(1 + a) + dlg(yi ,a-1µi) – log yi!},          (3) 

where dlg(y, a) = log Γ(y + a) – log Γ(a). 
The NB1 is not a standard glm-type exponential family distribution, even when the overdispersion parameter α is known, 

and standard glm fitting methods will not apply. So here we consider a general Newton-Raphson iterative scheme. The first and 
second derivatives with respect to the underlying parameters are 
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where ddg(y,a) and dtg(y,a) denote the differences of the di-gamma and tri-gamma functions. These are defined by 

      ddg(y,a)  =  
a

(dlg(y,a)) = ϑ(y + a) – ϑ(a) 
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where ϑ is the di-gamma function, and 
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where ζ is the tri-gamma function. 
Let s( ß ,α) be the vector of score functions defined by 
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and let I( ß ,α) be the (p + 1) × (p + 1) observed information matrix, which we partition as 
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where ßßI  = – 
Tßß

l2

 is the p × p symmetric matrix , Iαα = – 
2
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α
l

  is a scalar and ßαI   = TI αß  = –
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l2

, is a  

1 × (p + 1) matrix. 
Writing (m)ß  and α(m) as the estimates at the mth iteration, the standard Newton-Raphson iterative scheme gives 
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where I(m) and s(m) are I(ß ,α) and s(ß ,α) evaluated at ß   = (m)ß  and α  = α(m). The iteration (10) must be carried out until 
convergence, which can be assessed using a stopping rule such as 
 |α( m+1) – α(m) | < ∈  or  |l( m+1) – l(m) | < ∈. 
The procedure requires good initial values, which can be obtained as follows: 
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•  ß  ; fit a standard Poisson regression model to obtain )0(ß  and initial estimates of the fitted values )0(
iµ . 

•  α ; equate the Pearson X2 statistic from the Poisson fit to its expected value under the NB1 model, to give 
 

 α(0) = (n – p)–1 
( )−

i i

iiy
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µ

µ
 , 

    this is in fact the quasi-likelihood estimate of the overdispersion parameter from the constant overdispersion Poisson    
    model. 

The asymptotic variance of ß  and α  are the diagonal elements of I–1(ß ,α), and are automatically provided at the final 

iteration. This iterative procedure is simply implemented in any computer software that can handle matrices, such as, SPlus and 

the free software R (The Comprehensive R Archive Network : http://lib.stat.cmu.edu/R/CRAN/). 

 
4. Selecting an Appropriate Model 

Testing the Poisson assumption against the NB1 alternative corresponds to testing H0 : α  = 0 against H1 : α  > 0. The 

commonly used test statistics, the likelihood ratio test (LRT) defined by – 2{l(µ ) – l( α,µ )}, where l(µ ) and l( α,µ ) are 

maximized log-likelihood estimates under the Poisson and NB1 model, respectively, and the Wald test specified by 
)(arV

2

α
α

, 

are both applicable here.  Although somecare is required as the null hypothesis is on the boundary of the parameter space (e.g. 

the null distribution of the LRT is not the usual 2
1χ  distribution), and also the alternative hypothesis is one-sided as we are only 

testing for overdespersion.) 
Selecting an appropriate model among all possible NB1 regression is straightforward using the standard likelihood criteria, 

for example, Akaike information criterion (AIC) (Akaike, 1973) or Baysian information criterion (BIC) given in          Schwarz 
(1978). These criteria simply require the maximized log-likelihood value from the NB1 distribution fit and are defined as: 

 
 AIC =  –2l + 2(number of fitted parameters) 

 BIC =  –2l + log(n) × (number of fitted parameters). 
 

5. Model Checking 
A model diagnostic technique that has been found to be useful for checking the adequacy of fitted models is the use of 

half-normal plots with a simulated envelope. This technique was first proposed by (Atkinson, 1985). He applied the plot to 
check model adequacy using Pearson residuals or Cook’s statistics in normal regression. The technique was further developed 
for glms using (standardized) Pearson residuals and (standardized) deviance residuals by Williams (1987). Williams claimed 
that the plot can detect both outliers and overdispersion in both Poisson and binomial regression models. 

Even though the NB1 regression model is not a glm, we can define its complete p.m.f. and hence the log-likelihood function. 

The associated (standardized) Pearson residual, or the standardized studentized residual, for the NB1 model can be obtained by 

using the general definition, 
)(arV
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Y

y µ−
  (Lawless, 1987). Denoting the standardized Pearson residual for an NB1 fit by Pir& , the 

ith component is  
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)1( αµ
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NB1 deviance residuals cannot be obtained simply based on the usual deviance expression for glms: –2{l(µ,α ;y) – l(y,α ;y)}, as 

some of the individual components can be negative. Nelder (1991) pointed out that the log-likelihood (3) does not have the 
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property that its mode occurs at µ = y unless y = 0. He used yi + 
2

1
 as the approximate mode of l and then approximated the 

deviance component for yi by 
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Jansakul (2001) explored this approximation and found that y + 
2

1
 is not an adequate approximation of the mode. Her 

investigations indicated that there is no simple form for the mode of l, but values such as y + k , where 
y/12 +

α
 < k  < 

2

α
 are 

likely to be close to giving the mode, and for large y, k  ≈ 
2

α
 works well. Using this simple form gives the deviance residuals rD,i 

= sgn(yi – iµ ) iD  for the NB1 model, where 
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Following the general procedure for constructing the half-normal plots with a simulated envelope given in                   Vieira 

et al. (2000), a plot for checking a selected NB1 model using (standardized) deviance residuals can be constructed as follows: 
 
•  Fit a NB1 model to obtain α,µ  and calculate the ordered absolute values of deviance residuals rD,i; 
•  Simulate nineteen samples for the response variable under the fitted model, by first generating e0j,i where                       e0j,i 

∼ Γ( 1,1
iµα − ), j = 1,…, 19, i = 1,…, n, calculating eji = e0j,i × 1−

iµα   then simulating Yji ∼ Pois( jii eµ ) to give           Yji ∼ 
NB1( αµ ,i ), i.e. 19 datasets based on the fitted model. 

• Refit the model, using the same explanatory variables, to each sample and calculate the ordered absolute values of the 

deviance residuals, *
),( iDjr , j = 1, …, 19, i = 1,…, n; 

• For each i calculate the minimum, maximum and the mean of the  *
),( iDjr ; 

• Plot these values and the observed rD,i against the half-normal scores (expected order statistics);  

Φ–1 {(i + n – 
8

1
) / (2n + 

2

1
)}, where Φ is the normal cumulative density function (Demétrio and Hinde, 1997). 

If the selected model is adequate, the observed rD,i should lie within the simulated envelope. 
Demétrio and Hinde (1997) gave a GLIM macro to construct such plots with special emphasis on overdispersed models (i.e. 

constant overdispersion Poisson and NB2 models for extra Poisson variation).  These are easily adapted for the NB1 deviance 
residuals as all that is required are two macros, one to calculate the NB1 deviance residuals and the other to simulate from an 
NB1 distribution. 
 
6. Application: An Orange Tissue -culture Experiment 

The orange variety Valencia was used in a tissue-culture experiment conducted in Brazil to study the effect of six 
carbohydrate sources (maltose, glucose, galactose, lactose, sucrose and glycerol) on the stimulation of somatic embryos 
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from callus cultures. The response variable is the number of embryos observed after approximately four weeks. The 
experiment was a completely randomized block design with the above six sugars at dose levels of 18, 37, 75, 110 and 150 
µM for the first five and 6, 12, 24, 36, and 50 µM for the glycerol, and 5 replicates of each treatment, see Tomaz et al. 
(2001), for further details of the experiment and histological analyzes. The main interest was in the dose-response 
relationship for the sugars (maltose, galactose and lactose) that produced large numbers of embryos. The number of 
embryos produced is highly variable, see Figure 1, with marked differences between the three sugars. Table 1 presents the 
mean and variance of the number of embryos, classified by sugars and dose levels (excluding 1 missing value). Most of 
the sample overdispersion index values (relative to a baseline Poisson distribution) exceed 3, and give strong evidence of 
overdispersion. In their analysis Tomaz et al. (2001) used a quadratic response function over the dose levels and a simple 
constant overdispersion Poisson model fitted by quasi-likelihood to take account of overdispersion. Here we use this 
dataset to illustrate the use of maximum likelihood estimation for the NB1 distribution. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: Orange (Valencia) tissue culture data 

 
 
 

Table 1:Orange (Valencia) tissue culture data : Mean and variance (Var)  
 of number of embryos classified by sugars and dose levels  
 

  Dose levels (µM) 
Sugars  18 37 75 110 150 
 
Maltose 
 
 
 
Lactose 
 
 
 
Galactose 

Mean 
Var 
o.i. 
 
Mean 
Var 
o.i. 
 
Mean 
Var 
o.i. 

233.00 
2368.00 

10.16 
 

47.33 
224.33 

4.74 
 

21.67 
185.33 

8.55 

245.33 
654.33 

2.67 
 

219.33 
1310.33 

5.97 
 

14.00 
76.00 
5.43 

369.67 
9952.33 

26.92 
 

239.33 
5854.33 

24.46 
 

18.33 
408.33 
22.28 

407.00 
2356.00 

5.79 
 

174.33 
1234.33 

7.08 
 

4.00 
13.00 
3.25 

424.33 
506.33 

1.19 
 

260.50 
2964.50 

11.38 
 

75.67 
508.30 

6.72 

   o.i. denotes overdispersion index  = 
Mean

Var
– 1.  

 
Writing µ  for the vector of the mean numbers of embryos and taking sugar (S) and dose as factors, fitting the full 

interaction Poisson regression model (log( µ ) = S ∗ DOSE), the residual deviance is 298.04 on 29 df, which as expected 
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shows strong evidence of overdispersion. The half-normal plot, Figure 2 (a), also indicates greater variation than in the 
Poisson model as all the Poisson deviance residuals lie above the upper envelope. 

Fitting the corresponding NB1 model with the full interaction between dose and sugar gives a likelihood ratio        test 
statistic for overdispersion of 166.59 on 1 df. The model certainly fits the data much better than the Poisson model. This 
model is equivalent to fitting a model with an interaction between sugar and a quartic polynomial over the actual dose 
levels (log( µ ) = S ∗ (D + D2 + D3 + D4)). This suggests that we might consider simplifying the model                   by  fitting 
lower order polynomials over the dose levels. The model that seems best in terms of both AIC and BIC is   log( µ ) = S ∗ (D 
+ D2 + D3), see Table 2. This model gives a separate cubic dose relationship for each of the sugar types. The corresponding 
half-normal plot; Figure 2(b) indicates that the model is consistent with the data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Orange (Valencia) tissue culture data : Half-normal Plots based on Poisson and NB1 model 
 
 
 

Table 2: Orange (Valencia) tissue-culture data: Statistics for Poisson and NB1 models  
 S   is a three-level factor for sugar 
 DOSE is a five-level factor for the dose levels  
 D   is a variate for the dose level 
 

 Models      
Description log(µ ) α –2l df1 AIC BIC 

Poisson S ∗ (D + D2 + D3 + D4)† 
S ∗ (D + D2 + D3) 

S ∗ (D + D2) 
S ∗ D 

0 
0 
0 
0 

573.143 
648.715 
959.656 

1182.815 

29 
32 
35 
38 

603.143 
672.715 
977.656 

1194.815 

629.906 
694.125 
993.414 

1205.520 
NB1 S ∗ (D + D2 + D3 + D4) 

S ∗ (D + D2 + D3) 
S ∗ (D + D2) 

S ∗ D 

6.331 
7.772 

15.360 
24.410 

406.552 
413.000 
438.385 
457.234 

28 
31 
34 
37 

438.552 
439.000 
458.385 
471.234 

467.099 
462.194 
476.227 
483.724 

 
S ∗ (D + D2 + D3 + D4)† is equivalent to S∗DOSE 

 
Figure 3 shows the plot of  the predicted mean number of embryos for cubic model.  This suggests that the dose 

response relationship for maltose and galactose may be approximately linear or quadratic. In order to investigate this, we 

NBmodel : Cubic
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fitted NB1 regression models with cubic, quadratic and linear functions over the dose levels, see Table 3. The best model 
suggested by AIC and BIC for each sugar is different. That is the NB1 model with a log-linear model in the dose levels for 
maltose, a log-quadratic model for galactose and a log-cubic regression model for lactose. The parameter estimates and 
their standard errors (given in the parentheses) are given as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Orange (Valencia) tissue culture data : Observed (symbols) and  
 estimated (lines) values of embryogenic responses 
 
 
 

Table 3: Orange (Valencia) tissue-culture data: Statistics for NB1 models classified by sugar 
 

 Models      
Sugars log(µ ) α –2l df AIC BIC 
Maltose 
 
 
 

 
D~ + 2D~ + 3D~  

D~ + 2D~  
D~  

 
5.78 
5.86 
7.84 

 
157.84 
158.03 
161.74 

 
10 
11 
12 

 
167.84 
166.03 
167.84 

 
171.38 
168.86 
169.82 

Lactose 
 

 
D~ + 2D~ + 3D~  

D~ + 2D~  
D~  

 
9.01 

30.02 
36.52 

 
142.17 
157.63 
160.30 

 
9 
10 
11 

 
152.17 
165.63 
166.30 

 
155.37 
168.18 
168.22 

Galactose 
 
 
 

 
D~ + 2D~ + 3D~  

D~ + 2D~  
D~  

 
8.84 

10.37 
31.06 

 
112.32 
114.26 
127.72 

 
10 
11 
12 

 
122.32 
122.26 
133.72 

 
125.86 
125.08 
135.84 

 

D~ denotes a vector of standardized iD~ ; iD~  = 
Var(D)

DD −i  , i = 1,…, n, where D  = n–1 ∑iDi. 

NBmodel : Cubic
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   Maltose  : log(µ ) = 5.783 + 0.226 D~  
           (0.043)    (0.040) 
       α  = 7.836(3.219) 
 
   Lactose  : log(µ ) = 5.564 – 0.604 D~ – 0.636 2D~ + 0.675 3D~  
           (0.091)    (0.209)     (0.113)       (0.135) 
       α  = 9.005(3.824) 
 
   Galactose : log(µ ) = 1.887 + 0.045 D~ + 0.997 2D~  
           (0.420)    (0.162)     (0.244) 
       α  = 10.374(4.666) 
 
7 Discussion 

Fitting NB1 models using a Newton-Raphson iterative procedure is conveniently performed in any computer software 

that can deal with matrices, in particular, R or SPlus, as the commands for calculating di-gamma and tri-gamma functions 

are also available. Moreover, the correct asymptotic covariance matrix of the parameter estimates  Cov( α,ß ) is 

automatically provided at the final iteration. 
The half-normal plot with a simulated envelope using the approximated deviance residuals seems to be very useful 

check on the adequacy of the linear-mean variance negative binomial model. The plot can also be used to check the 
correct form of the variance function and seems to give some suggestion whether the NB1 or the NB2 variance function is 
appropriate. An investigation of this will be reported elsewhere. 
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