
IMPROVING NEURAL NETWORKS GENERALIZATION USING
DISCRIMINANT TECHNIQUES

Fadzilah Siraj

School of Information Technology, University Utara Malaysia,

06010 Sintok, Kedah, Malaysia
Tel: 00-60-4-9284672, Email: fad173@uum.edu.my

Abstract
Neural networks, particularly Multilayer Pereceptrons (MLPs) have been found to be successful for various

supervised learning tasks. Empirical studies have shown that the neural network is of powerful capabilities for
pattern classification. Neural networks are non-linear models that classify based upon pattern recognition
capabilities. During the learning process, neural network can build unique structures and select appropriate
combinations of features that maximize the sensitivity of the classification decision. The classification decision
depends on the input features. Hence this paper addresses the problem of improving neural networks
implementations by developing methods for dealing with training and test failure patterns. The approach has been
stimulated from the empirical studies from software engineering research (see [1]) and neural networks
experimental research ([2], [3], [4]). The main objective of the experiments is to determine whether the multilayer
perceptron discriminant constructed from training and test patterns can be used to discriminate easy-to-learn
(ETL) from hard-to-learn (HTL) patterns and in effect improves the generalization performance. The experiments
presented in this paper illustrate the applic ation of discrimination techniques using MLP discriminants to neural
network trained to solve supervised learning task such as the Launch Interceptor Condition 1 problem. The
experimental results indicate that directed splitting or using MLP discriminant is an important strategy in
improving generalization of the networks.

Keywords: Neural networks, Generalization, Backpropagation, Discriminant, Multilayer Perceotron

1. Introduction
Neural networks are a wide class of flexible nonlinear regression and discriminant models, data reduction models,

and nonlinear dynamical systems ([5]). They are general functions approximators and they can therefore be trained to
compute any desired functions including decision-making functions. Neural networks, particularly Multilayer
Pereceptrons (MLPs) have been found to be successful for various supervised learning tasks. Empirical studies have
shown that the neural network is of powerful capabilities for pattern classification. They are non-linear models that
classify based upon pattern recognition capabilities. During the learning process, neural network can build unique
structures and select appropriate combinations of features that maximize the sensitivity of the classification decision.
The discrimination decision depends on the input features.

The common Linear Discriminant Analysis (LDA) is a well-known method for improving discrimination properties
and compressing information in statistical pattern classification On the other hand, neural networks are inherently
discriminative and yield higher classification accuracy than LDA ([6] and [7]).

The art of neural network design involves specifying three key elements, the neural network architecture, the input
and output representations, and the training method. The architecture defines the connectivity of the processing units
and their dynamics. The input and output representations encode the information (e.g. word, patterns) fed into and read
from the net in terms of a pattern of neural activity. The training methods specifies how the weights are determined
from the data.

The success or failure of the neural network is based on the appropriate selection of the above elements. This paper
focuses on the input representations that are fed into the nets. The paper addresses the basic problem of improving
multilayer neural net implementations, i.e. increasing the generalization performance of the networks by developing
methods for dealing with training and testing failure patterns. The main objective of the experiments is to determine
whether the multilayer perceptron discriminant constructed from training and test patterns can be used to discriminate
easy-to-learn (ETL) from hard-to-learn (HTL) patterns and in effect improves the generalization performance.

2. Methodology

The Launch Interceptor problem has been used in a number of software engineering experiments concerning
correctness and reliability (see [8], [9]). [10] and [11] have applied the problem to neural networks. This is a well-
defined, abstract problem that has been chosen to study since it offers a distinct advantage of supplying numerous
training and test patterns with unambiguous outcomes. The problem involves an anti-missile system, which is used to

classify radar images as indicative of a hostile missile, or not. The input for the system represents radar images
(specified as a sequence of xy coordinate points) together with 19 real-valued parameters and several small matrices
which are used to control the interpretation of the radar images. The output is simply a decision Launch (when all 15
launch criteria are satisfied according to certain conditions) or No-Launch (when one or more of the 15 launch criteria
is not satisfied by the input data. The various criteria upon which the decis ion depends are referred to as ``launch
interceptor conditions'' (LIC's). LIC1, the acronym from Launch Interceptor Condition 1, is a boolean function that is
true if the Euclidean distance between two points is greater than the value of another parameter LENGTH, and false
otherwise. The points are given as 2 pairs of x and y coordinates (each in the interval [0,1] to 6 decimal places)
LENGTH is as single value in the same interval to the same precision. Therefore LIC1 takes 5 input values i.e. (x1,
y1), (x2, y2), LENGTH and returns the value true or false.

In this study, the experiments were performed to determine whether it is possible to automatically predict (and to
modify) these 'problematic' or HTL from ETL patterns using MLP discriminants. The initial objectives are to construct
a 'representative' set of hard-to-learn (HTL) and learnable patterns, and to develop an MLP discriminant that can
recognises these within a general set of patterns. In addition, the same idea with test sets, i.e. automatic prediction of
hard-to-compute (HTC) patterns are also explored.

2.1 Constructing Discriminant Set

The MLPs discriminants were constructed using the training and test patterns. The approach has been stimulated
from the empirical studies conducted by [1] for software engineering research and [2], [12], [1] and [4] from neural
networks experimental research. In conjunction with these research, voting strategy has been introduced when
constructing the discriminant sets since voting algorithms have been shown to be very successful in improving the
accuracy of certain classifiers ([13]).

The discriminant constructed from the training patterns is known as the HTL/ETL discriminant. On the other hand,
the discriminants that were constructed form the test patterns are known as the HTC/ETC discriminants. In this study,
the discriminant sets were constructed from the previous 27 networks trained on three raw training sets. Each raw
training set was used to train 9 different networks (3 different weight seeds x 3 different hidden units), so there were
nine attempts to learn each pattern of the 1,000 in each training set. A test set consisting 10,000 patterns was used to
test the 27 networks

For the HTL/ETL discriminant, a pattern is chosen from the training set if the pattern was not successfully learned in
several networks. In this case, let n represents the number of networks in which a pattern was not successfully learned.
When n=5 (majority vote), not many patterns failed after training. Hence, n is set to 1 that means the patterns that was
not successfully learned in at least one out of nine networks will be chosen to be included in the discriminant set. Out
of 1,000 patterns, a total of 18 HTL patterns were identified and the rest of the patterns are considered as ETL patterns
(2982). Since the percentage of ETL is very high compared to the HTL, several possibilities will be explored in order
to determine the training set composition that produced the highest average generalization. The discriminant sets
constructed for discrimination purposes are as follows:

1. A discriminant set is composed of the same number of ETL and HTL patterns. This set is referred as the
EQUAL set.

2. Based on the results of the preliminary studies, it is known that the arrangement of training patterns for MLP
training has an effect on the performance of the network. When the HTL and ETL subsets are constructed, there are not
many HTL patterns. Intuitively, if there are too many ETL patterns, the networks may be trained to learn these patterns
only. Therefore, to minimise the number of ETL patterns, 3 of these patterns are chosen randomly for each HTL
pattern. The patterns are arranged in such a way that for every HTL pattern, it will be followed by 3 ETL patterns.
These patterns are referred as the UNEQUAL set.

3. The same HTL is presented three times to each ETL. This set is referred as HTL1 set.
Similarly, the MLPs discriminants were constructed from the test patterns. Two HTC/ETC discriminants were

constructed. For the first discriminant, n is set to 1, thus the ONE HTC/ETC discriminant is obtained. The second
discriminant known as MAJ HTC/ETC discriminat was constructed by setting n = 5. Having defind the HTC and ETC
patterns, the discriminant sets were constructed in the same manner as the training patterns.

2.2 Experiments

For the evaluation of the MLP discriminants, several experiments were carried out. Several training and testing
methods were explored, namely:

(1) The patterns are trained as MLPs without applying any treatment to the HTL patterns.

Input patterns Train MPLs

HTL subset

ETL subset

Fig. 1 The procedure for obtaining HTL and ETL subsets from training patterns of

MLPraw

(2) Split and Separate

The HTL and ETL patterns are trained separately. The HTL are modified by normalizing before training or

testing. Two normalization techniques were explored. The first normalization method is to divide a particular
attribute with the square root of sum of squares for all attributes for this pattern ([14], [15] and [16]). This
approach is labeled as Normalized 1. The second normalization method is to divide a particular attribute with the
maximum value for a specific pattern (Bigus, 1996). This method is referred as Normalized 2.

Input
Patterns

MLP
Discriminant

Modify Train

% learnt
 in total

Train

HTL

ETL

Fig. 2 The procedure for obtaining the training performance for the Split and

Separate method.

(3) The HTL and ETL patterns are trained separately but the HTL patterns are not treated before training or

testing. This is known as the Split and Separate method without any treatments.

Input
Patterns

MLP
Discriminant

Train

% learnt
 in total

Train

HTL

ETL

Fig. 3 The procedure for obtaining the training perfomance by splitting the

sets without treatment.

3. Results
The average generalization of MLPs without any treatments or MLPraw is 96.86%. This result is higher when

compared with the results obtained using Linear Discriminant Analysis (90.4%). However, the average generalization
for all test methods illustrated in Figure 4 are significantly higher than the results of MLPraw (p = 0.0). The results also
indicate that HTC/ETC discriminants defined using majority voting achieved higher average generalization results than
the ONE HTC/ETC discriminants (see also [13]). The discriminants constructed the UNEQUAL set achieved 100%
generalization. The normalized method whose HTC/ETC discriminant was constructed using the EQUAL set achieved
the second highest result (99.66%). Although the split and separate method (without treatment) of ONE HTC/ETC
constructed using the EQUAL set converges faster than the MAJ HTC/ETC constructed using the EQUAL set (1963
versus 3389 epochs), its generalization is 0.6% lower than the latter. Hence the assumption that MAJ HTC/ETC
discriminants produced higher average generalization is confirmed.

Further observation on the average generalization results displayed in Figure 4 reveals that the MAJ HTC/ETC
discriminants achieved higher generalization than ONE HTL/ETL discriminants . Although untreated Split and
Separate of ONE HTL/ETL constructed using the EQUAL set converges earlier than the first normalized method of
MAJ HTC/ETC (600 versus 3389), the latter obtained 0.27% higher generalization than the first method. Thus, the
generalization of the MAJ HTC/ETC discriminants is higher than ONE HTL/ETL discriminants.

99.39

98.46

99.06

98.86

100

99.66

97.5

98

98.5

99

99.5

100

100.5

ONE HTL/ELT (EQ)
No Treatment

ONE HTL/ELT (HTL1)
No Treatment

ONE HTC/ETC (EQ)
Normalized 2

ONE HTC/ETC
(HTL1) Normalized 2

MAJ HTC/ETC
(UNEQ) No
Treatment

MAJ HTC/ETC (EQ)
Normalized 1

Types of Disciminants

G
en

er
al

iz
at

io
n

 (
%

)

Gen.

Fig. 4 The Generalization of MLP discriminants

4. Conclusion
The final findings from the experiments show that Split and Separate method without any treatment is one of the

important training and testing method. Splitting method inevitably requires more resources and may also speed up the
learning process. However, another question arises, is simply random splitting can improve generalization performance
or is the directed splitting is more important? To answer this question, 2 experiments on random splitting methods were
conducted on the same training and test sets , and the results are reported in Table 1. The results show that both random
splitting methods affect the performance of the networks. In fact, the performance becomes worst than MLPraw by at
least 0.19%. Therefore the experimental results indicate that directed splitting is an important strategy in improving the
generalization of the networks.

Table 1 The Generalization results using random splitting

Split Generalization (%)

50% to 50% 96.44

30% to 70% 96.67

References
[1] Littlewood, B. and Miller, D.; Conceptual modelling of coincident failures in multiversion software, IEEE
Transactions on Softe\ware Engineering , 15(12), 1989
[2] Partridge, D. and Sharkey, N.; Neural networks as a software engineering technology, In Proceedings of 7th
Knowledge-Based Software Engineering Conference, Sept. 20-23, McLean, VA, USA, 1992.
[3] Partridge, D. and Griffith, N.; Strategies for improving neural net generalization, Neural Computing and
Applications, 3, pp. 27-37, 1995.
[4] Partridge, D. Yates, W.; Engineering mutliversion neural-net systems., Neural Computation, 8(4), pp. 869-893,
1996.
[5] Sarle, W. S.; Neural Networks and Statistical Models, Proceedings of the Nineteenth Annual SAS Users Group
International Conference, April, 1994.
[6] Reichl, W., Harengel, S., Wolfertstetter and Ruske, G.; Neural Networks for Nonlinear Discriminant Analysis on
Continous Speech Recognition, In the Proceedings of EUROSPEECH-95, Madrid, Spain, September, 2163-2166, 1995.
[7] Lerner, B., Guterman, H., Aladjem, M. and Dinstein A.; A Comparative Study of Neural Network Based Feature
Extraction Paradigm, Pattern Recognition Letters, vol. 20(1), pp. 7-14, 1999.
[8] Knight, J. and Leveson, N.; An experimental evaluation of the assumption of independence in multiversion
programming., IEEE Trans. Software Engineering, 12(1), pp. 96-109, 1986.
[9] Adams, J. and Taha, A.; An experiment in software redundancy with diverse methodologies, In Proceedings of the
25th Hawaii International Conference on System Sciences, pp. 83-90, 1992.
[10] Partridge, D. and Sharkey, N.; Neural computing for software reliability, Expert Systems , 11(3), pp. 167-176,
1994.
[11] Partridge, D. and Yates, W., Letter recognition using neural networks: a comparative study, Technical report, 334,
Department of Computer Science, Exeter University, 1995.
[12] Partridge, D. and Krzanowski, W.; Distinct Failure diversity in Multiversion Software, Technical Report, 348,
Deoartment of Computer Science, Exeter University, 1997.
[13] Bauer, E.; An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants.
Machine Learning, 36, 105-142, 1999.
[14] Bigus, J. P.; Data Mining with Neural Networks. New York, Mc-Graw Hill, 1996.
[15] Cohn, P.; Elements of Linear Algebra, Chapman and Hall, 1994.
[16] Cohn, P.; Algebra: Volume 1. , John Wiley and Sons, 1974.

