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Abstract 
Neural networks, particularly Multilayer Pereceptrons (MLPs) have been found to be successful for various 

supervised learning tasks.  Empirical studies have shown that the neural network is of powerful capabilities for 
pattern classification.  Neural networks are non-linear models that classify based upon pattern recognition 
capabilities.  During the learning process, neural network can build unique structures and select appropriate 
combinations of features that maximize the sensitivity of the classification decision.  The classification decision 
depends on the input features.  Hence this paper addresses the problem of improving neural networks 
implementations by developing methods for dealing with training and test failure patterns.  The approach has been 
stimulated from the empirical studies from software engineering research (see [1]) and neural networks 
experimental research ([2], [3], [4]).  The main objective of the experiments is to determine whether the multilayer 
perceptron discriminant constructed from training and test patterns can be used to discriminate easy-to-learn 
(ETL) from hard-to-learn (HTL) patterns and in effect improves the generalization performance.  The experiments 
presented in this paper illustrate the applic ation of discrimination techniques using MLP discriminants to neural 
network trained to solve supervised learning task such as the Launch Interceptor Condition 1 problem.  The 
experimental results indicate that directed splitting or using MLP discriminant is an important strategy in 
improving generalization of the networks. 
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1.   Introduction 
Neural networks are a wide class of flexible nonlinear regression and discriminant models, data reduction models, 

and nonlinear dynamical systems ([5]).  They are general functions approximators and they can therefore be trained to 
compute any desired functions including decision-making functions.  Neural networks, particularly Multilayer 
Pereceptrons (MLPs) have been found to be successful for various supervised learning tasks.  Empirical studies have 
shown that the neural network is of powerful capabilities for pattern classification.  They are non-linear models that 
classify based upon pattern recognition capabilities.  During the learning process, neural network can build unique 
structures and select appropriate combinations of features that maximize the sensitivity of the classification decision.  
The discrimination decision depends on the input features.   

The common Linear Discriminant Analysis (LDA) is a well-known method for improving discrimination properties 
and compressing information in statistical pattern classification   On the other hand, neural networks are inherently 
discriminative and yield higher classification accuracy than LDA ([6] and [7]). 

The art of neural network design involves specifying three key elements, the neural network architecture, the input 
and output representations, and the training method.  The architecture defines the connectivity of the processing units 
and their dynamics.  The input and output representations encode the information (e.g. word, patterns) fed into and read 
from the net in terms of a pattern of neural activity.  The training methods specifies how the weights are determined 
from the data. 

The success or failure of the neural network is based on the appropriate selection of the above elements.  This paper 
focuses on the input representations that are fed into the nets.  The paper addresses the basic problem of improving 
multilayer neural net implementations, i.e. increasing the generalization performance of the networks by developing 
methods for dealing with training and testing failure patterns.  The main objective of the experiments is to determine 
whether the multilayer perceptron discriminant constructed from training and test patterns can be used to discriminate 
easy-to-learn (ETL) from hard-to-learn (HTL) patterns and in effect improves the generalization performance.   

 
2.   Methodology 

The Launch Interceptor problem has been used in a number of software engineering experiments concerning 
correctness and reliability (see [8], [9]).  [10] and [11] have applied the problem to neural networks.  This is a well-
defined, abstract problem that has been chosen to study since it offers a distinct advantage of supplying numerous 
training and test patterns with unambiguous outcomes.  The problem involves an anti-missile system, which is used to 



classify radar images as indicative of a hostile missile, or not.  The input for the system represents radar images 
(specified as a sequence of xy coordinate points) together with 19 real-valued parameters and several small matrices 
which are used to control the interpretation of the radar images.  The output is simply a decision Launch (when all 15 
launch criteria are satisfied according to certain conditions) or No-Launch (when one or more of the 15 launch criteria 
is not satisfied by the input data.  The various criteria upon which the decis ion depends are referred to as ``launch 
interceptor conditions'' (LIC's).  LIC1, the acronym from Launch Interceptor Condition 1, is a boolean function that is 
true if the Euclidean distance between two points is greater than the value of another parameter LENGTH, and false 
otherwise. The points are given as 2 pairs of x  and y coordinates (each in the interval [0,1] to 6 decimal places) 
LENGTH is as single value in the same interval to the same precision.  Therefore LIC1 takes 5 input values i.e. (x1, 
y1), (x2, y2), LENGTH and returns the value true or false.   

In this study, the experiments were performed to determine whether it is possible to automatically predict (and to 
modify) these 'problematic' or HTL from ETL patterns using MLP discriminants.  The initial objectives are to construct 
a 'representative' set of hard-to-learn (HTL) and learnable patterns, and to develop an MLP discriminant that can 
recognises these within a general set of patterns.  In addition, the same idea with test sets, i.e. automatic prediction of 
hard-to-compute (HTC) patterns are also explored. 

 
2.1   Constructing Discriminant Set 

The MLPs discriminants were constructed using the training and test patterns.  The approach has been stimulated 
from the empirical studies conducted by [1] for software engineering research and [2], [12], [1] and [4] from neural 
networks experimental research.  In conjunction with these research, voting strategy has been introduced when 
constructing the discriminant sets since voting algorithms have been shown to be very successful in improving the 
accuracy of certain classifiers ([13]).  

The discriminant constructed from the training patterns is known as the HTL/ETL discriminant.  On the other hand, 
the discriminants that were constructed form the test patterns are known as the HTC/ETC discriminants.  In this study, 
the discriminant sets were constructed from the previous 27 networks trained on three raw training sets.  Each raw 
training set was used to train 9 different networks (3 different weight seeds x 3 different hidden units), so there were 
nine attempts to learn each pattern of the 1,000 in each training set.  A test set consisting 10,000 patterns was used to 
test the 27 networks  

For the HTL/ETL discriminant, a pattern is chosen from the training set if the pattern was not successfully learned in 
several networks.  In this case, let n represents the number of networks in which a pattern was not successfully learned.  
When n=5 (majority vote), not many patterns failed after training.  Hence, n is set to 1 that means the patterns that was 
not successfully learned in at least one out of nine networks will be chosen to be included in the discriminant set.  Out 
of 1,000 patterns, a total of 18 HTL patterns were identified and the rest  of the patterns are considered as ETL patterns 
(2982).  Since the percentage of ETL is very high compared to the HTL, several possibilities will be explored in order 
to determine the training set composition that produced the highest average generalization.  The discriminant sets 
constructed for discrimination purposes are as follows: 

1. A discriminant set is composed of the same number of ETL and HTL patterns.  This set is referred as the 
EQUAL set. 

2. Based on the results of the preliminary studies, it is known that the arrangement of training patterns for MLP 
training has an effect on the performance of the network.  When the HTL and ETL subsets are constructed, there are not 
many HTL patterns.  Intuitively, if there are too many ETL patterns, the networks may be trained to learn these patterns 
only.  Therefore, to minimise the number of ETL patterns, 3 of these patterns are chosen randomly for each HTL 
pattern.  The patterns are arranged in such a way that for every HTL pattern, it will be followed by 3 ETL patterns.  
These patterns are referred as the UNEQUAL set. 

3. The same HTL is presented three times to each ETL. This set is referred as HTL1 set. 
Similarly, the MLPs discriminants were constructed from the test patterns.  Two HTC/ETC discriminants were 

constructed.  For the first discriminant, n is set to 1, thus the ONE HTC/ETC discriminant is obtained.  The second 
discriminant known as MAJ HTC/ETC discriminat was constructed by setting n = 5.  Having defind the HTC and ETC 
patterns, the discriminant sets were constructed in the same manner as the training patterns. 

 
2.2   Experiments  

For the evaluation of the MLP discriminants,  several experiments were carried out.  Several training and testing 
methods were explored, namely: 

 
(1) The patterns are trained as MLPs without applying any treatment to the HTL patterns.   
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Fig. 1 The procedure for obtaining HTL and ETL subsets from training patterns of 

MLPraw 
 
 
(2) Split and Separate  
 
The HTL and ETL patterns are trained separately. The HTL are modified by normalizing before training or  

testing.  Two normalization techniques were explored.  The first normalization method is to divide a particular 
attribute with the square root of sum of squares for all attributes for this pattern ([14], [15] and [16]).  This 
approach is labeled as Normalized 1.  The second normalization method is to divide a particular attribute with the 
maximum value for a specific pattern (Bigus, 1996).  This method is referred as Normalized 2. 
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Fig. 2 The procedure for obtaining the training   performance for the Split and 

Separate method. 
 
 
(3) The HTL and ETL patterns are trained separately but the HTL patterns are not treated before training or 

testing.   This is known as the Split and Separate method without any treatments. 
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Fig. 3 The procedure for obtaining the training perfomance by splitting the 

sets without treatment. 
 

 
 
 
 
 
 



3.   Results 
The average generalization of MLPs without any treatments or MLPraw is 96.86%.  This result is higher when 

compared with the results obtained using Linear Discriminant Analysis (90.4%).  However, the average generalization 
for all test methods illustrated in Figure 4 are significantly higher than the results of  MLPraw (p = 0.0).  The results also 
indicate that HTC/ETC discriminants defined using majority voting achieved higher average generalization results than 
the ONE HTC/ETC discriminants (see also [13]).  The discriminants constructed the UNEQUAL set achieved 100% 
generalization.  The normalized method whose HTC/ETC discriminant was constructed using the EQUAL set achieved 
the second highest result (99.66%).  Although the split and separate method (without treatment) of ONE HTC/ETC 
constructed using the EQUAL set converges faster than the MAJ HTC/ETC constructed using the EQUAL set (1963 
versus 3389 epochs), its generalization is 0.6% lower than the latter.  Hence the assumption that MAJ HTC/ETC 
discriminants produced higher average generalization is confirmed. 

Further observation on the average generalization results displayed in Figure 4 reveals that the MAJ HTC/ETC 
discriminants achieved higher generalization than ONE HTL/ETL discriminants .  Although untreated Split and 
Separate of ONE HTL/ETL constructed using the EQUAL set converges earlier than the first normalized method of 
MAJ HTC/ETC (600 versus 3389), the latter obtained 0.27% higher generalization than the first method.  Thus, the 
generalization of the MAJ HTC/ETC discriminants is higher than ONE HTL/ETL discriminants. 
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Fig. 4 The Generalization of MLP discriminants 
 
 

4.   Conclusion 
The final findings from the experiments show that Split and Separate method without any treatment is one of the 

important training and testing method.  Splitting method inevitably requires more resources and may also speed up the 
learning process.  However, another question arises, is simply random splitting can improve generalization performance 
or is the directed splitting is more important?  To answer this question, 2 experiments on random splitting methods were 
conducted on the same training and test sets , and the results are reported in Table 1.  The results show that both random 
splitting methods affect the performance of the networks.  In fact, the performance becomes worst than MLPraw by at 
least 0.19%.  Therefore the experimental results indicate that directed splitting is an important strategy in improving the 
generalization of the networks. 

 
Table 1 The Generalization results using random splitting 

 
Split Generalization  (%) 
  
50% to 50% 96.44 
  

30% to 70%  96.67 
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