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Abstract 

Data mining is a process of discovering meaningful patterns in large data sets that are useful for decision 
making and has recently received an amount of attention in a wide range of business and engineering fields. 
Decision tree, also known as recursive partitioning or rule induction, is one of the most frequently used methods 
for data mining. A decision tree, on a divide-and-conquer basis, provides a set of rules for classifying samples in 
the learning data set. Most of works on decision tree have been conducted for the case of single response variable. 
However situations where multiple response variables should be considered arise from many applications, for 
example, manufacturing process monitoring, customer management, and clinical and health analysis. This article 
concerns constructing decision trees when there are two or more response variables in the data set. In this article, 
we investigate node homogeneity criteria such as entropy and Gini index and then present three approaches to 
constructing decision trees with multiple response variables. To do so, we first describe extensions of entropy and 
Gini index to the case in which multiple response variables are of concern. A weighting method for node splitting 
is also explained. Next, we present a decision tree minimizing an expected loss due to misclassifications. To 
illustrate the procedures, numerical examples are given with discussions. 
 
 
1. Introduction 

Widespread use of network and information technologies has made it easier to collect data and created large 
databases. Accordingly, the role of data mining becomes more important. Data mining is the process of discovering 
interesting patterns in databases that are helpful to decision making[1]. Data mining has been used for practical 
applications in a variety of domains of biomedical, business, and industrial fields[2]. Two primary methodologies for 
data mining are machine learning and statistical analysis. Machine learning is the study of computational methods to 
automate the process of knowledge acquisition from examples[3]. It is known that, compared with parametric statistical 
analyses, machine learning techniques are more suitable for data mining of a large complex data set. This is because 
such data set is likely to be under high dimensionality, multicollinearity and non-homogeneity[4]. Major categories of 
machine learning techniques are decision trees, neural networks, case-based reasoning, and genetic algorithms[1]. 
According to the recent study by Bose and Mahapatra[1], using decision tree is most popular in the data mining of 
business fields. They reported that about a half of data mining applications is based upon decision tree methods. For 
more details, see Bose and Mahapatra[1]. 

Decision tree, also known as recursive partitioning, provides a set of rules for classifying samples in the data set on a 
divide-and-conquer basis. Decision trees are broadly divided into classification and regression trees. Decision tree is 
called classification tree when the response variable is categorical, and regression tree when the response variable is 
numerical. One of the most famous works on decision trees is probably Classification and Regression Trees(CART) by 
Breiman et al.[5]. In CART, a node is split into two offspring nodes. So it is called a binary tree. CART method first 
finds the maximal tree by a splitting procedure and then the right sized tree by a pruning procedure. Also CHAID, ID3, 
and C4.5[4, 6] are well-known methods for building decision trees. Although these tree-based techniques have been 
widely used for data mining especially for automated classification, their applications are mainly restricted to the case in 
which data set has a single response variable(SRV). However, it is not so difficult to find problems that multiple 
response variables(MRV) should be studied. For example, Zhang[7] has dealt with 22 explanatory variables and 6 
binary responses to analyze building-related occupant complaint syndrome(BROCS) in his clinical research. He has 
presented a maximized log-likelihood (as a generalization of entropy) and a Hotelling T2 type statistic for MRV-node 
splitting. Siciliano and Mola[8] has also used 9 explanatory variables and 3 categorical responses to model the family 
budget of bank customers. They have proposed a predictability index, based upon Gini index, as an MRV-node splitting 



criterion. In manufacturing processes, multiple responses are routinely observed as well. It will be interesting to study 
decision trees with MRV for process monitoring and diagnosis. 

This article deals with decision trees when the data set has two or more response variables, all of which are assumed 
to be categorical in this work. The purpose of this paper is to present node splitting methods taking into account 
multiple response variables. The remaining part of this paper is organized as follows. Section 2 outlines decision trees 
and describes measures of node homogeneity such as entropy and Gini index. Although decision tree has some 
advantages over other machine learning techniques, there are still problems to solve. Finding a way to accommodate 
multiple response variables would be one of them, and it is dealt with in Section 3. We actually present three approaches 
to producing an MRV-decision tree and illustrate node splitting procedures by examples. In Section 4, a summary of our 
work is given with discussions. Limitations as well as future directions of this research are also stated. 
 
2. An Overview of Decision Trees 
2.1 Decision Tree as a Machine Learning(ML) Technique 

As mentioned earlier, decision tree is one of ML methods to data mining. According to conditions of explanatory variables 
(or attributes), whole learning samples are modeled into a decision tree. The resultant tree eventually provides a set of rules for 
classifying these learning samples. This is the why decision tree based classification is called decision tree induction[2] or rule 
induction[8]. Modeling result by decision tree is easy to explain, and therefore it is widely used to find rules for classifying 
new samples. Decision tree is also viewed as one of the supervised learning methods because it is built from learning 
samples with a known classification. The result of learning is represented as a tree, the nodes of which specify attributes 
and the branches specify attribute values. Figure 1 shows a hypothetical decision tree. 

 
 

3

4 5

1

2

X1

X2

 
 
 
 
 
 
 
 
 
 

Figure 1.  A hypothetical example of decision tree 
 
There are two kinds of nodes in a decision tree; internal nodes(1, 2) and terminal nodes(3, 4, 5). Terminal nodes are also 

called leaves. In the literature of decision trees, internal node is denoted by the circle, and terminal node by the box. Each of 
all nodes corresponds a subset of the entire learning set. The root node(1) on the top represents all samples in the learning set. 
These samples are divided into two disjoint subgroups by the explanatory variable X1. This process of variable selection and 
node splitting is continued until each terminal node represents a different class of samples. Eventually, all terminal nodes(3, 4, 
5) constitute mutually exclusive and exhaustive subsets of the entire learning set. The resulting decision tree is then applied to 
a testing set of samples to evaluate its accuracy in classifying new samples. To improve the classification capability of 
decision tree, it is first important to choose an appropriate node splitting criterion so as to maximize homogeneity of the 
offspring nodes. Overfitting decision tree to the learning set often drops its classification performance to new samples. In such 
cases, tree pruning is required to mitigate overfitting before the tree deployed in a real life application. Cross validations can 
be also used to prevent a decision tree from depending on a specific data set. 
 
2.2 Node Splitting Criteria 

As described above, we need a node splitting criterion in order to measure node impurity and to grow the decision tree. 
Splitting node has to be undertaken such that node impurity can be minimized (or node homogeneity can be maximized). 
Entropy and Gini index are mainly used for measuring node homogeneity where the data set has a categorical response 
variable. Consider the following figure to see how to split node. 
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Figure 2.  An illustration of node splitting 
 
This figure shows a hypothetical situation that node t is split into two nodes tL and tR according to an attribute X. In the 

figure n(t), n(tL) and n(tR) respectively denote the numbers of learning samples in nodes t, tL, and tR. Supposing that the 
response variable Y has K ordered categories, we can obtain the following frequency table which shows that n(t) learning 
samples are divided into two subgroups. 

 
Table 1. A node splitting result 

Y 
Node 

1 2 … K 
Sum

tL n1(tL) n2(tL) … nK(tL) n(tL) 
tR n1(tR) n2(tR) … nK(tR) n(tR)
t n1(t) n2(t) … nK(t) n(t) 

 
In the table nj(t), nj(tL) and nj(tR) are the numbers of learning samples which belong to class j at nodes t, tL, and tR 

respectively, and for j=1,2,…,K, 
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Then an entropy to measure node homogeneity at node t can be expressed as 
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Note that the smaller entropy, the higher homogeneity (or a lower impurity). One can use Gini index instead, as a node 
homogeneity measure, as the following. 
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The amount of homogeneity gain achieved by splitting node t can be then obtained by 
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Thus a tree grows by choosing a split that maximizes (1) at each node. Such node splitting is subsequently continued until 

a stopping rule is satisfied. For example, when η(t) is smaller than a predetermined value, we stop splitting node t and declare 
it as a terminal one. 
 



2.3 Discussions 
Recently Bose and Mahapatra[1] compared several machine learning(ML) techniques for business data mining. According 

to their study, decision tree has some practical advantages. Especially, in terms of both explanation capability and applicability 
to large data sets, decision tree method outperforms other ML techniques such as neural network and genetic programming. 
Ease of operation should be also mentioned as one of the strengths of tree-based methods. In these reasons, it is expected that 
applying decision trees will become widespread at a variety of domains. 

However, there are still problems to cope with in decision tree methods. For example, when the learning set has some 
irrelevant samples, decision tree tends to divide nodes having few samples and then the resultant tree tends to be too large and 
overspecified[5]. This leads to a learning unstability, and its classification accuracy becomes under question. To avoid such 
drawback, tree pruning can be considered. Another limitation lies in that node splitting procedure depends on a single attribute 
variable. This implies that, as pointed out by Brown et al.[9], a standard decision tree technique is likely to suffer from 
multi-modal problems. In order to overcome this difficulty, they proposed a multivariate node splitting based upon linear 
combinations of attributes. Other than these, one of important issues on decision tree is concerning its extension to the case of 
multiple response variables(MRV). As stated earlier, Zhang[7] included 6 response variables in his clinical study and, however, 
their work is restricted to binary responses like yes or no. Siciliano and Mola[8] also dealt with 3 response variables in their 
research. They used a weight sum of Gini indices computed from respective response variables. But how to consider variable 
importances is not studied. Investigating such restrictions of Zhang[7] and Siciliano and Mola[8], Section 3 presents three 
node splitting approaches for MRV-situations. 
 
3. Node Splitting Criteria with Multiple Response Variables(MRV) 

As stated in Section 1, MRV-situations are often observed in biomedical, business, and other industrial fields. Although it 
is containing relatively more information about hidden relationships, MRV-data set is difficult to deal with owing to problem 
complexity and computational burden. Thus, machine learning with MRV will be one of topics worthwhile to study further. 
As done in SRV-decision trees, of primary importance resides in how node homogeneity should be quantified with MRV. To 
answer the question, this paper attempts to consider three node splitting schemes. The first deals with extensions of entropy 
and Gini index. This is done by finding joint frequency distribution of response variables at each node. The covariance 
structures of joint distributions are also considered for node splitting. The second one is to use a weight sum of node 
homogeneities for respective response variables. As done in Siciliano and Mola[8], Gini index is used to evaluate node 
homogeneity. The third approach is concerned with minimizing an expected loss as a node splitting criterion. 
 
3.1 MRV Extensions of Entropy and Gini Index 

Response variables are denoted by Y1, Y2, …, YM where M is the number of response variables in the data set. And 
suppose that response variable Yg has Kg ordered classes for g=1,2,…,M. Then a multivariate entropy to represent 
homogeneity of node t can be defined by 
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where nj1,j2,…,jM(t) denotes the number of learning samples whose response values are respectively Y1=j1, Y2=j2, …, 
YM=jM at node t. Similarly, a multivariate Gini index is defined by 
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When there are two or more response variables, covariance matrix is obtained. This matrix shows correlations between 

response variables, which are concerned with node homogeneity in MRV-situations. Supposing that V(t) denote a sample 
covariance matrix in node t, we can use the determinant of V(t) as an aggregate measure of homogeneity and correlation. That 
is, 

 
|)(|)( tVth =                  (4) 

 
Pointing out that |V(t)| can be interpreted as Gini index using a single binary response, Zhang[7] included |V(t)| into his criteria 
for node splitting. In addition, he recommended to use a Hotelling T2 type statistic as the following: 
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where I(t), V, and )(ty  respectively represents a set of learning samples at node t, covariance matrix of entire learning 
samples, and sample mean vector of response variables at node t. This statistic has been originally used as multivariate 
monitoring statistic where response variables are continuous rather than categorical. 

Let S(t) denote an index set of all possible splits at node t. Then the amount of homogeneity gain achieved by splitting node 
t is given by 
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Recall that the smaller h(t) the higher homogeneity. An optimum split for node t is therefore chosen by maximizing (6) and 
written by 
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3.2 Weight Sum of Node Homogeneities 

As done in Siciliano and Mola[10], weight sum of Gini indices can be employed as a criterion for MRV-node splitting. This 
method has some advantages. Ease of computations will be one of them. This is because Gini indices are obtained for 
respective response variables. Relative importances between response variables are also accommodated in this criterion. 
However, a question arises as to how to obtain the importances. Therefore, for this approach to be operational, the answer to 
the question has to be prepared. 

Gini index for response variable Yg at node t is given by 
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where nj(g,t) represents the number of learning samples satisfying Yg=j at node t. Letting w(g) denote the weight of 
response variable Yg, we can obtain a weight sum of (7) as the following: 
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Therefore, as explained in the previous section, we find an optimum split so that (6) can be maximized. Based upon the 
weight sum (8), Siciliano and Mola[10] proposed to use a predictability index instead of (6) which is given as 
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It is noted that, unfortunately, there is no agreed procedures to determine weights. Although a data-analytic approach to 
finding an optimum weight set is sometimes applicable, they are in general given by other considerations, for example, 
management policy, priority in design and operation, analysis experiences, and cost structure. 
 
3.3 Node Splitting by an Expected Loss 

So far, we explained node splitting schemes of measuring node homogeneity. This section introduces an expected loss as a 
node splitting criterion. In this method, variable importance is used to find misclassification cost. Let  denote a predicted 
class of g

gŶ
th response variable for a learning sample. Then a loss function can be defined by 
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where g=1,2,…,M. Therefore, an MRV-loss function of M predictions can be rewritten by 
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where y  and  are vectors of true classes and of predicted classes respectively. Taking mathematical expectation on (9), 
we can derive an expected loss for g

ŷ
th response variable as 
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Note that the expected loss (11) is itself a misclassification probability. Thus, taking expectation on (10) and substituting (11) 
again produces an MRV-expected loss which is written by 
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In practice, misclassification probability for gth response variable at a terminal node t can be estimated by 
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This estimation implies that all samples in node t are classified into a single class, the frequency of which is highest. 
Substituting (13) into (12), we can obtain an estimator of expected loss at node t as the following. 
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Therefore, total loss over the entire tree can be defined by 
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where T represents a set of terminal nodes in the tree. Also note that p(t)=n(t)/N where N is the total number of learning 
samples. The amount of loss reduction achieved by splitting node t is then given by 
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3.4 Numerical Illustrations (I) 

This section illustrates the node splitting procedure explained in Section 3.1 using a hypothetical data set which has two 
response variables. This data set includes 600 learning samples and the joint distribution of response variables is as shown in 
Table 2. 

 
Table 2. Joint distribution of Y1 and Y2 at the root node 

 Y2=1 Y2=2 sum 
Y1=1 79 128 207 
Y1=2 47 69 116 
Y1=3 25 252 277 
sum 151 449 600 

 
Assume that there are two explanatory variables X1 and X2 with 3 categories respectively. Further assume that X2 is ordinal 
categorical variable. To begin with, let us consider the following split condition; Take the left node if X2=1, and take the right 
node elsewhere. Figure 3 illustrates a partial tree produced by this condition. 
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Figure 3. A node splitting with multiple response variables 
 
In this figure V(t), V(tL) and V(tR) are sample covariance matrices of nodes t, tL and tR respectively. As a result of the node 
splitting, conditional joint distributions of Y1 and Y2 at nodes tL and tR are respectively given as the following tables. 
 

Table 3. Joint distributions of Y1 and Y2 given X2=1(tL) and X2=2 or 3(tR) 
 (a) X2=1    (b) X2=2 or 3  
 Y2=1 Y2=2 sum   Y2=1 Y2=2 sum 

Y1=1 28 0 28  Y1=1 51 128 179 
Y1=2 47 0 47  Y1=2 0 69 69 
Y1=3 25 34 59  Y1=3 0 218 218 
sum 100 34 134  sum 51 415 466 

 
Using (2), we can find multivariate entropy of node t from Table 2 as 
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Similarly, from Table 3, 
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are obtained. Thus, using (6), entropy gain by splitting node t is given by 
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and this corresponds to improvement of 0.279/1.542=18.1%. Multivariate Gini index at node t is also calculated as 
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by (3). Similarly, we can have 
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and thus the gain of Gini index η(t) is 0.054 or 7.3%. Table 4 shows entropy, Gini index, and their gains for 5 split conditions 
at node t. In this example, split 4 produces the best output irrespective of using either entropy or Gini index. 
 

Table 4. Node splitting comparison of entropy and Gini index over s in S(t) 
Entropy Gini Index s tL tR p(tL) p(tR) 

h(tL) h(tR) η(t) h(tL) h(tR) η(t) 
1 X1=1 X1=2, 3 0.215 0.785 1.473 1.525 1.8% 0.740 0.728 1.3% 
2 X1=2 X1=1, 3 0.182 0.818 1.280 1.576 1.3% 0.650 0.753 0.7% 
3 X1=3 X1=1, 2 0.603 0.397 1.561 1.426 2.2% 0.741 0.714 1.2% 
4 X2=1 X2=2, 3 0.223 0.777 1.356 1.235 18.1% 0.734 0.672 7.3% 
5 X2=3 X2=1, 2 0.542 0.458 1.177 1.538 12.9% 0.658 0.743 5.8% 

 
Other than entropy and Gini index, the covariance matrix determinant and Hotelling T2 type statistic have been used in 

Zhang[7]. First, from Figure 3, |V(t)|=0.136, |V(tL)|=0.076 and |V(tR)|=0.069 are obtained. We can see that, under this criterion, 
homogeneity gain η(t) is 0.065 or 48.2%. Now, assuming that node t is the root node, we have 
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Thus, from (6), Hotelling T2 type statistics of nodes t, tL and tR are calculated as 
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respectively. In this example, η(t)=0.446 or 22.3%. 
 
3.5 Numerical Illustrations (II) 

In this section node splitting methods described in Sections 3.2 and 3.3 are illustrated by another constructed example. 
First suppose that node t has 100 learning samples. Also suppose that there are two response variables and two 
explanatory variables. The following shows contingency tables between explanatory and response variables. 

 
Table 5. Cross tabulations of X1, X2, Y1 and Y2 at node t 

           
 Y1=1 Y1=2 Y1=3 sum   Y1=1 Y1=2 Y1=3 sum 

X1=1 38 15 7 60  X2=1 30 0 0 30 
X1=2 4 14 2 20  X2=2 6 24 10 40 
X1=3 8 1 11 20  X2=3 14 6 10 30 
sum 50 30 20 100  sum 50 30 20 100 

           
 Y2=1 Y2=2 Y2=3 sum   Y2=1 Y2=2 Y2=3 sum 

X1=1 15 40 5 60  X2=1 19 10 1 30 
X1=2 20 0 0 20  X2=2 15 15 10 40 
X1=3 5 0 15 20  X2=3 6 15 9 30 
sum 40 40 20 100  sum 40 40 20 100 

 
Using (6) yields Gini indices for Y1 and Y2 at node t as follows. 
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Thus the weighted Gini index (7) can be obtained by 
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assuming the weights are given as w(1)=0.7 and w(2)=0.3. However, Siciliano and Mola[8] used node impurities to obtain 
weight for Yi at node t which is written by 
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Using (17) produces two weights at node t as follows. 
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Thus weighted Gini index is obtained by 
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The expected loss (14) is obtained as follows. First, from (13), misclassification probabilities for Y1 and Y2 are given by 
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respectively. Therefore, the expected loss (14) becomes 
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Table 6 shows a comparison result of 6 scenarios for node splitting. Split 5 is best when weighted Gini index is used. On the 
contrary, for the expected loss, split 5 is best. Although not included in this table, split 2 is best under the weighting scheme 
proposed by Siciliano and Mola[8]. 
 

Table 6. Node splittings by weighted Gini index and by expected loss when (w1,w2)=(0.7,0.3) 
Gini Index Expected Loss

s tL tR p(tL) p(tR)
tL tR tL tR 

η(t) 
% 

λ(t) 
% 

1 X1=1,2 X1=3 0.8 0.2 0.573 0.487 0.483 0.390 11.3 25.9 
2 X1=1,3 X1=2 0.8 0.2 0.593 0.322 0.448 0.210 14.0 36.1 
3 X1=1 X1=2,3 0.6 0.4 0.512 0.605 0.357 0.550 12.3 30.7 
4 X2=1,2 X2=3 0.7 0.3 0.602 0.628 0.494 0.523 2.6 19.6 
5 X2=1,3 X2=2 0.6 0.4 0.485 0.585 0.362 0.468 16.1 35.5 
6 X2=1 X2=2,3 0.3 0.7 0.146 0.653 0.110 0.571 20.0 30.8 

 
By changing the weight, we can compare the above six scenarios again. These are depicted in the following figures. 

Although the two splitting criteria produce different results each other, it is hard to say which one is better or worse in this 
example. To answer the question, more rigorous comparisons are required in future. Nevertheless, one thing to underline is 
that weights for response variables have to be carefully chosen. This is because the best split can be altered by the weights. As 
shown by the figures, gains are smoothly increasing or decreasing along the weight. For example, split 3 yields the largest 
gain when w(2)≥0.6. But, in the lower range of w(2), split 6 is best for weighted Gini index(Figure 4a), and split 5 is best for 
expected loss(Figure 4b). We can see that, in particular, the preference of split 5 is sensitive to the choice of weights. On 
contrast, split 4 looks quite robust against w(2), which is because its gain of node splitting is too little. 
 
4. Summary and Conclusions 

Decision tree, as a machine learning approach, provides a promising way to building classification models from a large 
data set. Many applications are observed in the areas of biomedicine, public health, and business. Tree-based approaches 
would be also helpful for other industrial applications, for example like process monitoring and diagnosis. From a statistical 
viewpoint, ML techniques can be regarded as nonparametric statistics. In general, when knowledge about the population is 
insufficient, parametric methods have a difficulty in dealing with large complex data sets[4]. In such cases, machine learning 
techniques can be considered as a useful alternative. However, as the target population is more specific and domain 
knowledge increases, parametric statistics become more suitable to understanding the population. As stated in Bose and 
Mahapatra[1], decision trees are useful to deal with a large amount of data and have a high application capability. 
Nevertheless, in order to develop more reliable models, collaborative use with parametric methods such as regression and 
discriminant analysis should be pursued. 

In many applications, we can observe that response variables are two or more. Medical diagnosis, customer credit 
prediction, and process monitoring are such examples. Mining classification rules based upon multiple response 
variables(MRV) is one of the most interesting problems in that MRV-data set can contain more information for explaining 
latent relationships. This article is concerned with constructing decision trees when there are two or more response variables in 
data set. Basically, decision trees in this article are binary classification trees. 
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Figure 4. Gains of weighted Gini index and expected loss for six split scenarios 

 
First we provided an overview on decision trees and investigated node splitting criteria with a single response 

variable(SRV). Then, we proposed three approaches to MRV-node splitting. The first approach employs entropy or Gini index 
to represent node impurity with MRV. Although it can be viewed as a natural extension to MRV situations, this approach has a 
limitation that individual characteristics between response variables are not accommodated. The second one is a weighting 
method: first Gini indices are obtained for each of response variables and then they are summed by predetermined weights. 
This approach definitely has advantages that computation load is relatively small and that variable importances are considered 
with ease. However, more studies are required as to how weights are determined as well as how the correlation structure 
between response variables is incorporated into the node splitting procedure. The third is also a weighting method. But it is 
different from the second one in that an expected loss is employed as a node splitting criterion instead of entropy or Gini index. 
By using this expected loss criterion, we can find a decision tree that minimizes misclassifications. Finally, illustrations of the 
three approaches are given by examples. However, for more rigorous comparison of the presented approaches, conducting 
extensive experimentations will be required. Even though this study is restricted to binary classification trees, our framework 
to deal with MRV situations could be still applied for other classification and regression trees. Future work in this area 
includes node splitting procedures in which response variables are numerical. Collaborating decision trees and statistical 
modeling methods would be also a fruitful subject to study further. 
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