
An Application of XML on SNMP

Pipat Hiranvanichakorn1) , Prakan Puvibunsuk2)

1) Associate professor, School of Applied Statistics, National Institute of Development

Administration.
2) Graduate student, School of Applied Statistics, National Institute of Development Administration.

Abstract

 This paper reports a study of an application of the eXtensible Markup Language (XML) on the Simple
Network Management Protocol (SNMP) model. In the conventional model, Abstract Syntax Notation 1 (ASN.1)
has been used in SNMP to describe management information and encode data transferred between devices.
However, ASN.1 is large, complex and not especially efficient. In this paper, XML which is widely used as data
exchange standard in the Internet, is proposed instead of ASN.1. In the paper, data in the Management
Information Base (MIB) are described by using XML. The SNMP protocol is used to interact between the
management station and managed nodes. The data sent between the management station and managed nodes are
in the form of XML. With XML, the data is easily manipulated and is described precisely, so the web application
in the management station can work with the data intelligently. Furthermore, this management information can be
transferred to other applic ations efficiently.

1. Introduction
 Simple Network Management Protocol (SNMP) has been widely used as a well known standard for monitoring
and managing a computer network. The SNMP model consists of four components, the managed nodes, the
management stations, management information and a management protocol, as depicted in Fig.1. Each managed node
has a agent which maintains management information. Management information describes the agent’s state and history
and affect the agent’s operation. Management stations use the management protocol to communicate with managed
nodes. A management station issues commands to the managed nodes to read and write management information, and
to control some operations of the managed nodes.

The heart of the SNMP model is the management information. All management variables are defined in a data
structure called Management Information Base (MIB). In order to be able to transfer information between multivender
devices, Abstract Syntax Notation 1 (ASN.1) defined by OSI is used in SNMP to describe management information and
encode the transferred data. However, ASN.1 is large, complex and not especially efficient.[1] It uses some encoding
rules to minimize the number of bits on the wire, at the cost of wasting CPU time at both ends. Therefore, ASN.1 is
rarely used for representing and transferring information through a network.

Fig.1 SNMP model

A

Management Station
Management process

Host A

Managed node

SNMP protocol

LAN

Agent
C

B

Host B

Router

Nowsadays, the eXtensible Markup. Language (XML) is widely used as data exchange standard in the
Internet. XML is text –based, so it makes XML documents both human–readable and computer manipulatable. Because
an XML document describes data precisely, it can be processed by any application. It is considered be able to describe
data of virtually any type in a structured manner.[2]

In this paper, data in the Management Information Base (MIB) are described by using XML in stead of
ASN.1. The SNMP protocol is used to interact between the management station and managed nodes. Requests sent by
the management station are in the form of XML. After getting the requests the agents do the work, and the reponses are
sent back in the form of XML. With XML, the data is described precisely and easily manipulated, so the web
application in the management station can work with the data intelligently. Furthermore, this management information
can be transferred to other applications efficiently.

2. Network Management System
Fig. 2 depicts the network management system. A network manager gets into the system through a web

browser on a PC. The manager then connects to the network management web server and identifies himself (herself) by
using SSL protocol. After the authentication process, the network management software in the form of Active X is
downloaded into the management station. The management process connects to the agent in the managed node by using
TCP/IP. When the manager issues a command, the request is sent in the form of XML to the agent. When the request
arrives, the agent verifies the request with the MIB. If the request is valid, the agent does the work and the response is
sent back in the form of XML to the manager process. This request–reponse is sent according to the SNMP protocol.
The XML response is then parsed, and the information is extracted. This information is can be presented to the
management or sent for further processing.

3. Management Information
The heart of the SNMP model is the management information. It is used to describe the state, history and

affect in the operation of a managed device. In order to be able to communicate between multivendor, this management
information must be rigidly specified. Furthermore, a standard way is needed to encode the information for transfer
between different devices. In SNMP model, all management objects (variables) in a network are defined in a data
structure called Management Information Base (MIB). In the following sections, we describe how the management
objects are defined by using ASN.1. Then, we describe how ASN1 is replaced by XML. Furthermore, we describe
how the transferred data are encoded by using ASN1 transfer syntax. Then, we describe how the XML data are
transferred.

3.1 Management Information Base

Fig.3 shows an example of describing the structure of the management information in the MIB by using
ASN.1. Each SNMP variable has four required parameters. The SYNTAX parameter defines the variable’s data type.
The MAX-ACCESS one tells the information about the variable’s access. It may have values of read-write, read only,

WEB BROWSER

MANAGER

AGENT

AUTHENTICATION

ACTIVE X

WEB SERVER

REQUESTRESPONSE

LOG MIB

Fig.2 A network management system

not accessibly or write-only. The STATUS tells that the variable is conformant with the current SNMP specification or
not. It has three values, i.e., current, obsolete and deprecated. The DESCRIPTION provides a textual definition of the
variable. The value after the ::=sign is the OBJECT IDENTIFIER’s value which tells where the variable fits in the
naming tree of Fig.4. For example, IP group is identified by {1 3 6 1 2 1 4} or {internet (1) 2 1 4}. Furthermore,
related variables (objects) are collected together into groups. For example, there are IP group which describes IP packet
statistics and TCP group which describes TCP traffic statistics in the MIB. Groups are further assembled into modules.
The module in a managed device may have one ore more groups.

An XML document has a tree structure. It contains exactly one root element. The root element has one or
more child elements. Each element may or may not have children. Therefore, the MIB can be represented easily as an
XML document. An example of an XML document describing the module depicted in Fig.5, is shown in Fig.6.

This MIB module is excerpt from RFC2325 and is assigned under the Transmission group with an OID of {1 3
6 1 2 1 10 132}. It is the module for coffee vending devices. The variables : potName, potCapacity, potType and
potLocation are used to describe the machine. Furthermore, the variables potOperStatus, potLevel, potMetric,
potStartTime, lastStartTime and potTemperature which describe the operation of the machine are grouped into the
variable potMonitor.

3.2 Data Encoding
ASN.1 transfer syntax which is used in SNMP is called Basic Encoding Rules (BER). In the following

paragraphs, we will explain briefly how data are encoded by BER, according to the reference [1]. The basic encoding
rules used in SNMP specify that every value transmitted, both primitive and constructed data types consists of 3 fields:

i1) The identifier (type of data).
i2) The length of the data field, in bytes.
i3) The data field.
The first field has three subfields, as shown in Fig.7. The high-order 2 bits identify tag type. The next bit tells

whether the value is primitive (0) or constructed (1). The remaining 5 bits are used to encode the value of the tag in the
range 0 through 30. If the tag is 31 or more, the low-order 5 bits contain 11111. Then, each identifier byte following
the first one contains 7 data bits. The high-order bit is set to 0 in all but the last one.

Following the identifier field comes a field telling how many bytes the data occupy. Lengths shorter than 128
bytes are encoded in 1 byte whose left most bit is 0.

potCapacity OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 “The number of units of beverage supported by this device
 (regardless of its current state).”
 ::= {1 3 6 1 2 1 10 132 2}

Fig.3 An example of network management variable

Fig.4 Part of the ASN.1 object naming tree
(From Tanenbaum, A.,S., Computer Networks

COFFEE-POT-MIB DEFINITIONS ::= BEGIN

coffee MODULE-IDENTITY
 LAST-UPDATED "9803231700Z"
 ORGANIZATION "Networked Appliance Management Working Group"

 CONTACT-INFO
 " Michael Slavitch
 Loran Technologies,
 955 Green Valley Crescent
 Ottawa, Ontario Canada K2A 0B6

 Tel: 613-723-7505
 Fax: 613-723-7209
 E-mail: slavitch@loran.com"
 DESCRIPTION
 "The MIB Module for coffee vending devices."
 ::= { transmission 132 }

sample (11)

internet (1)

experimental (3)directory (1) mgmt (2)

dod (6)

private (4) security (5) snmpv2 (6)

mib-2 (1)

ccitt (0) iso (1) joint-iso-ccitt (2)

standard (0) registration-authority (1) member-body (2) identified-organization (3)

system (1) interfact (2) ip (4) icmp (5) tcp (6) udp (7) egp (8) transmission (10)

potName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor description of the pot under management"
 ::= { coffee 1 }

potCapacity OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of units of beverage supported by this device
 (regardless of its current state) ."
 ::= { coffee 2 }

potType OBJECT-TYPE
 SYNTAX INTEGER {
 automatic-drip(1),
 percolator(2),
 french-press(3),
 espresso(4),
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The brew type of the coffee pot."
 ::= { coffee 3 }

potLocation OBJECT-TYPE {
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The physical location of the pot in question"
 ::= { coffee 4 }

potMonitor OBJECT IDENTIFIER ::= { coffee 6 }

potOperStatus
 SYNTAX Integer {
 off(1),
 brewing(2),
 holding(3),
 other(4),
 waiting(5)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The operating status of the pot in question. Note
 that this is a read-only feature. Current hardware
 prevents us from changing the port state via SNMP."
 ::= { potMonitor 1 }

potLevel OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of units of coffee under management. The
 units of level are defined in potMetric below."
 ::= { potMonitor 2 }

potMetric OBJECT-TYPE
 SYNTAX Integer {
 espresso(1),
 demi-tasse(2),
 cup(3),
 mug(4),
 bucket(5)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor description of the pot under management"
 ::= { potMonitor 3 }

potStartTime OBJECT-TYPE
 SYNTAX Integer64
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The time in seconds since Jan 1 1970 to start the pot
 if and only if potOperStatus is waiting(5)"
 ::= { potMonitor 4 }
lastStartTime OBJECT-TYPE
 SYNTAX TimeInterval
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The amount of time, in TimeTicks, since the coffee
 making process was initiated."
 ::= { potMonitor 5 }

potTemperature OBJECT-TYPE
 SYNTAX Integer32
 UNITS "degrees Centigrade"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The ambient temperature of the coffee within the pot"

 ::= { potMonitor 6 }

END

Fig. An example of MIB module

<MIB VER NO >

 <MODULE> COFFEE <MODULE>
 <LAST-UPDATED> < LAST-UPDATED>

 <ORGANIZATION> NETWORKED APPLIANCE MANAGEMENT WORKING GROUP
 < ORGANIZATION>

 <OID> { TRANSMISSION } < OID>

 <OBJECT>
 <TYPE> POTNAME </TYPE>
 <SYNTAX> STRING </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE VENDOR DESCRIPTION OF THE POT UNDER MANAGEMENT
 </DESCRIPTION>
 <OID> { COFFEE 1 } </OID>
 </OBJECT>
<OBJECT>
 <TYPE> POTCAPACITY </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE NUMBER OF UNITS OF BEVERAGE SUPPORTED BY THIS DEVICE
 </DESCRIPTION>
 <OID> { COFFEE 2 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> POTTYPE </TYPE>
 <SYNTAX> INTEGER
 <SUB>
 <VALUE> 1
 <IS> AUTOMATIC – DRIP</IS>
 </VALUE>
 <VALUE> 2
 <IS> PERCOLATOR </IS>
 </VALUE>
 <VALUE> 3
 <IS> FRENCH-PRESS </IS>
 </VALUE>
 <VALUE> 4
 <IS> ESPRESSO </IS>
 </VALUE>
 </SUB>
 </SYNTAX>
 <MAX-ACCESS> READ-WRITE </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE BREW TYPE OF THE COFFEE POT </DESCRIPTION>
 <OID> { COFFEE 3 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> POTLOCATION </TYPE>
 <SYNTAX> STRING </SYNTAX>
 <MAX-ACCESS> READ-WRITE </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE PHYSICAL LOCATION OF THE POT IN QUESTION </DESCRIPTION>
 <OID> { COFFEE 4 } </OID>
 </OBJECT>

 </GROUP>
 POTMONITOR
 <OID> { COFFEE 6 } </OID>

 <OBJECT>
 <TYPE> POT-OPER-STATUS </TYPE>
 <SYNTAX> INTEGER
 <SUB>
 <VALUE> 1
 <IS> OFF </IS>
 </VALUE>
 <VALUE> 2
 <IS> BREWING </IS>
 </VALUE>
 <VALUE> 3
 <IS> HOLDING </IS>
 </VALUE>
 <VALUE> 4
 <IS> OTHER </IS>
 </VALUE>
 <VALUE> 5
 <IS> WAITING </IS>
 </VALUE>
 </SUB>
 </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE OPERATING STATUS OF THE POT IN QUESTION </DESCRIPTION>
 <OID> { POTMONITOR 1 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> POTLEVEL </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE NUMBER OF UNIT OF COFFEE UNDER MANAGEMENT </DESCRIPTION>
 <OID> { POTMONITOR 2 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> POTMETRIC </TYPE>
 <SYNTAX> INTEGER
 <SUB>
 <VALUE> 1
 <IS> ESPRESSO </IS>
 </VALUE>
 <VALUE> 2
 <IS> DEMI-TASSE </IS>
 </VALUE>
 <VALUE> 3
 <IS> CUP </IS>
 </VALUE>
 <VALUE> 4
 <IS> MUG </IS>
 </VALUE>
 <VALUE> 5
 <IS> BUCKET </IS>
 </VALUE>
 </SUB>
 </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>

 <DESCRIPTION> THE VENDOR DESCRIPTION OF THE POT UNDER MANAGEMENT
 </DESCRIPTION>
 <OID> { POTMONITOR 3 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> POT-START-TIME </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-WRITE </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE TIME IN SECONDS SINCE JAN 1 1970 TO START THE POT </DESCRIPTION>
 <OID> { POTMONITOR 4 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> LAST-START-TIME </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE AMOUNT OF TIME IN TIMETICKS SINCE THE COFFEE MAKING PROCESS
 WAS INITIATED </DESCRIPTION>
 <OID> { POTMONITOR 5 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> POT-TEMPERATURE </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <UNIT> DEGREE CENTIGRADE </UNIT>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> THE AMBIENT TEMPERATURE OF THE COFFEE WITHIN THE POT
 </DESCRIPTION>
 <OID> { POTMONITOR 6 } </OID>
 </OBJECT>
</GROUP>
</MIB>

Fig.6 An XML document describing the MIB module of Fig.5

Fig.7 The first byte of the identifier field

Tag Number
2 1 5

00 Universal
01 Application-wide
10 Context-specific
11 Private

0 Primitive type
1 Constructed type

Those that are longer use multiple bytes, with first byte containing a 1 in the high – order bit and the length field in the
low-order 7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to indicate a two byte length
field follows. Then come two bytes whose value is 1000.
 The encoding of the data filed depends on the type of data present. For example, integers are encoded in two’s
complement. An OBJECT IDENTIFIER is encoded as the sequence of integers it represents. For example, IP object is {
1 3 6 1 2 1 4 }. Since the first number is always 0, 1, or 2, and the second is less than 40, the first two number, a and b
are encoded as 1 byte having the value 40 a+ b. For the next numbers, each is encoded in the same way as the length
field. Fig 8 (a) shows an example of encoding some data values.
 In the following sentences we describe how the transferred data is sent in the form of XML. Since only some
types shown in Fig 9 are allowed in SNMP. This data types can be simply encoded. The length field is not needed
because the opening tags and closing tags are used in XML. The data is simply sent as character string. An example of
transferring data using XML document is shown in Fig 8 (b).

(a)

Integer 48 <CODE> 0 </CODE>
 <VALUE> 48 </VALUE>
IP object <CODE> 10 </CODE>
 <VALUE> { 1 3 6 1 2 1 4 } </VALUE>

(b)

Fig.8 (a) Examples of encoding transferred data by using ASN.1
 (b) Examples of transferred data using XML

Data Type Description CODE

INTEGER Integers in the range of –231 to 231 – 1. 0
Uinteger32 Integers in the range of 0 to 231 – 1. 1
Counter32 A nonnegative integer that may be incremented modulo 232. 2
Counter64 A nonnegative integer that may be incremented modulo 264. 3
Gauge32 A nonnegative integer that may increase or decrease, but shall not

exceed a maximum value. The maximum value can not be greater that
232 – 1.

4

Time Ticks A nonnegative integer that represents the time, modulo 232, in
hundredths of a second.

5

OCTET STRING Octet strings for arbitrary binary or textual data: may be limited to 255
octets.

6

Ip Address A 32–bit internet address. 7
Opaque An arbitrary bit field. 8
BIT STRING An enumeration of named bits. 9
OBJECT IDENTIFIER Administratively assigned name to object or other standardized

element.
10

 (a) (b)

Fig.9 (a) Allowable Data Types in SNMPv2
(From Stallings, W. ; Data and Computer Communications)[3]

 (b) Encoded value for the Data Types

4. Data Exchange

Data exchange between a management station and managed nodes is done by using SNMP protocol Fig

shows some massages which can be sent according to the protocol. Usually, the manager send a request asking for
information or commanding the agent to update its state. The agent replies with the requested information or confirms
that it has updated its state as requested. Fig.11 (a) shows an example of request message sent by the management
station. Fig.11 (b) shows the response message represented as character strings. Furthermore, Fig.11 (c) and (d) shows
the message really sent as ASN.1 and encoded data, respectively. As shown in Fig.11 (c), the response message is sent
as a sequence of several data types. Further, the information of each object is sent as a sequence of the OID, the

Integer 48

IP object

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Identifier Length Value

datatype and the value of the object. As SNMP protocol is a text based one, we can use XML documents to present the
exchanged messages. Fig.12 shows an example of XML documents sent in the place of the messages in Fig.11.

Message Description
Get–request Requests the value of one or more variables
Get–next–request Requests the variable following this one
Get–bulk–request Fetches a large table
Set–request Updates one or more variables

Fig.10 Some SNMP message types

SNMP: ----- Simple Network Management Protocol -------
SNMP:
SNMP: Version = 0
SNMP: Community = boulder
SNMP: Command = Get Request
SNMP: Requets ID = 0
SNMP: Error status = 0 (No error)
SNMP: Error index = 0
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 3 0 }
SNMP: Value = NULL
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 1 0 }
SNMP: Value = NULL
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 2 0 }
SNMP: Value = NULL
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 3 0 }
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 4 0 }
SNMP: Value = NULL
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 5 0 }
SNMP: Value = NULL
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 6 0 }
SNMP: Value = NULL
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 7 0 }
SNMP: Value = NULL
SNMP:

(a)

SNMP: ----- Simple Network Management Protocol -------
SNMP:
SNMP: Version = 0
SNMP: Community = boulder
SNMP: Command = Get Response
SNMP: Requets ID = 0
SNMP: Error status = 0 (No error)
SNMP: Error index = 0
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 3 0 }
SNMP: Value = 263621778 hundredths of second
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 1 0 }
SNMP: Value = Portable I80386 C Gateway BOULDER.ORG S/N XXX V12.0
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 2 0 }
SNMP: Value = { 1 3 6 1 4 1 1 1 1 41 }
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 3 0 }
SNMP: Value = 263621778 hundredths of second
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 4 0 }
SNMP: Value =
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 5 0 }
SNMP: Value = BOULDER.ORG
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 6 0 }
SNMP: Value =
SNMP:
SNMP: Object = { 1 3 6 1 2 1 1 7 0 }
SNMP: Value = 72
SNMP:

(b)

SNMP: 1.1 SEQUENCE [of], Length=235
SNMP: 2.1 INTEGER, Length=1, Value = "0"
SNMP: 2.2 OCTET STRING, Length=7, Value = "boulder"
SNMP: 2.3 Context -Specific Constructed [2], Length=220
SNMP: 3.1 INTEGER, Length=1, Value = "0"
SNMP: 3.2 INTEGER, Length=1, Value = "0"
SNMP: 3.3 INTEGER, Length=1, Value = "0"
SNMP: 3.4 SEQUENCE [of], Length=208
SNMP: 4.1 SEQUENCE [of], Length=16
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 3 0}"
SNMP: 5.2 Application Primitive [3], Length=4, Data = "<0FB68C92>"
SNMP: 4.2 SEQUENCE [of], Length=74
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 1 0}"
SNMP: 5.2 OCTET STRING, Length=62, Value = "Portable I80386 C Gateway XXX.XXX.XXXX.XXX..."
SNMP: 4.3 SEQUENCE [of], Length=21
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 2 0}"
SNMP: 5.2 OBJECT IDENTIFIER, Length=9, Value = "{1 3 6 1 4 1 1 1 1 41}"
SNMP: 4.4 SEQUENCE [of], Length=16
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 3 0}"
SNMP: 5.2 Application Primitive [3], Length=4, Data = "<0FB68C92>"
SNMP: 4.5 SEQUENCE [of], Length=12
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 4 0}"
SNMP: 5.2 OCTET STRING, Length=0, Value = ""
SNMP: 4.6 SEQUENCE [of], Length=28
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 5 0}"
SNMP: 5.2 OCTET STRING, Length=16, Value = " XXX.XXX.XXXX.XXX"
SNMP: 4.7 SEQUENCE [of], Length=12
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 6 0}"

SNMP: 5.2 OCTET STRING, Length=0, Value = ""
SNMP: 4.8 SEQUENCE [of], Length=13
SNMP: 5.1 OBJECT IDENTIFIER, Length=8, Value = "{1 3 6 1 2 1 1 7 0}"
SNMP: 3.3 INTEGER, Length=1, Value = "72"
SNMP:

(c)

ADDR HEX ASCII
0000 08 00 20 09 00 C8 AA 00 04 00 44 86 08 00 45 00 D...E.
0010 01 0A 81 20 00 00 3B 11 73 77 84 A3 01 01 84 A3 ;.sw......
0020 80 04 00 A1 0D 20 00 F6 C6 62 30 81 EB 02 01 00b0.....
0030 04 07 XX XX XX XX XX XX XX A2 81 DC 02 01 00 02 . .XXXXXXX
0040 01 00 02 01 00 30 81 D0 30 10 06 08 2B 06 01 0 . . 0 ...+...
0050 01 01 03 00 43 04 0F B6 8C 92 30 4A 06 08 2B 06C.0J..+.
0060 01 02 01 01 01 00 04 3E 50 6F 72 74 61 62 6C 65 >Portable
0070 20 49 38 30 33 38 36 20 43 20 47 61 74 65 77 61 I80386 C Gatewa
0080 79 20 XX XX XX XX XX XX XX XX XX XX XX XX XX XX y XXX.XXX.XXXX.X
0090 XX XX 20 53 2F 4E 20 33 33 33 20 56 31 32 2E 30 XX S/N 333 V12.0
00A0 20 20 5B 20 20 5D 30 15 06 08 2B 06 01 02 01 01 []0...+.....
00B0 02 00 06 09 2B 06 01 04 01 01 01 01 29 30 10 06 +)0..
00C0 08 2B 06 01 02 01 01 03 00 43 04 00 04 00 30 1C 06 . +C.0
00D0 0C 06 08 2B 06 01 02 01 01 04 00 04 00 30 1C 06 . . .+0..
00E0 08 2B 06 01 02 01 01 05 00 04 10 XX XX XX XX XX .+.XXX.X
00F0 XX XX XX XX XX XX XX XX XX XX XX 30 0C 06 08 2B XX.XXXX.XXX0...+
0100 06 10 02 01 01 06 00 04 00 30 0D 06 08 2B 06 010. . .+. .
0110 02 01 01 07 00 02 01 48 H

(d)

 Fig.11 (a) An example of request message
(b) An example of response message
(c) Response message sent in the form of ASN.1
(d) Hexa values of the encoded message of Fig.(c)

<SNMP>
 <Version> 0 </Version>
 <Community> boulder </Community>
 <Command> Get Request </Command>
 <RequetsID> 0 </RequetsID>
 <ErrorStatus> 0 </ErrorStatus>
 <ErrorIndex> 0 </ErrorIndex>
 <DATA>
 <Object> { 1 3 6 1 2 1 1 3 0 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 1 0 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 2 0 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 3 0 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 4 0 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 5 0 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 6 0 }
 <Value></Value>
 </Object>

 <Object> { 1 3 6 1 2 1 1 7 0 }
 <Value></Value>
 </Object>
 </DATA>
</SNMP>

(a)

<SNMP>
 <Version> 1 </Version>
 <Community> boulder </Community>
 <Command> Get Response </Command>
 <RequetsID> 0 </RequetsID>
 <ErrorStatus> 0 </ErrorStatus>
 <ErrorIndex> 0 </ErrorIndex>
 <DATA>
 <Object> { 1 3 6 1 2 1 1 3 0 }
 <Code> 5 </Code>
 <Value> 263621778 </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 1 0 }
 <Code> 6 </Code>
 <Value> Portable I80386 C Gateway BOULDER.ORG S/N XXX V12.0 </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 2 0 }
 <Code> 10 </Code>
 <Value> { 1 3 6 1 4 1 1 1 1 41 } </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 3 0 }
 <Code> 5 </Code>
 <Value> 263621778 </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 4 0 }
 <Code> 6 </Code>
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 5 0 }
 <Code> 6 </Code>
 <Value> BOULDER.ORG </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 6 0 }
 <Code> 6 </Code>
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 1 7 0 }
 <Code> 0 </Code>
 <Value> 72 </Value>
 </Object>
 </DATA>
</SNMP>

(b)

Fig.12 (a) An example of request message in the form of XML
 (b) An example of response message in the form of XML

5. An example of management system

In the previous sections, we have described the idea how XML is used in SNMP model. In this section, we
will show an example of a system which implements that idea. In the system, we use a PC with the browser as a
management station. The managed node is a PC working as a web server. Each web server has a log file which
contains the information about the web access. Fig.13 depicts an example of the log file. We have constructed a MIB
module called WebAcess and place it under the Transmission group with an OID of {1 3 6 1 2 1 10 175}. Fig.14 shows
the module.

After the authentication process, the manager sends a request message as XML document depicted in Fig.15
(a). When receiving the message, the agent parses the XML message and extracts the request by using the DOM
(Document Object Model) technique. After checking the request with the MIB, the agent access the data from the log
file. The response message is then formed as an XML document and sent back to the manager. Fig.15 (b) depicts the
XML response.

#Software: Microsoft Internet Information Services 5.0
#Version: 1.0
#Date: 2002-05-31 03:11:55
#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem cs-uri-query sc-status cs(User-Agent)
2002-05-31 03:11:55 127.0.0.1 - 127.0.0.1 80 GET /iisstart.asp - 302
Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+2000)+Opera+6.01++[en]
2002-05-31 03:11:55 127.0.0.1 - 127.0.0.1 80 GET /localstart.asp - 401
Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+2000)+Opera+6.01++[en]
2002-05-31 03:12:06 127.0.0.1 aaa 127.0.0.1 80 GET /localstart.asp - 200
Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+2000)+Opera+6.01++[en]

Fig.13 An example of web-access log file

<MIB VER="1" NO="1">
 <MODULE> WEBACCESS </MODULE>
 <LAST-UPDATED> 9803231700 </LAST-UPDATED>
 <ORGANIZATION> NIDA, APPLIED STATISTIC </ORGANIZATION>
 <OID> { TRANSMISSION 175 } </OID>

 <OBJECT>
 <TYPE> DATE-TIME </TYPE>
 <SYNTAX> TimeTicks </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> DATE-TIME OF WEB ACCESS </DESCRIPTION>
 <OID> { WEBACCESS 1 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> C-IP </TYPE>
 <SYNTAX> IpAddress </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> IP ADDRESS OF CLIENT </DESCRIPTION>
 <OID> { WEBACCESS 2 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> S-IP </TYPE>
 <SYNTAX> IpAddress </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> IP ADDRESS OF WEB SERVER </DESCRIPTION>
 <OID> { WEBACCESS 3 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> S-PORT </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> PORT ON WEB SERVER </DESCRIPTION>
 <OID> { WEBACCESS 4 } </OID>
 </OBJECT>

 <OBJECT>

 <TYPE> CS-METHOD </TYPE>
 <SYNTAX> OCTET STRING </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> METHOD THAT CLIENT REQUEST TO WEB SERVER </DESCRIPTION>
 <OID> { WEBACCESS 5 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> CS-URI-STREM </TYPE>
 <SYNTAX> OCTET STRING </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> PAGE THAT CLIENT REQUEST </DESCRIPTION>
 <OID> { WEBACCESS 6 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> CS-STATUS </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> CODE NUMBER OF RESPONSE </DESCRIPTION>
 <OID> { WEBACCESS 7 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> CS </TYPE>
 <SYNTAX> OCTET STRING </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> CLIENT SYSTEM SUCH AS OS, BROWSER </DESCRIPTION>
 <OID> { WEBACCESS 8 } </OID>
 </OBJECT>

 <OBJECT>
 <TYPE> SUM </TYPE>
 <SYNTAX> INTEGER </SYNTAX>
 <MAX-ACCESS> READ-ONLY </MAX-ACCESS>
 <STATUS> CURRENT </STATUS>
 <DESCRIPTION> NUMBER OF WEBACCESS </DESCRIPTION>
 <OID> { WEBACCESS 9 } </OID>
 </OBJECT>

</MIB>

<SNMP>
 <Version> 1 </Version>
 <Community> public </Community>
 <Command> Get Request </Command>
 <RequetsID> 0 </RequetsID>
 <ErrorStatus> 0 </ErrorStatus>
 <ErrorIndex> 0 </ErrorIndex>
 <Data>
 <Object> { 1 3 6 1 2 1 10 175 1 }
 <Value></Value>
 </Object>
 <Object> { 1 3 6 1 2 1 10 175 2 }
 <Value></Value>
 </Object>

Fig.14 An example of the web-access module described by using XML

 <Object> { 1 3 6 1 2 1 10 175 3 }
 <Value></Value>
 </Object>
 </Data>
</SNMP>

<SNMP>
 <Version> 1 </Version>
 <Community> public </Community>
 <Command> Get Response </Command>
 <RequetsID> 0 </RequetsID>
 <ErrorStatus> 0 </ErrorStatus>
 <ErrorIndex> 0 </ErrorIndex>
 <Data>
 <Object> { 1 3 6 1 2 1 10 175 1 }
 <Code> 5 </Code>
 <Value> 1297152600 </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 10 175 2 }
 <Code> 7 </Code>
 <Value> 127.0.0.1 </Value>
 </Object>
 <Object> { 1 3 6 1 2 1 10 175 3 }
 <Code> 7 </Code>
 <Value> 127.0.0.1 </Value>
 </Object>
 </Data>
</SNMP>

Fig.15 An example of request-response message in the form of XML

6. Conclusions
 This paper reports an application of XML on SNMP. In the paper, XML is used to describe data in the MIB in
stead of ASN.1 As XML document has a tree structure, it can replace ASN. 1 easily. Furthermore, the management
information can be described precisely by using XML tags. The data exchanged between the management station and
the managed nodes is in the form of XML. Because XML documents are text based, the data-exchange process is
simple. The data received at the management station can be easily presented to the manager. They can also be used in
further processing. By using XML, SMNP can be implemented as web application easily and effectively.

References

[1] Andrew S. Tanenbaum ; Computer Networks, 3rd edition, Prentice – Hall, 1996,

[2] Harvey M. Deitel, Paul J. Deitel, Tem R. Nieto, Ted Lin and Praveen Sadhu ; XML How to Program , Prentice –

Hall, 2001.

[3] William Stallings ; Data and Comp uter Communications, 6th edition , Prentice Hall, 2000.

[4] Mark A. Miller ; Managing Internetworks with SNMP, 3rd edition, M&T Books, 1999.
[5] Douglas E. Comer and David L. Stevens ; Internetworking with TCP/IP, 3rd edition, Prentice-Hall, 2001.

