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Abstract 

The main purpose of this study is to examine the effect of network structure on learning processes that 
occur through the exploration and the exploitation of competing innovations within an organization. We couch this 
work in the area of organizations and intra-firm diffusion of technology, although it is generally applicable to any 
group of actors who can be positioned within a social network.  

Technology adoption and diffusion occurs through the individual choices of a number of boundedly 
rational actors that choose among multiple, competing alternatives with unclear characteristics. Due to bounded 
rationality, these actors must rely on their own experience and on that of adjacent actors in the network to identify 
and choose the technologies that they feel will maximize their own performance. The repeated implementation of 
these decisions gives rise to a technology diffusion pattern that ultimately determines the performance of the 
organization. 

We examine the influence of three network structures (central, dense and linear) under three technological 
environments on three measures of technology diffusion: (i) performance, equal to the sum of individual actor 
performances; (ii) order, measured as the extent to which a common technology is exploited across the 
organization; and (iii) robustness, measured as the probability that superior technologies are retained somewhere 
in the organization. Through numerical simulation we demonstrate that the efficacy of any network structure is 
contingent on the particular technology environment within which it operates and on the particular measure of 
diffusion of interest.  The results also suggest that in environments that are both complex and dynamic, the 
network structures that facilitate the exchange of information may not necessarily be the most effective for 
guaranteeing the survival of the most promising technologies. 

  

1. Introduction 

 The increasing turbulence and the high levels of rivalry among competitors that characterize today’s markets, 
together with the impressive rate of change typical of many industry segments, oblige modern firms to continuously 
search for new and more effective ways to improve their performance. As most of the primary sources of this 
environmental instability are situated in the technological domain, the ability to quickly identify new technologies1, to 
adopt the ones that guarantee superior performance, and to exploit them profitably is now regarded as a necessary 
condition for the very survival of an enterprise (Doering and Parayre 2000).   

However, this is not an easy task.  Both the academic literature and the popular press report numerous 
examples of firms that – after being unable to manage a process of technological innovation – have been inexorably 
driven out of business (Christensen 1997). Identifying, adopting and exploiting new technologies is “de facto” a critical 
process of organizational learning. Actors in this domain are confronted with the classic exploration-exploitation 
dilemma: shall they abandon an old and well-mastered technology for an unknown, though potentially superior one? 
“Both exploration and exploitation are essential for organizations, but they compete for scarce resources” (March, 1991: 
71). 

These decisions, which are already challenging when they are restricted to a limited number of well-known 
alternatives, become significantly more difficult when the technological landscape is  complex and uncertain. In 
complex technological environments, actors have little information about the complete set of 
technologies potentially eligible for adoption (Milliken 1987; Wholey and Brittain 1989), and are 
often obliged to base their choices on the experience accumulated by others.  Furthermore, in 
environments of limited rationality, aspiration levels, or targets, become driving forces behind the 

                                                 
1 We use the term “technology” in its broadest sense. That is, a technology may be a tool per se, a process, but also a set 

of procedures or routines to manage an organization or one of its units (Barley 1986).  
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choice to explore new technologies or to exploit known technologies (March 1991; Cyert and March, 1963).   
Regardless of whether one considers the individual agent or the firm as the focal adopter (i.e. regardless of 

whether one refers to intra or inter-organizational diffusion processes), the topology of the social network within which 
this actor operates has a profound influence on information exchange and aspiration levels  (Coleman, Katz and Menzel, 
1966; Burt, 1987), and hence, on an actor’s ability to promptly recognize and adopt the most profitable technologies 
(Rosenkopf 2000). Indeed, it is especially in these instances that network effects become “central to the process of 
technological development, as they provide the evaluative information that many organizations need to reach decisions” 
(Midgley, Morrison et al. 1992: 533).  

With these premises, it is not surprising that understanding and leveraging network properties for exploring and 
exploiting new technologies has become a fundamental priority for any firm that intends to navigate successfully in 
environments of high technological turbulence. Yet, in spite of this, and of the large amount of literature dedicated 
separately to the diffusion of innovations in networks, few studies have connected these themes to examine innovation 
diffusion processes that concern multiple technologies with uncertain characteristics.  

The purpose of this paper is to contribute to filling in this lacuna by examining the impact of different network 
structures on innovation adoption processes that occur through sequential choices among multiple, ambiguous, 
competing alternatives.  We couch this work in the area of organizations and intra-firm diffusion of technology, 
although it is generally applicable to any group of actors who can be positioned within a social network, be they people 
who exchange information with their colleagues or entire organizations that interact with their business partners. As 
such, the implications are relevant both to organizations that seek to optimize their internal structure and, also, to firms 
that are interested in understanding how the complex set of relationships with their business partners may support or 
interfere with their ability to adopt and exploit new technologies. 

The remainder of the paper is organized as follows. In section 2 we first review the existing literature on the 
topic, and then outline the structure of our work and its contribution to this literature. Sections 3 to 5 contain the 
fundamental building blocks of our investigation. These are, respectively: an agent-based model of technology adoption, 
a framework to characterize the technological environment in which the process occurs, and a stylized description of the 
different network structures that are to be compared. In Section 6 we derive and discuss a set of operational measures 
that are used to further analyze the behavior of the different structures.  Finally, in Section 7 we present the major 
findings and discuss managerial implications.   

2. The diffusion of innovations in networks  

The study of the diffusion of innovations enjoys a long history in the social sciences. Disciplines as disparate as 
sociology, marketing, technology management, strategy and communication have all examined the spread or adoption 
of innovations within a population of actors, be they people, organizations, communities or schools (Mansfield 1961; 
Bass 1969; Rogers 1976; Teece 1980; Di Maggio and Powell 1983; Tolbert 1983).  The nature of this research is very 
diverse. While some scholars have dedicated attention to mathematical models with the general objective to identify the 
form that best mimics historical diffusion patterns (Fisher and Pry, 1971; Blackman 1972; Mahajan, Muller et al. 1990), 
other studies have examined the predictors of the adoption of a particular innovation over time, arguing that certain 
characteristics of the innovation or of the actors affect the pattern and timing of diffusion within the target group 
(Robertson and Gatignon 1986; Labson and Gooday 1994).   

A subset of these researches has extended the study of general processes of diffusion to examining the role of 
social networks on patterns of adoption.  Since the pioneering work of Coleman, Katz and Menzel (1966) and Burt 
(1987) who identified, respectively, cohesion and structural equivalence as the primary drivers of the diffusion of an 
innovation through a population of doctors, others have carried on the tradition by examining the spread of a single 
innovation through networks of doctors (Strang and Tuma 1993), corporate directors (Davis 1991), managers 
(Galaskiewicz and Wasserman 1989), and even cities (Knoke 1982).    

The increasing importance of these phenomena, the call for further research on intra-organizational diffusion 
processes (Dierickx, Cool et al. 1997), and the acceptance of computer simulation as an appropriate tool for analyzing 
social systems have recently induced scholars to make extensive use of this instrument to better characterize the 
influence of social networks on diffusion processes and to compare the behavior of alternative structures, both in 
general (Midgley, Morrison et al. 1992; Abrahamson 1997) and in relation to the internal structure of organizations 
(Watkins and DeCanio 1998; DeCanio, Dibble et al. 2000).  

For instance, using the traditional Bass model to mimic innovation adoption, Midgley (1992) investigated the 
impact of different network topologies and alternative models of social contagion on the spread of a single innovation. 
Watkins and DeCanio, (1998) simulated the diffusion of an innovation through four different structures that allow 
different levels of information exchange to occur among agents, and suggested that the configurations that guarantee 
maximal transfer of information are also optimal for diffusing an innovation only when the processing capabilities of the 
agents are sufficiently large.  

Abrahamson and Rosenkopf (1997) also focused on the diffusion of a single innovation through a population 
of interconnected actors and suggested that the structural properties of the network may explain some lock-in effects 
that are not justified by traditional theories of diffusion. Although they did not aim at comparing alternative 
configurations, Abrahamson and Rosenkopf made an explicit effort to provide a more precise characterization of the 
adoption process, which occurs as a result of an individual choice of the agents - based on their threshold level of 
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adoption - rather than as the consequence of an exogenous probabilistic event.  
This stream of literature is symptomatic of a general urge to provide decision-makers with sound instruments 

that, by incorporating the features of real diffusion processes, may help them handle complex innovation decisions and 
identify structures that are most beneficial to this purpose.  However, as distinguished as they are, all the models 
developed so far display certain limitations that leave interesting questions unanswered, hence indicating avenues for 
further research.  

First and foremost, most studies analyze or model the diffusion of a single innovation. However, in reality 
firms are confronted with multiple innovations that “compete” simultaneously for adoption. This is particularly true 
when the innovations that compete for diffusion are technologies. In these instances, firms typically need to make the 
fundamental choice between the further exploitation of technology already in use and the exploration of new 
technologies that are potentially more attractive but also relatively unknown to the adopter. 

Second, as suggested by (Rogers 1976) these studies often “lack concepts and propositions that reflect a 
process orientation” (p.294), thus calling for increased study of the behavioral processes that underlie adoption decisions 
and, hence, patterns of diffusion. For instance, with the exception of a few studies (c.f. Abrahamson and Rosenkopf, 
1997) , network studies typically mimic adoption processes at a very aggregated level—that is, without accounting for 
individual choices made by potential adopters—thus neglecting behavioral phenomena that often are among the primary 
responsible for many observed diffusion patterns.  

Third, most papers do not use performance indicators to compare the effectiveness of alternative network 
structures, thus implicitly assuming that the spread of an innovation is always beneficial for the population of adopters 
(see DeCanio, et. al. (2000) for a notable exception).  

Fourth, the models developed so far do not usually account for the “possibility that potential adopters might 
update […] forecasts based on the number of adoptions they learned about through their networks” (Abrahamson, 1997: 
307). Hence, they overlook one of the key properties of social networks, namely the fact that they enable actors to revise 
their estimates upwards or downwards, thus generating more or fewer adoptions of a given innovation (Chatterjee and 
Eliashberg 1989; Oren and Schwartz 1989). 

Finally, most researches do not contemplate instances where the returns from the innovations adopted may 
increase over time as a function of the increased experience accumulated by their users. Again, although perfectly sound 
for consumer products, this assumption is not tenable when one considers the diffusion of a new technology. In these 
circumstances, the accumulation of experience with a system enables a user to realize increasing returns, thus 
automatically decreasing the user’s willingness to abandon it in favor of a new one. Indeed, in spite of the extensive 
literature on the learning curve (Yelle 1979) and on learning in general (Huber 1990; Dodgson, 1993), most models that 
analyze the diffusion of complex technologies have systematically neglected these phenomena (see Levin (2000) for a 
notable exception).  

This paper aims to complement and extend the research on networks and innovation diffusion along the lines 
suggested above. Our investigation begins from Abrahamnson and Rosenkopf’s (1997) observation that “further 
research could explore, via computer simulation, the simultaneous diffusion of competing variants of an innovation 
across networks of varying structure” and verify under what circumstances one variant could “prevail over a competing, 
possibly technologically superior, variant” (Abrahamson, 1997: 307). 

Building upon this observation, we consider an innovation adoption process that occurs through sequential 
choices by autonomous actors among multiple, competing technologies. We put forward a process model of innovation 
diffusion that offers a causal explanation for the time-varying adoption behavior of actors in a population by explicitly 
accounting for the effects of bounded rationality (Simon, 1969) and experiential learning (Levy, 1965).   

Our objective is to understand whether the network structures that have been shown to maximize the exchange 
of information among agents (i.e. dense networks) are also beneficial when the network faces the diffusion of innovative 
technologies whose characteristics are fundamentally uncertain and, in particular, when the individual adopters are 
confronted with the classic “exploration-exploitation” tradeoff (March, 1991; March and Levinthal 1993). Towards this 
end, we simulate the behavior of three antithetical network configurations and we compare their relative performance in 
three different technological “regimes.” 

In the following three sections, we present the three fundamental building blocks that constitute the basis of our 
analysis. First we elaborate a model of technology adoption that describes in a precise fashion the mechanism through 
which individual choices determine the behavior of the network in which innovations diffuse. Then, we propose a 
framework, based upon the characteristics of the technologies eligible for adoption, that categorizes the technological 
environments where the diffusion process takes place. Finally, building upon existing literature on organizational 
learning, we derive a set of operational measures that are used to evaluate the effectiveness of the different network 
structures under analysis. 

3. An agent-based model of technology adoption 

Since the seminal work of Jim March and Richard Cyert (1963), organization theorists have recognized that 
firms are not monolithic profit-maximizing entities but, rather, complex and structured systems whose overall behavior 
is affected by the decisions made sequentially and independently by their members (Cyert and March, 1963; Cohen, 
March and Olsen, 1972; March and Olsen, 1975).   

We posit an organization composed of, more or less, autonomous agents (actors) who utilize, possibly differing 
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technologies to achieve some level of performance (Malone and Smith, 1988).  The performance level of the overall 
organization is the sum of the many individual performance levels of the actors.2  While in theory the actors might care 
about the overall performance of the organization, their immediate concern is their own performance within the 
organization.   

Organization performance is determined by the individual technology choices of its actors.  However, because 
these actors operate within a complex and uncertain technological environment, they are not aware of the complete set 
of technologies available to them, nor do they fully understand the performance potential of those technologies of which 
they are aware.  Moreover, because the actors are boundedly rational, the actors in the network must rely on their own 
experience and the experience of adjacent actors in their social network.  The repeated implementation of these 
decisions gives rise to a technology diffusion pattern that ultimately determines the learning process, and performance, 
of the organization. It is precisely the effect of network structure on this process that we aim to examine. 

3.1 The organization as a social network 

We model the organization as a network, that is, a set ΓΓ  of M actors (nodes) that interact among each other.  
For purposes of simp licity, one can assume that the relations among members are binary and symmetric—that is, either 
a connection exists or it does not. The whole organizational structure is thus easily represented by means of a symmetric 
M x M adjacency matrix G. The generic element gn,m is equal to 1 when there is interaction between actor n and actor m, 
and 0 otherwise. Actor m’s “neighbors” are defined as the set Γm, where: 

Γm = {n∈Γ | gm,n = 1}.3 
For the purposes of our investigation we assume that the network structure shapes information exchange and aspiration 
levels, but that it does not subsume the establishment of a hierarchical order in the organization. That is, the agents are 
assumed to be perfectly alike with respect to their level of authority and their operational capabilities4.   

The existence of a connection between actors m and n (gm,n = gn,m = 1) allows each actor to see the technology 
and performance level of the other.  This has two implications.  First, it allows each actor to become aware of new 
technologies and provides them with another data point on performance for known technologies.  Second, it influences 
their aspiration level.  Both of these will be explained in more detail below.  

3.2 Technology, performance and the learning curve 

Following the traditional agent-based view of the firm, we consider our focal organization as a network of 
actors who “perform tasks in order to achieve goals” (Malone and Smith, 1988). We assume that the target task is the 
same for all the agents and that a set ΚΚ  of technologies is available to complete these tasks. The performance of each 
actor is the result of both the intrinsic potential of the particular technology k∈ΚΚ  that they are using and the agent’s 
ability to exploit it—that is, we posit a learning curve for each actor-technology pair (Levy, 1965; Yelle, 1979; Muth, 
1986; Adler and Clark, 1991).  
The technology potential is assumed to be predetermined and outside the control of the agent. However, it can be 
exploited more or less efficiently by the agents, depending on their experience with the system of interest. As an agent 
accumulates experience with a particular technology, they may obtain increasing returns from a technology because of 
the progressive acquisition of knowledge (Mukherjee, Lapre et al. 1998) and the discovery of appropriate routines to 
exploit the system (Zollo and Winter 1999).  As a result, the performance realized by an agent m in a given period 
depends upon the type of technology adopted and on the experience that the agent has accumulated with that particular 
system.  However, the fact that a technology is repeatedly adopted does not guarantee that its user’s performance will 
increase with certainty. The phenomenon is also influenced by stochastic variability (Mazzola and McCardle, 1997). 
We propose a learning curve that builds upon the well-known deterministic model first suggested by Levy (Levy, 
1965). It models the increase in performance experienced by the user of a technology as a function of the maximum 
potential of the technology itself, the cumulative experience of the agent and a stochastic element that captures the 
effect of exogenous and unpredictable events on the process:  
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where: 
 Xk

m,t  =  performance realized by agent m at time t through the exploitation of technology k ; 

                                                 
2 While we recognize that for some technologies there will exist network externalities, we do not include them here for 

two reasons: first, not all technologies exhibit network externalities; and second, we purposely chose to keep the 
model simple, leaving such extensions for future research.   

3 It will simplify notation if we include actor m in its own neighborhood.  
4 While we recognize the potential of structure equivalence (Burt, 1987) to influence aspiration levels in a social 

network, our focus is mainly on organizational structures as communication channels within a complex and uncertain 
technological environment: removing this assumption would introduce a second-order effect that may confuse the 
phenomena we wish to observe.  
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 Xk
max = technology performance “asymptote”—that is, the maximal expected performance achievable with 

technology k ; 
 αk = initial level of performance for technology k ; 
 βk = rate of improvement (learning rate) for technology k ;  
 Qk

m,t = number of previous periods during which actor m has used technology k  (cumulative experience); and 
 ξk

m,t = random disturbance in actor m’s performance utilizing technology k  in period t.  
An actor’s cumulative experience stems directly from their decision to use a particular technology in a particular period:  
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where k
lmu ,  is an indicator function that accounts for the basic decision of the agent. It is equal to 1 if actor m uses 

technology k  at time l and 0 otherwise. 
According to the model proposed, each agent that starts the process with technology k  realizes a performance 

equal to: 
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and it progresses asymptotically towards the asymptote kX max  at rate βk as the actor accumulates experience with the 

technology.  Note that the influence of unpredictable events on performance is greater at the initial stages of adoption, 
when the innovative system is still largely unknown to the user, but that this effect is then progressively reduced over 
time as cumulative experience allows the user to get to know the system better and to implement appropriate adjustment 
actions that attenuate the impact of randomness. 

The assumption of homogeneity across actors implies that both the maximum performance and the rate of 
improvement of an agent that uses technology k  are only determined by the intrinsic characteristic of the technology, 
except for a small random disturbance.  Also, the communication process that underlines the network structure permits 
information exchange, but it does not allow actors to transfer the set of routines and tacit knowledge necessary to fully 
exploit a technology. This knowledge can only be built individually by each member of the organization, by virtue of 
direct experience with the technology (Jovanovic and Nyarko, 1996; Szulanski, 1996). 

3.3 The adoption process  

Actors influence the innovation process of the organization by selecting technologies.  The set of technologies 
available to actor m at time t, denote Km,t, depends on the technologies adopted by its neighbors, n∈Γm.  Each actor can 
use only one technology at a time—that is, experimentation can take place only through direct use of the technology. 
The basic technology decision is made sequentially, period after period. After observing both its own previous 
performance and that of its neighboring actors, each actor revises its technology choice in order to maximize its own 
performance.  Let am,t denote the technology choice of actor m at time t—that is, am,t=k  whenever actor m is utilizing 
technology k  at time t.   

We assume that actor m’s performance in period t, Rm,t, is directly proportional to technology performance, less 
the switching cost incurred when changing from one technology to another: 
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where: 
 c = cost of switching from one technology to another;5 and 
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I =  indicator function of a switch in technology.  

Rather than selecting ex-ante a sequence of actions {am,t: t=1,2, …}, the perfectly informed and fully rational 
agent would determine a policy that specifies the actions to be taken given the information available at each period.  For 
a fully rational agent, the computation of an optimal policy that solves this problem is a prohibitive task. The simplified 
case of a single agent that operates its choice among a fixed set of possibilities can be modeled as a multi-armed bandit 
problem (Gittins 1979; Whittle 1980). In this case dynamic programming and the Gittins index rule provide a viable 

                                                 
5 Switching costs should not be confused with learning curve effects.  Switching costs are incurred even when returning 

to a previously known technology, and are due mainly to performance losses caused by the interruption of the tasks to 
be executed.   
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solution.  
However, this closed-form solution is dependent upon a number of assumptions (Ross, 1983) that do not hold 

in the more complex case described above.  When several independent decision-makers exchange information, the 
performance realized by one agent is observed by its adjacent actors, who then may modify their decisions accordingly. 
Thus, the composition of the set of technologies available to an agent is non-stationary. It evolves over time as a result 
of the adoption decisions of its neighbors.  Finally, in the traditional version of the multi-armed bandit problem, it is 
customary to assume that the stochastic processes governing the innovations are of Markovian type and that the agents 
know the transition probabilities of these processes.  

Although convenient for computational purposes, the above conditions do not hold in the case we wish to 
examine. Furthermore, and more important for the purposes of the present work, the complexity of such a problem 
exceeds by far the computational capabilities of most decision-makers6. Empirical research has shown that in real 
settings, even in the case of simple problems that could be solved analytically, actual decisions are typically based on 
simpler rules that depart from the optimal policy: decision makers often adopt policies based on trial and error 
strategies(Meyer and Shi, 1995).   

We model this behavior by means a decision rule that is most commonly used in the economic literature to 
represent the actions of boundedly rational decision makers who compute expectations of an unknown stochastic 
process. We assume that agents use a constant-gain expectations rules, in which the performance estimates are 
recursively updated each period t by combining (i.e. averaging) the previous estimate and the observed performance 
using a time-invariant rule (Sutton and Barto, 1998; Lettau and Van Zandt, 1999). Thus, in any decision epoch each 

agent updates its estimate of the performance of technology k∈Km,t at time t, k
tmX , , by combining its previous estimate 

of performance with an increment:  
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tnu ,  is the usual indicator function that accounts for the use of technology k  by actor n. The magnitude of the step 

size δ determines the importance given to recent information with respect to previous estimates.  Each agent selects the 
technology for which the performance estimate minus the switching cost has the highest value:  
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4. measures of organizational performance 

Contrary to much of the previous research in this area, our analysis does not focus on the extent of diffusion of an 
innovation throughout a network.  Rather, we aim to understand whether, in an environment characterized by high 
technological uncertainty where agents choose among competing technologies, the internal structure of an organization 
influences the processes of exploration and exploitation, and how this, in turn, affects the organization’s ability to learn .  

Huber suggests that “an entity learns if, through its processing of information, the range of its potential 
behaviors is changed” (Huber, 1990: p 89). Miner and Haunschild take a population level perspective and define 
learning as a “systematic change in the nature and mix of organizational action routines in a population of organizations, 
arising from experience.” (Miner and Haunschild, 1995: p 118). Similarly, Zollo and Winter stress the importance of the 
systematic aspect of the process, by defining a dynamic capability as “a learned pattern of activity through which the 
organization systematically generates and modifies its operational routines in pursuit of improved effectiveness” (Zollo 
and Winter, 1999: p 10). 

For the purposes of this paper, a more context -specific definition of learning is necessary.  One contingent to 
the mechanisms through which this process takes place. We define learning as the process resulting from individual 
actions of the organization members, which enables the organization to systematically identify technologies, procedures 
or processes that are superior to the ones currently in use. The process may occur through the realization of two 
complementary mechanisms, namely: 

Exploitation: The application of and improvement to an existing technology through repeated use and consequent 
experience accumulation; and   

Exploration: The identification and adoption of a potentially superior alternative.  
We suggest that organizational learning can be evaluated with respect to three main dimensions; (i) the cumulative 
performance realized by the organization; (ii) the retention of superior technologies; and (iii) the establishment of an 

                                                 
6 For instance, Watkins and DeCanio (1998) show that even for a problem of much simpler nature finding the optimal 

organizational structure that maximizes the diffusion of a single innovation would be NP hard. 
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organizational order.  
Cumulative performance measures the overall ability of the organization to utilize technologies to maximize 

performance over time.  It is measured as the cumulative sum of the individual performances of its members: 

=Π
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Although this indicator reflects the ability of the agents to perform their tasks, it does not provide information on the 
characteristics of the adoption process that has generated it, nor does it shed light on the ability of the firm to generate 
further profits in the future (e.g. by adopting the technologies that guarantee superior performances in the long run). 

The second dimension considers the ability of the organization to retain superior technologies within its 
organization by virtue of having at least one actor exploiting a superior technology.  By ‘superior,’ we mean 

technologies with the greatest performance asymptote, kX max . It is measured by means of the probability, or proportion 

of simulations, that the superior technology survives the selection process. This measure simply evaluates the ability of 
the superior technology to survive in a competitive environment.  It does not take into account the number of adopters 
that exploit it.  

The third dimension, organizational order, reflects the “systematic” aspect of learning. It examines whether, by 
virtue of the interaction among members, the organization systematically (i.e. repeatedly) develops a common code of 
conduct—that is, to what extent and at what rate does a particular network configuration favor the emergence of “order” 
in the organization by facilitating the adoption of a common set of technologies (Levinthal, 1997).  

In our analogy order is closely related to two other concepts, namely: convergence and equilibrium. First, we 
say that the adoption process converges when all the agents in the organization adopt the same technology. Second, we 
say that the organization is in equilibrium if each agent selects a particular technology (not necessarily the same for all 
the agents) and does not deviate from its choice in any of the following epochs.  
Achieving convergence and equilibrium (all the agents adopt the same technology and never deviate from that choice) 
correspond to a situation of maximal order in the organization (i.e. a situation of maximal technological uniformity and 
maximal stability).  Organizational order is thus measured as the probability, or proportion of simulations that converge 
to a common technology.    

5. design of the simulation experiments 

Contrary to the belief that experimentation – and, hence, the structures that favor this behavior - is “efficacious, 
perhaps even required, for survival in fast changing and unpredictable environments” (Huber 1990: p. 93), we claim that 
the efficacy of a particular network structure is not independent of the technology environment within which the firm 
operates. Indeed, it is not unlikely that network structures that perform one way in one particular environment may 
perform quite differently in another.  

For this reason, we need to analyze our focal organizations under a number of different technological 
environments. In its most general sense, an “environment” is defined as a system that is outside the organization and 
influences its behavior and its properties (Ackoff, 1981). We define the technological environment as the set of 
characteristics that portray the technologies available to the focal organization.  Specifically, we use the dimensions of 
complexity and dynamism (Dess and Beard, 1984), where complexity reflects the diversity across the performance 

asymptotes (i.e. differences in kX max ) of the technologies that compete for diffusion, and dynamism the change in 

performance possible (i.e. size of max βk) in exploiting a technology over time. The larger the diversity across 
technologies, the greater the complexity of the environment. Similarly, the larger the performance improvement 
achievable through the accumulation of experience, the more dynamic the environment. 

The combination of the above two dimensions naturally identifies four technological environments (see Figure 
1).  Three of them are relevant to our analysis. In the mature regime (low dynamism, high complexity) the network 
experiences the diffusion of a set of technologies that have different performance potentials, but that are not “dynamic” 
in that there are no learning curve effects from exploiting the technology.  The performance of an agent is affected by 
stochastic variability, but it does not depend on experience: technologies with average superior performances remain 
superior even when competing systems are adopted more often. This situation corresponds to an environment where the 
competing technologies have already reached their maturity and are well-understood. Exogenous factors may affect 
performance, but these are independent of the actions undertaken by the adopters.  
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Figure 1: Four possible technology environments 
 

The homogeneous learning regime (low complexity, high dynamism) considers a set of technologies that have 

the same performance potential (i.e. maxmax XX k =  for all k) and show identical learning curve effects (i.e. βk = β > 0 

for all k). This implies that both the performance potential and learning rates are identical across all technologies.  
Finally, the inhomogeneous learning regime (high complexity, high dynamism) considers a set of technologies that have 

different performance potentials (i.e. jk XX maxmax  for some k,j), and show different learning curve effects (i.e. βk ≠ βj 

for some k,j).  Such a setting is useful to represent the typical situation of radical and incremental innovations that 
compete for diffusion. An incremental innovation usually hinges upon a number of practices and routines already well 
established in the adopting organization. Thus, when exploited it does not need a long “warm up” period: it may 
generate high profits relatively quickly already after few adoption cycles. However, it is also the system with the lowest 
plateau, i.e. the one with the minimum long term potential. 

Conversely, the radical innovation often necessitates of a longer warm up, as the adopting organization requires 
some time to get to know the new system and to implement the appropriate procedures and routines to exploit it. 
Furthermore, as a result of its newness, it is more affected by stochastic variability than the incremental innovation. 
However, by hinging upon a superior technology, the radical innovation has also the highest long-term potential. That 
is, it is the system that offers to the adopter the best guarantees to achieve long-term advantages over its competitors. 

6. types of Network configuration 

There has been a long tradition of attempting to classify the various forms of organizational structure that are 
most commonly encountered in the business world. Needless to say, each taxonomy takes a particular viewpoint. For 
instance, with respect to the functionality of the different departments inside the organization researchers have identified 
the functional structure, the product structure and the matrix structures (Daft, 1988). Conversely, when the focal point 
was the flexibility of the hierarchical relations among agents, organizations have been classified into organic and 
mechanistic (Burns and Stalker, 1961).  

Three basic network structures have been extensively studied with the objective to identify the communication 
system that is most efficient. These are: the dense network (also referred to as the “all channel system”, or the 
“completely connected pattern”), the centralized network with a central broker (also referred to as the “wheel pattern”), 
and the linear network (that is named “circle pattern” when a connection is established between the first and the last 
node of the graph) (Hall, 1991).  

These structures are somehow stylized archetypes of three fundamental designs commonly encountered in 
organizations. The first configuration (dense network) refers to the somehow ideal case of a perfect organization where 
all the agents are connected among each other. In this setting there is an instantaneous transfer of information across all 
members. As the maximum distance between two agents is always equal to zero, at any point in time, each actor 
observes the adoption decisions and the rewards received by all the other agents. Although this structure is seldom 
encountered in real organizations because of its cost, it is often regarded as a sort of theoretical optimum with respect to 
information transfer.  

In the centralized network with a broker all the actors are connected to a central broker but not among each 
other. This configuration reflects the structure of organizations that give emphasis to rapid information exchange across 
members, but that cannot “afford” the implementation of many connections.  

Finally, the third organizational design consists of a perfectly linear structure, where each agent is connected to 
its predecessor and to its follower, except for the two terminal actors who have only one connection. This structure 
obviously does not facilitate information exchange: albeit it has as many links as the centralized case, the distance 
between two members of the organization may be as large as N-2. 
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6.1 Design of the simulation 

The effect of network topologies on the learning process of a set of adopters is analyzed by means of a 
simulation. Eighteen experiments have been designed to simulate the behavior of three basic network structures in three 
different technological regimes for two different values of the switching costs.  The adoption model described in the 
previous sections has been implemented to simulate the diffusion of 7 technologies in a network of 7 actors. The 
simulation is initialized by assigning a unique technology to each agent.  In each technological environment, the 
parameter αk is adjusted so that all technologies yield the same expected performance at the time of the first adoption.   
 
Random perturbation  
 

ξt
k ~ N(µ = 0, σ = 0.2) 

 
Step size 
 

δ t
k  =  δ  = 0.3, for all k and t. 

Switching cost 
 

Case  i) c = 0; 
Case ii) c  = 2σ = 0.4; 

 
 
Learning curve parameters 

       

  Innovation 

Experiment 1: Mature technological regime  1 2 3 4 5 6 7
 Platea

u 
4 5 6 7 6 5 4

 α 0.4 0.4 0.4 0.4 0.4 0.4 0.4
 β 0 0 0 0 0 0 0
        
Experiment 2: Homogeneous learning regime  1 2 3 4 5 6 7
 Platea

u 
10 10 10 10 10 10 10

 α 0.2 0.2 0.2 0.2 0.2 0.2 0.2
 β 0.01 0.01 0.01 0.01 0.01 0.01 0.01
        
Experiment 3: Inhomogeneous learning regime  1 2 3 4 5 6 7
 Platea

u 
7 3.8 3.8 3.5 3.8 3.8 3.8

 α 0.2 0.4 0.4 0.45 0.4 0.4 0.4
 β 0.01 0.03 0.03 0.04 0.03 0.03 0.03
   
Table 1: Parameters of the simulation 

 
The simulation is terminated after 100 decision epochs7. Each simulation run in any of the eighteen 

experiments is repeated 10 times. The results presented are the average of these 10 runs.  The random perturbation ξm,t
k 

that affects the behavior of the learning curves has been drawn from a normal distribution with mean µ = 0 and standard 
deviation σ = 0.2. The value of the variance guarantees that the random disturbance – albeit significant - does not 
overwhelm the learning effect determined by cumulative adoption8.  The system parameters used in the experiments are 
summarized in Table 1. 

The technique of common random numbers (CRN) has been adopted to reduce the impact of stochastic 
variability on the final results of the simulation (Law and Kelton, 1991). For this purpose, in each experiment the 
random perturbations ξm,t

k  have been drawn from an identical sequence of random numbers. The use of common 
random numbers guarantees that the different performances of the various network configurations are entirely due to a 
different intrinsic behavior of the systems and not to pure randomness.   
 

                                                 

7 This choice is a compromise between two exigencies. On the one hand we need to observe the behavior of the network 
for a number of decision epochs sufficiently long to allow the occurrence of a significant number of cycles. On the other 
hand, we have the exigency to consider a time horizon consistent with that of real business processes (i.e. not 
excessively long).  
8 The robustness of the results has been examined by repeating the experiments for different values of the coefficient α. 
The latter influences the extent to which the random perturbation contributes to determine the performance of the 
innovations. These additional experiments have confirmed the trend observed and are not reported here. 
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7. Results  

The three dimensions of diffusion (organizational performance, survival of the superior system, and emergence 
of organizational culture) are used to compare the behavior of the three network structures in each of the three possible 
technology environments. In order to highlight the differences among configurations we have reported a relative 
measure of organizational performance, using the fully connected, or dense structure as a benchmark. That is, for each 
technological regime included in the analysis, we have computed the ratio of the performance generated by a given 
configuration to the performance generated by the completely connected one. 

7.1 The mature technology environment 

In the “mature” technology environment, the innovations that compete for diffusion have different plateau 
performance levels but there are no learning curve effects.  In these circumstances an optimal policy should initially 
emphasize exploration rather than exploitation, so as to rapidly identify the technology that guarantees superior 
performance.   

Figures 2 shows that the centralized, or broker configuration yields, on average, the greatest organizational 
performance.  This, of course, makes sense in that the broker is in a good position to quickly identify the best 
technology, and given its central position, to make this technology immediately available to the rest of the organization.  
The linear network performs consistently worse than the broker network, regardless of switching costs.  Here, individual 
exploration is hindered by a lack of connections in the network, and organizational exploration is hindered by the 
structure of the network (i.e. lack of centrality).  Thus, too many actors exploit inferior technologies for too long.   
Without switching costs, the fully connected network does eventually approach the performance of the broker 
configuration.  However, when we introduce switching costs, the relative performance of the connected network 
decreases.  The introduction of switching costs can have two possible effects in this case. First, an increase in switching 
costs will reduce net organizational performance in networks that rely on individual exploration. Continuously trying 
out new technologies might allow actors to eventually identify optimal solutions, but it also implies the occurrence of 
higher search costs that reduce profit. Second, in the presence of switching costs, individual exploration may be 
hindered, resulting in too many actors exploiting inferior technologies for too long.   

Relative cumulative organization profit: mature environment (switching cost c = 0.4)
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Figure 2: Relative cumulative performance in the mature technology environment. 
 

Table 2, which summarizes each network’s ability to retain the superior technology, sheds some light on this 
phenomenon.  The broker network performs best in terms of its ability to retain the superior technology:  It was able to 
retain the superior technology in 90% of the cases, regardless of switching costs.  Without switching costs, the 
connected network performs equally well (90%).  However, with switching costs, the connected network retains the 
superior technology only 60% of the time, indicating that the presence of switching costs is hindering individual 
exploration for the superior technology.  Thus, actors are too quite to settle on an inferior technology rather than switch 
to a potentially superior one.   

The linear network performs the worst in this regard, retaining the superior technology only 60% of the time.  
This is increased to 70% in the presence of switching costs, due mostly to the fact that switching costs reduce 
convergence to a common technology from 60% to 40% (see Table 3).  Thus, the fact that there is more than one 
technology present at the end of the decision horizon increases the probability that one of these will be the superior 
technology.   

Convergence to a common technology is achieved in all the experiments for the connected network, regardless 
of switching costs.  The broker network achieves convergence in 90% of the cases both with and without switching 
costs.  Thus, while the broker network outperforms the connected network in terms of organizational performance, the 
connected network consistently generates higher order in the organization by favoring the retention of a common 
technology.   
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Proportion of times that superior technology survives within the organization 

 Connected Broker Linear 
 c = 0 c = 0.4 c = 0 c = 0.4 c = 0 c = 0.4 

Complex & Static 
(Mature) 0.90 0.60 0.90 0.90 0.60 0.70 

Homogeneous & 
Dynamic* n.a. n.a. n.a. n.a. n.a. n.a. 

Complex & 
Dynamic 
(Inhomogeneous) 

0.30 0.20 0.10 0.20 0.40 0.40 

 

* 
In the homogeneous case, all technologies have the same long-run potential; thus, there is no one superior 
technology.

 

  
Table 2: Organizational retention of the superior technology. 

7.2 The homogeneous technology environment 

In this setting a number of technologies with identical performance potential, in terms of their asymptotic performance, 
compete for diffusion. Given that all the systems guarantee the same returns to adoption, the optimal policy to secure 
high organizational performance would be to maximize the exploitation of the technology used in the first decision 
epoch without undertaking any form of exploration. Of course, this policy would also maximize the “disorder” within 
the system in terms of the diversity of technologies retained. An ideal compromise between the two exigencies would be 
for the organization to converge as rapidly as possible towards a unique technology and keep exploiting it. 

Proportion of times convergence is attained before the 100th decision epoch 

 Connected Broker Linear 
 c = 0 c = 0.4 c = 0 c = 0.4 c = 0 c = 0.4 

Complex & Static 
(Mature) 1.00 1.00 0.90 0.90 0.60 0.40 

Homogeneous & 
Dynamic 1.00 1.00 0.90 0.60 0.00 0.00 

Complex & 
Dynamic 
(Inhomogeneous) 

1.00 0.90 0.50 0.10 0.00 0.00 

 

  

Table 3: Emergence of organizational order. 
 
Among the three configurations, only the completely dense network favors such a behavior. In all the 

experiments performed, such a configuration enables actors to converge towards a unique technology in a limited 
amount of time. Although the central network does not perform significantly worse with respect to the proportion of 
time convergence is attained (see Table 3), it always needs a larger amount of time to achieve it. Finally, in no case did 
the linear network converge to a common technology, regardless of switching costs.  
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Relative organization profit: homogeneous learning environment (no switching cost)
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Relative organization profit: homogeneous learning environment (switching cost c = 0.4)
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Figure 3: Relative cumulative performance in the homogeneous technology environment. 
 

However, as expected in this technological regime, failing to converge does not necessarily have severe 
consequences on the organizational performance generated. Figure 3 shows that the fully connected network, after a 
relatively slow start, eventually performs the best of the three networks.  The linear configuration performs reasonably 
well relative to the other two networks, though the presence of switching costs presents a clear advantage to the 
connected network.  The centralized structure is consistently inferior, except in the very first epochs when the connected 
configuration “pays” for the high level of individual exploration that it induces. There is a sound explanation for this 
apparently contradictory effect.  

Given the fact that all the innovations retained have the same behavior, an organization would suffer from the 
lack of order only if the achievement of the latter is impeded by the continuous shift of any single adopter from one 
technology to another. (This behavior favors exploration, which is useless with identical systems and severely penalizes 
exploitation). However, the organization does not suffer from “anarchy” if this is caused by the rapid attainment of 
multiple local equilibria. These occur when all the actors quickly adopt different systems and then keep exploiting them 
without further switching. Since all the innovations have the same performance, it does not matter on which system 
exploitation focuses, provided that it occurs quickly. 

Indeed Figure 4, which depicts the evolution over time of the average number of different innovations retained 
in each of the three networks throughout the decision process, suggests the occurrence of a phenomenon of this sort.  
The connected network rapidly reduces the number of technologies in the network, settling down to less than 2 
technologies on average within the first couple of periods.  The linear configuration operates the initial selection as 
efficiently as the broker network, but only reduces the number of technologies in the network to two units.  However, 
the linear network does not explore further once this ‘equilibrium’ is reached, while the broker network continues to 
explore almost twice as long as the linear network on its way to converging to a common technology.  
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Selection of technologies: homogeneous learning regime
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Figure 4: Number of technologies in each of the three networks over time. 
 
By virtue of the experience effect, the agents exploiting a particular technology rapidly accumulate experience 

and receive high rewards already after few decision epochs. Switching to a new technology after having already 
exploited an alternative would imply starting over at the bottom of the learning curve. Since this is identical to the 
technology just abandoned, on average the change would not generate higher profits. 

The performance charts in Figure 3 summarize this behavior. The completely connected structure guarantees 
order, but in order to do so, it wastes some decision epochs to explore all the technologies before it eventually 
converges. This is reflected by the cumulative profit that is always the lowest in the first decision epochs. The linear 
configuration does not induce order, but by virtue of the fact that individual exploration is not excessive, it guarantees 
high profit levels. Conversely, the centralized structure suffers from both the disadvantages of the other two 
configurations. It spends quite some time in exploration, but it does not do so to an extent that is sufficient to guarantee 
rapid convergence. As a result, it consistently secures lower profit levels than the other architectures.9 

7.3 The inhomogeneous technology environment 

 In the inhomogeneous environment, technologies are characterized by both high complexity and high 
dynamism.  That is, not only do the technologies competing for diffusion differ with respect to their plateau 

performance ( kX max ), but they also have different rates of learning-by-doing (βk) at the individual level.  Based on the 

results of the previous analysis, one would naturally suspect that even when the competing technologies have different 
learning rates, the configurations that facilitate the exchange of information perform better than the linear structure. 
Indeed this is not necessarily the case, at least not with respect to all the dimensions considered.  

On the one hand, consistent with previous results, the connected network facilitates the emergence of 
organizational order (see Table 3).  The broker network converges only 50% of the time without switching costs and 
only 10% of the time with switching costs. Not surprisingly, the linear network failed to achieve convergence in any of 
the simulations. 

On the other hand, the situation is radically different when one examines the performance of the three 
configurations with respect to their ability to retain the superior technology (see Table 2). Although the linear network 
does not enable the organization to converge to a common technology, at least within the time horizon considered in the 
experiments, it is the one that guarantees the highest rate of survival for the superior technologies. In 40% of the runs 
(both with and without switching costs) at least one agent of the linear network still exploits the best long-term optimal 
system after the 100th decision epoch, thus preventing its premature extinction. The survival rate is slightly lower for the 
dense network (30% without switching costs and 20% with switching costs) but it is significantly inferior for the 
configuration with a broker (10% and 20% for the two cases).  In the broker network, individual exploration yields order 
as members adopt those technologies with the highest exploitation rates.   

The phenomenon has important implications and deserves further discussion. To fully capture the reason for 
this efficiency gap, let us focus on the linear and the centralized networks. From a resource use perspective, the two 
configurations require the same level of investment for actual implementation, as the number of connections between 
actors is identical10 in both cases. However, ceteris paribus, the configuration with a central broker facilitates the 
exchange of information, as the maximum distance between two different actors is always inferior to the one of the 
linear case. Furthermore, the broker has proportionally more influence on the organization than any other actor in the 
network: at any time all the adjacent actors observe both its adoption decision and the rewards achieved and then use 
this information to update their sample estimates.  

                                                 
9 Measures related to the identification of the optimal systems are not relevant in this case, given that all the innovations 

guarantee identical long-term performance. 
10 In a network with N actors the number of edges is equal to N-1 for both configurations. 
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Let us suppose that the initial adoption of the broker consists of an incremental innovation – i.e. a technology 
that allows its users to quickly increase the initial performance but that has a lower plateau - whereas one or more of its 
neighbors adopt a radical innovation. By virtue of the fact that the broker initially realizes the highest profits in the 
organization, all the other agents are induced to abandon their initial choices in favor of this short-term optimal system, 
before they have the time to exploit the ‘true’ optimal system and discover its long term potential.  

The organization thus suffers from a sort of self-reinforcing kind of competency trap (Levinthal and March, 
1993). As a result of the specialized capability of one of its members (i.e. its central location in the network), the broker 
network favors the exploitation of the inferior technologies and creates a lock-in situation. The inferior technologies 
survive the selection process and cause the extinction of the competing alternatives, even though these are potentially 
superior. The organization is not protected against this phenomenon, precisely because the particular network 
configuration enables the broker to communicate instantaneously with the totality of the agents.  

Conversely, in the linear configuration the information exchange occurs at a slower pace. It may take several 
decision epochs before an agent at the end of the network discovers the existence of an innovation initially adopted at 
the other end, even if this is more profitable in the short run. Thus, by virtue of this slower exchange, the linear 
configuration favors the establishment of technological niches, where the radically innovative system is protected from 
competition at the initial stages of its evolution. The niche allows actors to exploit the radical innovation to an extent 
sufficiently large to enable it to outperform the incremental innovation (which is concurrently under exploitation in a 
different “zone” of the organization). By the time the members of the niche discover the existence and the performance 
of the incremental system, they have already exploited the radical innovation above the break-even point and do not 
consider shifting convenient any more. 
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Figure 5: Relative cumulative performance in the homogeneous technology environment  
 
The profit charts reflect this behavior (see Figure 5). Initially, the fully connected network pays a price for its 

early individual exploration of competing alternatives.  Early on, exploitation has a large impact on performance due to 
learning curve effects.  However, the high rate of individual exploration allows the connected network to achieve a 
balance between retaining ‘good’ technologies, though not always the superior technology, and exploiting those 
technologies consistently across the network.  When we introduce switching costs, the connected network’s reliance on 
individual exploration comes at too great a cost for it to recoup the initial cost.  By the end of the simulation, it is still 
performing no better than the other two networks.   

To summarize, in technological environments that are both complex and dynamic, there does not appear to 
exist a universally superior network. The choice of the optimal form depends on the objectives of the organization. If the 
establishment of a common code of conduct is the main goal, then a completely connected structure should be preferred. 
Conversely, if one is more concerned about the retention of potentially superior technologies, the linear configuration 
seems to be more appropriate.  Only the centralized structure seems to present no advantages in either case.  

8. Conclusions 

This paper has examined the effect of network structure on the processes of technology adoption and diffusion 
that occur through individual choices among ambiguous alternatives. More specifically, its major objective is to 
understand whether the same network structures that have been shown to maximize the exchange of information among 
agents are also beneficial when a firm faces the diffusion of innovative technologies with uncertain characteristics.  

Towards this end, we have first proposed a model of technology adoption and diffusion within a network. Our 
model is characterized by a number of distinctive features that attempt to address some of the limitations of previous 
studies.  First, we consider the diffusion of multiple, competing innovations. Second, we explicitly account for the fact 
that innovation diffusion is the result of a sequence of adoption decisions made independently by a population of 
boundedly-rational agents (Rusmevichientong and Van Roy, 2000). Third, we account for learning-curve effects in the 
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diffusion of technologies where individual agents learn as experience with a technology accumulates. Finally, we notice 
that the effectiveness of a particular network structure on the process of innovation adoption should be evaluated 
through a multidimensional measure that accounts for the complexity of the phenomenon. 

The results of our simulation experiments offer several interesting insights into the processes of exploration 
and exploitation within various network structures and technology environments.  Dense networks, such as the fully 
connected network examined in our study, facilitate individual exploration of technologies early in the diffusion 
process, while rapidly driving conversion to a common technology across the network.  Network configurations that 
facilitate information exchanges help an organization learn through the development of a common code of conduct. This 
occurs because information exchange accelerates first hand exploration and forces the organization to adopt the systems 
that provide the highest immediate rewards. 

On the other hand, the analysis also suggests that, in uncertain environments where innovations with different 
learning rates compete for diffusion, network configurations that do not favor information transfer may perform better. 
By quickly identifying the systems that offer the highest immediate rewards, centralized structures hamper the 
development of long term optimal technologies, thus favoring their extinction. Conversely, configurations that do not 
transfer information quickly engender the development of technological niches inside the organization, which protect 
innovations from fierce competition and help their long-term growth. 

Thus, our results confirm findings from previous studies that no structure is universally superior. The 
effectiveness of a particular configuration is contingent to the specific technological environment where the firm 
operates. In complex but scarcely dynamic environments centralized structures appear to be the optimal compromise 
between cost and efficiency. Conversely, in environments where complexity is low and dynamism is high the above 
configuration is inferior both to the completely connected one and to the linear structure. Finally, in environments that 
are both complex and dynamic, the choice of the optimal configuration depends on the firm’s objectives. Completely 
connected structures favor the establishment of organizational order, whereas linear configurations guarantee the 
survival of superior technologies. 

Not surprisingly, the occurrence of switching costs tends to reduce the propensity of the organization to 
explore. That is, it induces a sort of “band of inaction”, that prevents each agent from trying new technologies whose 
performance estimate is only marginally superior to the one currently in use. As a consequence, switching costs reduce 
the effectiveness of network configurations that benefit from individual exploration.  

This result confirms that the two types of network structures (dense and central on one side, linear on the other) 
function in an antithetic fashion and exploit two different leverages. On the one hand, the dense and the central structure 
base their effectiveness upon the rapid search guaranteed by the information exchange process. As a consequence, any 
effect that attenuates this feature (such as the occurrence of switching costs) proportionally reduces the effectiveness of 
the two configurations. 

On the other hand, the linear configuration owes its effectiveness to the fact that it “protects” radical 
innovations from external competition in the early stages of their development. In this case the occurrence of switching 
costs enhances this property, and it further helps the linear configuration retain and exploit optimal technologies.This 
phenomenon is mainly due to the excess search induced by the inherent structure of the connected network that 
guarantees high rates of information exchange. In such a configuration, each agent is literally overwhelmed with new 
information that can be processed effectively. This is consistent with results observed by Abrahamson and Rosenkopf 
(1997) and DeCanio and Watkins (1998) for the diffusion of one technology.  Interestingly, Huberman (1997) suggests 
that a similar phenomenon is the cause of some famous exceptions to the learning curve phenomenon. In his model, the 
introduction of a too large number of new “search procedures” may significantly decelerate the learning process of a 
manufacturing unit and cause cost to increase even when cumulative production increases. As a consequence, in 
technological regimes that are characterized by high complexity and low dynamism, the centralized configuration 
sugges ts itself as the one that offers the best compromise between effectiveness and implementation cost. Indeed, the 
relatively small improvements achievable in some measures when passing from this configuration to the completely 
connected one would not seem to justify the investment necessary to establish all the additional connections required to 
operate the change11. 
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