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Abstract 
In general, life insurance liabilities tend to have several embedded options. In this article we model life 

insurance contracts as contracts that guarantee a minimum return and that allow for early surrender. It turns out 
that other features of the contract, for instance whether it might be optimal to surrender it prior to maturity, 
depend heavily on the exact way in which this minimum return is being guaranteed. 
 
1. Introduction 

Since [1] numerous publications have appeared on the valuation of life insurance liabilities and are often based on the 
martingale pricing theory ([2], [3]). So for instance [1], [4], [5], [6], [7] and [8] consider the valuation of life insurance 
contracts that are directly or indirectly linked to an underlying asset which is being modelled as a geometric Brownian 
motion and [9], [10], [11] and [12] value life insurance contracts under stochastic interest rates. 

Most of the authors concentrate on the modelling and valuation of the maturity guarantee which can be found in life 
insurance contracts, varying from the plain vanilla unit-linked contract in [1] to exotic unit-linked contracts, for instance 
contracts of which the pay-off depends on the value of two assets, in [6]. [8] and [13] take into account solvency 
margins and a compounding guaranteed return, which results in a type of contract of which the pay-off is highly path 
dependent. 

In this paper, we will compare two different types of contracts by valuing their market-based single premiums. With 
respect to the pricing of life insurance contracts, mortality risk and financial risk should be treated simultaneously. The 
mortality risk however is regarded as an unsystematic risk so that we will solely discuss the market-based value. The 
two contracts we will focus on are: on one hand the contract that guarantees a minimum pay-off at maturity and on the 
other hand a contract that guarantees a minimum return over each of a number of sub-periods. We will allow for both 
contracts to be surrendered or ended prior to maturity at a number of preset dates. That is, the contracts will be 
Bermudan. We will show that despite the similarities between these two contracts, there are important differences with 
respect to their price and the optimal surrender behavior. 
 
2. Two Types of Guaranteed Returns 

In this section, we will present the two different contracts. We will compare their pay-offs at maturity and whether or 
not surrendering before maturity can be optimal. We will make no assumptions about the dynamics of the underlying 
asset or about the dynamics of the term-structure of interest rates. The first contract to be discussed is the contract 
guaranteeing a  minimum pay-off at maturity. 

 
2.1. The Maturity Guarantee 

In [13] Grosen and Løchte Jørgensen model a single-premium contract by means of an American version of the 
Brennan and Schwartz ([1]) model, with the exercise price being an increasing function of time. We will only allow the 

put option to be exercised at a number of preset surrender dates  1
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at every surrender date it  the policyholder has the possibility to either hold the contract until 1+it  or end the contract 

and walk away with the surrender value given by: 
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with D the amount that was initially invested in the underlying asset S(t), the face value of the contract. As such, the 
policyholder holds a Bermudan put option on the return realized by the asset S(t) since time 0t , with maturity date T 

and exercise price )( 0ttr iGe −  at every surrender date it . If the policyholder does not surrender the contract at any of the 

surrender dates, he receives the following pay-off at nt : 
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We see that with this type of contract the policyholder is guaranteed the minimum return Gr  over the actual lifetime 

of the contract. That is, whether the contract is ended prior to maturity or not, the minimum return paid out to the 
policyholder will never be less than Gr . 

 
Theorem 1 

For all of the n-1 surrender dates it , i=1,...n-1,  
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is a necessary condition in order for surrendering the contract at it  to be optimal. 

 
Proof 

If the policyholder surrenders the contract at it  and the above condition is not met, he receives the pay-off: 
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This amount can be invested in the underlying asset S(t) and will give rise to the following pay-off at maturity: 
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If the contract has not been ended, the policyholder will receive the following amount at maturity: 
 

(6)                                                                    .,
)(

)(
max  )(

0

0−ttrn nGe
tS

tS
D  

 
It is clear that this will always be at least as much as the amount given in formula 5. 
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Note that condition 3  is a necessary but not a sufficient condition for ending the contract to be optimal. We will 
illustrate that it can be optimal to surrender the contract at a surrender date. 
 
EXAMPLE 1  

 
Suppose we are dealing with a contract with two sub-periods, that is with one possible surrender date, and that D=1. 

If the policyholder does not surrender the contract at 1t  the pay-off at maturity, at 2t , is given by: 
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Suppose that )(
01

01)(/)( ttrGetStS −< .  If the policyholder surrenders the contract at 1t  the pay-off is: 
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If the policyholder does not surrender the contract,  he holds a contract worth: 
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with ),(P 21 tt  the value at time 1t  of a zero-coupon bond with maturity date 2t . In the above equality, the expectation is 

taken under the T-Forward measure. If Gr  is small enough, for instance Gr  is smaller than the )( 12 tt − - interest rate at 

1t , that is: 
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then the last line in the above equality will be smaller than )( 01 ttrGe −  for small enough )(/)( 01 tStS . That is, it will be 

optimal to surrender the contract when the return realized over the first sub-period is low enough. 
 
2.2.  The Compounding Guarantee 

With this type of contract a minimum rate Gr  is guaranteed over the n sub-periods [ ]kk tt ,1− ,  k=1,...,n , and the pay-

off at  maturity is given by:  
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where D is again the face value of the contract. The policyholder can surrender the contract at any of the surrender dates 

it ,  in which case the following amount will be paid: 
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This contract also guarantees a minimum return Gr , just like the previous one, (and it can be surrendered at any of 

the surrender dates it ). The difference with the previous type of contract is, that the minimum return Gr  is not only 

guaranteed over the maturity of the contract, but over each of the sub-periods [ ]ii tt ,1− ,  i=1,...,n. If we compare formula 

12 with formula 6, we see at every surrender date it , as well as at maturity, that the pay-off of the Maturity Guarantee 

contract will always be lower than or equal to the pay-off of the Compounding Guarantee contract. The equality will 
only occur when the return realized by the underlying asset S(t) is either smaller than Gr  over every sub-period [ ]ii tt ,1−  

or greater than Gr over every sub-period [ ]ii tt ,1− . If neither of these two extreme scenarios is realized, the pay-off of the 

Compounding Guarantee contract will dominate the one of the Maturity Guarantee contract. 
 
Theorem 2 

For the Compounding Guarantee contract we have the following result: 
In case of a Compounding Guarantee contract it is never optimal to surrender the contract before maturity. 

 
Proof 

Trivial. 
� 

 
This means that even if the policyholder is allowed to surrender the contract prior to maturity, this need not to be 

taken into account when we value this contract. 
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2.3. Comparing the Two Contracts 
The two contracts are rather similar in the sense that they both guarantee a minimum return on a nominal amount D 

investment in an underlying asset S(t). In one case the minimum return applies over the entire maturity and the other 
contract guarantees a minimum return over every sub-period.  Both contracts allow for early surrender at a number of 
preset dates. Despite these similarities, the two contracts are not really inter-changeable. One example is given by the 
fact that it might be optimal to surrender the first type of contract before maturity, whereas this will never be optimal for 
the second one. 

This last difference has an important consequence for the reserving for the two types of contracts. In case of the 
Compounding Guaranteed return contract an initial reserve equal to the value at inception of the pay-off at maturity will 
constitute a prudent reserve. That is, for reserving purposes one can simply forget that the contract can be surrendered 
prior to maturity, since doing so will always be non-optimal. In case of the Maturity Guarantee contract the same 
reserving standards would lead to reserves being too low, because the possibility to surrender the contract before 
maturity has a certain value in itself, and this is not taken into account by this reserving method. 

A second issue is the fact that the pay-offs and as such prices of the two contracts are ordered as given by the 
following theorem: 
Theorem 3 

If a Compounding Guaranteed return contract and a Maturity Guaranteed return contract have the same guaranteed 
return and surrender dates, then the Compounding Guaranteed return contract will be worth more then the Maturity 
Guaranteed return contract at every surrender. 

 
Proof 

The result follows immediately from the fact that at every surrender date, as well as at maturity, the pay-off of the 
Maturity Guarantee contract is dominated by the pay-off of the Compounding Guaranteed return contract. 

As such we have that the contract for which it is not optimal to be surrendered prior to maturity dominates the 
contract that might be surrendered. That is, the European style product dominates the Bermudan one. 

 
2.4. The Role of the Guaranteed Return 

Since we work in a stochastic investment environment, the price of either of these two contracts can not be obtained 
by discounting at the guaranteed return. However, clearly the guaranteed return Gr  will still play a role in setting the 

price of these contracts. Moreover, the guaranteed return will have an effect on the value of these contracts through two 
different mechanisms. This effect takes the following two-step form. 
Step 1 

Like in the case of traditional life insurance contracts, these two contracts offer a minimu m pay-off for every invested 
Euro. As such, it would be interesting to look to these contracts from the opposite perspective. How much does one 
need to pay initially in order to obtain at least a given amount at maturity ? Or, what value should the nominal amount 
D  have, in order to obtain at least one Euro at maturity? For both types of contracts the nominal amount needed to 
effectively guarantee one Euro at maturity is given by: 
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with T  the maturity of the contract. That is, the guaranteed return, sets the nominal amount of the contract. The nominal 
amount being equal to the minimum pay-off at maturity discounted at the guaranteed return. 

 
Step 2 

Having determined the value of D, one can calculate the price of the two contracts for this value of  D. As such, we 
see that the guaranteed return Gr  has a double effect on the value of a contract that guarantees a certain minium pay-off 

at maturity. First it determines the nominal amount  D  that is needed to effectively guarantee this minimum pay-off at 
maturity. Second, the guaranteed return Gr  will have an effect, together with other parameters, on the price of the 

contract with this D as its nominal amount. 
 
Since for a given nominal amount D the price of either of the two contracts is increasing in Gr  these two effects will 

partially compensate for each other. 
 

3. Valuation of the Maturity Guarantee 
3.1. General Discussion 

We first will introduce the concept of a compound call option. A compound call option (of order 2) is a call option on 
a call option, i.e. a call option of which the underlying is itself again a call option ([14], [15] and [16]). For instance, 
consider a contract that entitles one to the following pay-off at 1t : 

 
{ } (14)                                                         .),,),(,(max  12211 KKttStC  
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That is, at 1t , the investor receives the maximum of the amount 1K  and the value of a European call on the asset S 

with exercise date and price given by 2t  and 2K  respectively. In this case the investor holds a call, exercisable at 1t , 

on a underlying call which in turn is exercisable at 2t . We can generalize this to a compound call of order i (with 

exercise date and price given by 1t and 1K )  with an underlying call of order i-1 (with exercise date and price given by 

2t and 2K ), which itself is a call on a call of order i-2, ... until we reach the final underlying European call (with 

exercise date and price given by it and  iK ). We denote the price at time 0t  of such call of order i by: 
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with ),( jj Kt  the exercise date and exercise price of the call of order  i - j+1, underlying the call of order i. Having 

introduced the concept of compound options, we obtain the following theorem that enables us to price the life insurance 
liabilities. 

 
Theorem 4 

If at any date it  (i=0,1,...,n-1)  the value of the future payments, i.e. payments from 1+it  onwards, of the life 

insurance contract that the insured will receive when he exercises the surrender option rationally, is given by: 
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the price at inception of the contract as described above is given by: 
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Proof 

The proof is given by induction. 
 

At 1−nt : 
If the insured has decided not to walk away at 1−nt , he holds a contract that guarantees the payment of  

{ }Gn rtt
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0
0e)(),(max)( −=  at nt . As such the value of the contract is given by: 
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with ),()( TKtK n =  the maturity guarantee. 

This proves formula (19) for n=1. 
 

At 2−nt : 
If at 2−nt  the insured has not exercised his surrender option, he holds a contract that guarantees him of a payment at 

1−nt  given by: 
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That is, at 1−nt   he will receive the maximum of the value given by (20) and )( 1−ntK , the surrender value at 1−nt .  The 

value of the contract equals  
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Formula (22) shows that the value of the contract consists of two parts. The first term on the right side of the second 
equality is the value of a compound call,  the second term is an investment in the mo ney market account. 
 
At int − : 

The induction hypothesis is used and completely analogous, one obtains that at any surrender date int − , the value of the 

future payments when the insured has decided not to end the contract is given by: 
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We now obtain that the value of the future payments is equal to: 
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In the next section we will obtain a semi-analytical expression for the price of the life insurance liabilities in case the 

underlying assets follow a geometric Brownian motion. 
 

3.2. Valuation under the Black and Scholes ([17]) Assumptions 
 
Consider a risky asset S(t) defined on a filtered probability space ))(,P,( ttΩ  where the filtration tt )(  is 

generated by the process  S(t) . Furthermore, we assume that S(t) satisfies: 
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with 0>σ  and that there exists a riskless money market account in which money can be invested at a spot rate r, r>0. 

 
Under these assumptions, we obtain the following result for the value of compound call options. 

 
Theorem 5 

In an economy as described above, the value of a Maturity Guaranteed contract (an n-fold compound call option) 
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and for n>1: 
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with for all i=0,1,…,n-1: 
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the value for in−χ  in formula 29 given by the solution of the following equation: 
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−− Σ  the multivariate normal probability determined by the (n-i)  tuple ),...,( 1 inxx −  for a 

multivariate normal distribution with a vector of means equal to the null vector and a covariance (correlation) 

matrix ),( inn −Σ  (with i=1,...,n-1, the matrix ),( inn −Σ  being the sub-matrix of the n-i first rows and columns of 
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Proof 

For the proof of the above theorem we refer to [18]. 
 
Note that at inception the price of the contract does not depend on the value of the underlying asset S(t). This is a 

result of the fact that under the above assumptions the future changes in S(t) are independent of the current value of  
S(t). However, at any of the future surrender dates the value of the contract will clearly depend on the returns realized 
over the already elapsed sub-periods. 

 
Some sensitivity analysis as generalization of the results obtained by [14] reveal the following results 
 

(32)                                              (.)e e 
2

1
  

2
1

); ,..., ( 

1
)(

2
2

1
-1

02

),(
0

)(
01

)(
1

01

2
1

−
−−

+−

−

=

++
=

Σ−+−+=

n
ttr

jn

dn

j

(n)

nn
n

n
n

n
n

(n)

N
C

ttdttdN
S

C

 

j
j

χ
πσσ

σσ  

 

as was shown by [19]. From these expressions, we observe that any increase in S and 2σ  increases the expected pay-off 
to the option. 

 
4. Valuation of the Compounding Guaranteed Return 

Since the pay-off at maturity of this contract is given by  formula 11  and we can always assume to be dealing with a 
European version of the contract, the price of the contract will be given by: 
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Since in general the returns over the different sub-periods will not be independent, it might be hard, or even 

impossible to obtain an analytical expression for this expected value. We will now turn to the Black and Scholes case. 
 

4.1. Valuation under the Black and Scholes Assumptions 
If  we assume that S(t) satisfies: 
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with 0>σ , and that there exists a riskless money market account in which money can be invested at a spot rate r,  r>0,  
the following result can be obtained. 

 
Theorem 6 

Under the above assumptions the value of a compounding guaranteed return contract as described above is given by: 
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with:  
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Proof 

Because of the independence of the returns over the different sub-periods, one has: 
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The rest is a straightforward application of the Black & Scholes formula. 

� 

Again, as a consequence of the Black and Scholes assumptions, the price of the contract does not depend on the value 
of the underlying asset S(t) at inception. 

 
Corollary 

In case 1−− ii tt  is independent of  i, say ,1 τ=− −ii tt  we obtain the value of the contract by:  
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In this last case, it is interesting to go back to the discussion on the role of the guaranteed return. There, we already 

mentioned that the main purpose of including a guaranteed minimum return in an investment contract often is to make it 
possible to guarantee a minimum pay-off, that is an amount, at maturity. The value of the guaranteed return Gr  then 

determines the nominal amount D of the contract. Let us consider a contract that guarantees a minimum pay-off of a 



9

Euro at maturity. Let us further assume that the contract has n sub-periods of equal length τ .  In this case the initial 
nominal amount is given by: 
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with 0t  the starting date, and nt the maturity date of the contract. As such, the value of this contract is given by: 
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Formula 41  is equivalent with: 
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As such we see that under the Black & Scholes assumptions the Compounding Guaranteed return contract leads to 

discounting at a constant discount factor v, similar as in the classical actuarial approach. With a constant discount factor, 
we mean that this factor does not depend on the maturity of the contract. However, the main difference with the 

classical actuarial method is, that the discount factor v  is no longer equal to  τGre− . Now, v is the product of τGre− with 

the factor ), ()( )( τστ +−+ −− dNedN Grr  that takes into account the options embedded in the contract. With a specific 

choice of the value for the parameters, v becomes equal to one and in that case the contract is issued a pari, in the sense 
that the price is equal to the minimum amount guaranteed at maturity. 

 
5. Numerical Examples 

We will illustrate the results obtained under the Black & Scholes assumptions with some numerical examples. 
 

5.1 The Maturity Guarantee 
We consider a contract with a maturity of 20 years and three different surrender dates: .15 ,10 ,5 321 === ttt  

 
5.1.1. The Case of a Constant Nominal Amount 

Assuming that the nominal amount D, to which the guarantee applies, is equal to 1 Euro, Table 1 illustrates how the 
price of the Maturity Guarantee contract changes as a function of the spot rate Gr  and the guaranteed interest rate r. For 

this table s is equal to 20%. 

 
 Table 1: The Combined Effect of the Guaranteed Return and the Spot Rate 

       

    r   
  4.0% 5.0% 6.0% 7.0% 8.0% 
 2.0% 1.17587 1.12034 1.07790 1.04607 1.02284 
 3.0% 1.24790 1.17587 1.12034 1.07790 1.04607 
rG 4.0% 1.34528 1.24790 1.17587 1.12034 1.07790 
 5.0%  1.34528 1.24790 1.17587 1.12034 
 6.0%   1.34528 1.24790 1.17587 

       
 
     From the above table we observe that, under the Black and Scholes assumptions, the price of the Maturity Guarantee 
contract only depends on the difference between the spot rate and the guaranteed return (just as for the Compounding 
Guarantee contract). 

 
From table 2 we obtain an idea of how the value of the contracts is affected by changes in the difference between the 

spot rate r and the guaranteed return Gr  on one hand and the volatility s of the underlying asset on the other. 
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Table 2: The Combined Effect of the Difference between the Spot Rate and the Guaranteed 

Return and the Volatility 
 

       

    r-rG   
  0.0% 1.0% 2.0% 3.0% 4.0% 
 10% 1.17694 1.09709 1.04638 1.01527 0.99837 
 15% 1.26268 1.17302 1.10970 1.06387 1.03174 
σ 20% 1.34528 1.24790 1.17587 1.12034 1.07790 
 25% 1.42385 1.32002 1.24119 1.17840 1.12835 
 30% 1.49767 1.38839 1.30400 1.23543 1.17941 

       
 

We see that, at inception, the value of the contract is always higher than the nominal amount, and that, as expected, it 
increases in the volatility of the underlaying asset. Secondly, we observe that the price of the contract is  decreasing in 
the difference between the spot rate and the guaranteed return.  
 
5.1.2. The Case of a Constant Minimum pay-off at Maturity 

Assuming that the minimum amount guaranteed at maturity is held constant at 1 Euro, the nominal amount will 
depend on the guaranteed return Gr  as follows: 

 

(44)                                                                                           ,e TrGD −=  

 
with T  the maturity of the contract. Table 3 shows that in this case the value of such a contract, that is with the 
guaranteed minimum pay-off being constant, is a function of both the spot rate r and the guaranteed return Gr , and not 

only of the difference between these two. For table 3, s is again equal to 0.20. 

 
Table 3: The Combined Effect of the Guaranteed Return and the Spot Rate 

       

    r   
  4.0% 5.0% 6.0% 7.0% 8.0% 
 2.0% 0.79133 0.75396 0.72540 0.70398 0.68834 
 3.0% 0.69093 0.65105 0.62031 0.59681 0.57918 
rG 4.0% 0.61397 0.56953 0.53665 0.51131 0.49194 
 5.0%  0.50702 0.47032 0.44317 0.42224 
 6.0%   0.41946 0.38910 0.36664 

       
       

   
   Table 3 also shows that an increase in the guaranteed return Gr  leads to a decrease in the price of the contract. As 

such, although for a given nominal amount a higher value for Gr  leads to an increase in the price, if we keep the 

guaranteed minimum pay-off constant, increasing Gr  results in a lower price. If we now go back to section 2.4, we see 

that the first mechanism through which Gr  affects the price of the contracts dominates.  

Table 4 draws a picture of the sensitivity of this contract to the values of the volatility of the underlying asset and the 
difference between the spot rate and the guaranteed interest rate. Here, Gr  is equal to 4%. 
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Table 4: The Combined Effect of the Spot Rate and the Volatility 
                

       r    
     4.0% 5.0% 6.0% 7.0% 8.0%  
  10% 0.53714 0.50070 0.47755 0.46336 0.45564  
  15% 0.57627 0.53535 0.50645 0.48554 0.47087  
 σ 20% 0.61397 0.56953 0.53665 0.51131 0.49194  
  25% 0.64983 0.60244 0.56646 0.53781 0.51496  
  30% 0.68352 0.63364 0.59513 0.56383 0.53827  

         
 

5.2 The Compounding Guarantee 
We will give numerical results about the sensitivity of value of the Compounding Guarantee contract to the values of 

the different parameters. As in section 5.1, the contract has a maturity of 20 years and can be surrendered at three 
different surrender dates: .15 ,10 ,5 321 === ttt   

 
5.2.1 The Case of a Constant Nominal Amount 

In this section we assume that the nominal amount D to which the guarantee applies, is equal to 1 Euro. Table 5 gives 
numerical results about the sensitivity of the value of the contract to changes in the volatility of the underlaying asset 
and the difference between the spot rate r and the guaranteed return Gr . From section 4 we know that the value of the 

contract only depends on the difference between these two returns, not on the value of each of them. 
 

Table 5: The Combined Effect of the Difference between the Spot Rate and the Guaranteed 
Return and the Volatility 

       

    σ   
  10.0% 15.0% 20.0% 25.0% 30.0% 
 0% 2.05577 2.78937 3.65759 4.64450 5.72368 
 1% 1.86848 2.53193 3.31788 4.21153 5.18884 
r-rG 2% 1.71342 2.31280 3.02491 3.83531 4.72185 
 3% 1.58497 2.12588 2.77163 3.50760 4.31315 
 4% 1.47857 1.96610 2.55214 3.22148 3.95464 

       
 

5.2.2 The Case of a Constant Minimum pay-off at Maturity 
Assuming that the minimum amount guaranteed at maturity is held constant at 1 Euro, table 6 and figure 1 show how 

the value of this contract depends on the values of the guaranteed return and the spot rate. In table 6, s is set equal to 

20%. 
 
 

Table 6: The Combined Effect of the Guaranteed Return and the Spot Rate 
              

         R    
     4.0% 5.0% 6.0% 7.0%  
   2.0% 2.03567 1.86523 1.71752 1.58923  
   3.0% 1.83703 1.67482 1.53458 1.41306  
 rG 4.0% 1.66927 1.51424 1.38053 1.26493  
   5.0% 1.52733 1.37851 1.25047 1.14006  
   6.0% 1.40706 1.26358 1.14045 1.03453  
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Figure 1: The Combined Effect of the Guaranteed Return and the Spot Rate 
 
 
Table 7 and figure 2 show how changes in the value of the spot rate and the volatility affect the value of this contract. 
 

Table 7: The Combined Effect of the Difference between the Spot Rate and the Guaranteed 
Return and the Volatility 

                

        σ      
     10.0% 15.0% 20.0% 25.0% 30.0%  
   4.0% 0.93823 1.27303 1.66927 2.11969 2.61221  
   5.0% 0.85275 1.15554 1.51424 1.92209 2.36812  
 r 6.0% 0.78198 1.05553 1.38053 1.75039 2.15499  
   7.0% 0.72336 0.97022 1.26493 1.60082 1.96847  
   8.0% 0.67480 0.89730 1.16476 1.47024 1.80485  
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Figure 2: The Combined Effect of the Difference between the Spot Rate and the Guaranteed 

Return and the Volatility 
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Note that the above tables and figures illustrate theorem 3, that is the price of the Compounding Guarantee contract 
dominates the price of the Maturity Guarantee contract. 

 
6. Conclusion 

We showed that of the several embedded options that can be found in traditional with-profits life insurance contracts 
and unit-linked contracts, none can be modelled independently of one another. Especially, there turns out to be a close 
connection between the surrender feature and the precise way in which the guaranteed return has been modelled. Also 
reserving methods are affected by how the minimum return has been defined. 

With respect to future research, it would be interesting to see how these results can be replicated under a more 
general model of the financial market, e.g. under a stochastic term-structure model. Secondly, it might be interesting to 
see what the implications would be of allowing the contracts to be sold for a (constant) periodic premium. 
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