
A MARKOV CHAIN MODEL OF SERIAL PRODUCTION SYSTEMS   
WITH REWORK 

George C. Hadjinicola 

Department of Public and Business Administration, School of Economics and Management, 
University of Cyprus, Kallipoleos 75, P.O. Box 20537, CY 1678 Nicosia, Cyprus 

Tel: +357-2-892473, Fax: +357-2-892460, Email: bageorge@ucy.ac.cy 
 

Abstract 

In this paper, we present a Markovian modeling framework that can describe any serial production system with 
rework. Under this framework, each production stage is represented by a state in the Markov chain. Absorbing states 
indicate the events of scrapping a product at a production stage or the completion of the finished product. Generalizable 
formulae for the final absorption probabilities are derived that represent: (1) the probability that an unfinished product is 
scraped at a certain production stage and (2) the yield of the system. We also derive various expected costs and 
quantities associated with all products ending in any absorbing state, as well as the equivalent costs and quantities for 
finished products. The applicability of our modeling framework is demonstrated in a real-life manufacturing 
environment in the food-packing industry. We show how the model can be used to assess the impact of changes in the 
transition probabilities on the various expected costs and quantities. The model can be used as a decision-making tool to 
assist management identify the production stage(s) that if improved, will yield the maximum benefit in terms of the 
costs and yield of the serial production system.  

1.     Introduction 

Certain production systems follow a serial configuration. Examples of serial production systems include 
electronic and automotive assembly systems, semiconductor fabrication facilities, chemical processes, and food 
processing and packing systems. Serial production systems are in a sense simpler forms of multistage production 
systems. The majority of the literature on serial production systems has been on production control issues where, given 
the random yield at each production stage, the objective is to determine the optimal production policy that minimizes 
various costs. For example, Lee and Yano [20] developed an approach for production control in serial production 
systems where the yield at each production stage follows a dis tribution. Their objective was to determine in a single-
period model, the optimal input quantity at each production stage to minimize the expected total cost, given a fixed and 
known demand for the single product produced by the serial production system. Tang [26] presents a discrete time 
model of a serial production system facing uncertainty in the output rate and demand, in order to examine the impact of 
these uncertainties on the production level and inventory at each production stage. Work on production planning in 
serial production systems has also been done by Kimura and Terada [16], Wein [27], Karimi [15], Akella et al. [2], 
Hendricks and McClain [13], Grosfeld-Nir and Robinson [10], Lee [19], and Hwang and Singh [14]. Denardo and Lee 
[6] provide a review on the control of serial production systems. 

Yano [8] examined a two-stage serial production system where its processing and procurement times were 
stochastic. Yano presented a solution procedure that determined the optimal lead times which minimize the sum of 
inventory holding costs and job tardiness costs given a customer specified due-date. Optimal lead times in serial 
production systems were also examined by Gong et al. [9] and Mohan and Ritzman [22]. Other related work on serial 
production systems  includes lot sizing in serial systems. Harrison and Lewis [11] and Yano and Lee [29] provide a 
review on the topic. Conway et al. [4] examine the role of work-in-process inventory in serial production systems. 
Ballou and Pazer [3] and Rebello et al. [23] examine inspection issues in serial production systems. 

While considerable research has been done on production planning in serial production systems, the concept of 
rework in such production systems has not been adequately addressed. Recognizing this need, Lee and Yano [20] point 
that more research must be done on rework issues in serial production systems. The importance of rework is highlighted 
in a study by Fisher and Ittner [8] who examined the impact of product variety on the performance of a GM automobile 
plant. They found that in each month, on average, 1.9% of the finished products required major rework. They further 
showed that the percentage of products requiring rework had a significant impact on the overhead labor hours implying 
an increase of the average cost per unit. 



Modeling work incorporating rework in serial production systems has been carried out by Akella et al. [2] and 
Wein [27]. Akella et al. modeled a discrete time, multiproduct, two-stage production system with rework, where test 
operations were performed at each production stage. The objective was to determine the optimal dispatch policy that 
minimizes the long-term expected cost which consisted of the sum of inventory holding, backlogging, and overtime 
costs over a finite horizon. Each production stage was characterized by its random yield and demand was also random. 
They proposed two approximate policies for the optimal dispatch policy. Wein [27] presented a production planning 
model for a serial production system where at each production stage, decisions must be made regarding the number of 
“good” products to be sent to the next stage, as well as the number of products to be sent for rework. Modeling 
approaches that considered rework include the work by Denardo and Tang [5], and Lee [18]. So and Tang [25] and 
Agnihothri and Kenett [1] consider rework issues in a single-stage production system. Sarkar and Zangwill [24] link 
cyclic queue systems and production systems with rework. 

Rework in general, requires additional labor hours and perhaps the scraping of defective components which 
further results in the increase of the average unit cost. As such, one aspect of rework that the above studies did not 
address is the cost of rework and the impact that the yield of each production stage has on such cost. Our aim in this 
paper is to provide a modeling framework that address the following question: Given a production system where rework 
is allowed, which production stages should management try to improve in order to obtain the maximum benefits in 
terms of the yield and the costs associated with the entire production system? 

In this paper we model a production system with rework as a first-order Markov chain where each production 
stage is represented by a transition state. Absorbing states, associated with each production stage, represent the 
termination of the production process in the events that an unfinished product is scraped or completed into a finished 
product. The model facilitates the derivation of formulae for the final absorption probabilities which represent: (1) the 
probability that an unfinished product is scraped at a certain production stage and (2) the probability that a product is 
completed, which is also the yield of the system. In addition, we derive various expected costs and quantities for the 
serial production system for all products ending in absorbing states. We also derive the equivalent formulae of the costs 
and quantities for finished products. The latter costs are of particular interest to the management of a firm operating a 
serial production system. Such expected costs and quantities include, for example, the time and cost spent on rework by 
each product, the number of production stages visited, and the time required by each product for its completion. 

The Markov chain modeling framework is generalizable and can model any possible configuration of a serial 
production system with rework. This is accomplished by setting the appropriate transition probabilities to zero. The 
model can be used to assess the impact of changes in the transition probabilities (for products moving to the next or 
previous production stage) on the various expected costs and quantities mentioned above. This can be accomplished 
without performing simulations since closed form formulae have been derived. This provides insights as to where 
management should focus its efforts in order to improve the system. It allows through a sensitivity analysis to see the 
system's future performance upon changes in its parameters. The generalizability and applicability of the model is 
demonstrated with a real-life manufacturing environment in the food-packing industry. 

2.     Markov Chain Representation of Serial Production Systems 

Multistage production systems have been modeled as networks with nodes representing production stages and 
Markovian branching indicating the movement of the product in the system. Due to the complexity of multistage 
production systems, simulation techniques have been most commonly used in examining such systems. Deuermeyer et 
al. [7] describe the above approach for semiconductor fabrication facilities. Other Markov chain representations of 
serial production systems include the work by Hendricks [12], and Denardo and Tang [5]. Koulamas [17] considered a 
single stage production system where demand, production times, machine breakdown, and repair times were stochastic. 
Koulamas used a Markovian approach where the states of the process characterized the status of the production state 
(busy, idle, undergoing repair) and its buffer (number of units in the buffer). Using the single stage system as a building 
block, he formed serial production systems and extracted, with the use of simulation, the probability that the last 
production stage falls in one of the above states. Li [21] modeled a serial production line with unreliable machines and 
limited repair as a continuous time Markov process with state space describing the status of the production stages as up, 
down-in-repair, or down-waiting for repair. The objective was to propose rules for repairing the broken machines. 

In our modeling framework, serial production systems with rework are modeled as first-order Markov chains. 
The states of the Markov chain represent the production stages and the absorbing states, associated with each state, 
represent the termination of the production process and scraping of the unfinished product or the completion of the 
unfinished product into a finished product. Value added at each production stage may involve processing, assembly, and 
inspections operations or combination of the three. Forward transitions between states indicate the movement of 
unfinished products to subsequent production stages for further processing. Backward transitions between states 
indicate the movement of unfinished products to preceding production stages for rework. In this formulation, we 
assume that no capacity constraints exist, and that the serial production system is operating at its steady state, 
processing a family of products requiring the same machine sequence. The fact that in serial production systems, 
products undergo processing or assembly in a predefined sequence of production stages, it is natural to consider Markov 
chains that allow only for transitions between adjacent states.  



2.1 Derivation of Absorption Probabilities 
The Markov chain of the serial production system is a 2n+1 state Markov chain with transient states {1,2,…,n} 

and absorbing states {Ä1,Ä2,...,Än,F}. The transient states represent the production stages of the serial production 
system. The absorbing states Äj, j=1,…, n represent the scraping of an unfinished product at production stage j due to 
defects that cannot be reworked. The absorbing state F represents the completion of the manufacturing process, 
implying that a product has passed through all production stages and ended up as a finished product. 

Define the transition probabilities as: 
P(Xk+1= j-1 | Xk=j)  =  qj,  2 <  j < n, 
P(Xk+1= j+1| Xk=j)  =  pj,  1 <  j < n-1, 
P(Xk+1= Äj | Xk=j )  =  1 - pj - qj, 1 <  j < n, 
P(Xk+1= F | Xk=n)  =  pn.   

For the above Markov chain follows that q1= 0 and that pj ≠ 0, ∀j. Nevertheless, if qj = 0 for some j ∈ 
{2,3,...,n}, then this shows that no backward transition is allowed at that production stage, implying that a defective 
unfinished product detected at stage j will not be send to the previous production stage for rework. That is, the error is 
irrecoverable and the product must be scraped. In this formulation, we assume that p j for a product that has undergone 
rework is the same for a product that has not. In a similar way, we assume that qj for a product that has already 
undergone rework is the same for a product that will undergo rework for the first time. These assumptions imply that 
the probability of an error occurring at a production stage may be considered constant. This stems from the fact that a 
machine performing an operation on a product, does not distinguish between products that have already undergone 
rework and products that have not. 

Note that the above Markov chain formulation of serial production systems, is general enough to describe any 
serial production system. This is accomplished by setting the appropriate transition probabilities to zero. For example, 
consider the serial production system where every production stage is followed by an inspection stage and rework is 
performed in the production stage preceding the inspection stage at which the error is detected. By setting qk = 0, k = 
{3,5,7,…}, we describe the above serial system. 

Eventually, Xk becomes absorbed in the set {Ä1,...,Än,F}. Call the limiting state X∝, and let: 
 
Si,Äj = P(X∝ = Äj | X0 = i) and Si,F = P(X∝ = F | X 0=i) 

 
denote the probabilities of absorption in state Äj and F, respectively, starting from state i. From a practical point of view 
though, the quantities that are of interest are S1,Äj = P(X∝ = Äj | X0 = 1) and S1,F = P(X∝ = F | X 0=1). S1,Äj 
represents the probability that a product entering the serial production system will be scraped at stage j. Equivalently, 
Si,Äj represents the percentage of the products that start from the first production stage and end up as scrap in production 
stage j. S1,F represents the yield of the serial production system at its steady state, that is, the percentage of products that 
start from the first production stage and end up as finished products. 

In the propositions that follow we set empty products equal to 1. Proofs can be obtained from the author. 
Proposition 1:  Let 

rn = rn-1 =1, rk-2 = rk-1 - pk-1qk rk,  for  2 < k < n,      (1) 
t1 = t2 = 1, tk+2 = tk+1 - qk+1pk tk,  for  1 < k < n-1.     (2) 

Then 
                                                 1 – pj - qj 

Sj,Äj =          ,  1 < j < n,   (3) 
   1 – qj pj-1(tj-1 / t j) - pj qj+1(rj+1 / rj) 

                                                 1 – pn – qn 
Sn,Än =          ,    (4) 

              1 – qn pn-1(tn-1 / tn) 
 
                           j-1 

S1,Äj = (Ð pi)( Sj,Äj / t j), 1 < j < n       (5) 
           i=1 
            n-1 
S1,F =  [pn / (1 - pn - qn)]( Ð pi)( Sn,Än / tn)      (6) 

              i=1 

2.2     Expected Costs and Quantities for Products Ending in Any of the Absosrbing States 
The Markov chain modeling framework can also be used to compute various expected costs and quantities 

associated with the serial production system. Such expected costs and quantities include the expected number of 
production stages visited before a product is scraped or completed, the expected time until a product is scraped or 
completed, the expected cost of a product whether scraped or completed, the expected number of states visited for 
rework by a product whether scraped or completed, and the expected time and cost allocated for rework for products 
scraped or completed. These values represent measures of performance of the serial production system. 



To compute the first three of the above costs and quantities, we associate each state k with a number ek which 
can be viewed as the “weight” or “cost” of visiting state k. For example, setting ek=1 gives a cost of 1 every time a state 
is entered. Therefore, summing over all states yields the total number of times states have been entered, or equivalently, 
the total number of production stages visited. Similarly, ek may represent the average cost accumulated while in state 
(production stage) k or the average time required for the production operation in stage k. Average or fixed values for 
production costs and processing times have also been used in formulations of serial production systems by Lee and 
Yano [20] and Akella et al.[2]. 

The proposition that follows, presents the formulae for the first three costs and quantities (expected number of 
production stages visited before absorption, expected time until absorption, and expected cost of a product absorbed in 
any absorbing state) associated with a serial production system. Subsequently, the results of the proposition will be used 
to extract the other three quantities (expected number of states visited by a product for rework, expected time and cost 
spend on rework). Note that the expected costs and quantities described in this subsection are related to all products 
ending in absorbing states, whether finished or scraped. In the proposition that follows, we denote by C to be the total 
cost associated with one of these costs and quantities. 
Proposition 2:  Let 

cn-1 = qn, dn-1 = en, f2 = p1, g2 = e1       (15) 
and 

ck-1 = qk / (1-pkck), dk-1 = (ek+pkdk) / (1-pkck) for  2 < k < n,     (16) 
fk+1 = pk / (1-qkfk ), gk+1= (ek+qkgk) / (1-qkfk ) for  2 < k < n,     (17) 

 
Then 

C = (bc+d) / (1-ac) 
where 

    n-1                n-1  n-1           n                 n     j-1 
a= Ð cj,         b=Ódj Ð cj,         c= Ð fj,         d= Ógj Ð fi      (18) 
    j=1                j=1  i =j+1           j=2               j=2  i=2 

 
For the special case where the production system does not allow rework, implying qk=0, ∀k, the formulae in 
Propositions 1 and 2 simplify considerably. The proposition that follows presents these formulae. 
Propositions 3:  If qk=0, ∀k, then 

       j-1 
S1,Äj = (1-pj) Ð pi, 1 < j < n, 
      i=1 

         n-1                n-1 
S1,Än = (1-pn) Ð pi, S1,F = pn Ð pi, 
        i=1                i=1 

 
            n     n-1 

    C = Ó ej Ð pi.       (22) 
           j=1  i=1 

From Proposition 3, we observe that when qk=0, the absorption probability formulae reduce to a simple 
multiplication of the transition probabilities. In addition, we note that when ek=1, that is, when C represents the number 
of state visits  before absorption, we can compute C alternatively by arguing that for 1 < j < n we visit j states before 
absorption with probability (1-pj)\Ði=1

j-1pi and n states with probability Ði=1
n-1pi. Therefore, 

C= Ój=1
n-1j(1-pj) Ði=1

j-1pi + n Ði=1
n-1pi, which is equivalent to C in Proposition 3 when ek=1. 

An additional observation from Propositions 1 and 3  is that the subtraction of S1,F in Proposition 3 from the 
respective value in Proposition 1 yields an important quantity for a serial production system, namely the improvement 
in yield attributed to the rework operation. 

Given the formulae in Propositions 2 and 3 we can now extract all expected costs and quantities mentioned 
above for all products ending in any of the absorbing states. Products that end up in the absorbing states Äj,  j= 1,…., n, 
of production stage j, indicate that the error detected can not be reworked, resulting in scraping the product. 
Furthermore, products may end up in the final absorbing state F indicating the completion of the product into a finished 
product. 
Expected number of state visits. As stated above, by setting ek=1, k=1,….,n, the cost formulae in Proposition 2 will 
yield the expected number of states visited by all products ending in one of the absorbing states, including F. Define this 
cost as Statesall. 
Expected time until a product ends in an absorbing state. If we allow ek to represent the average time required for 
processing, assembly, inspection operations or any combination of them in state (production stage) k, the cost formulae 
in Proposition 2 will yield the expected time it takes a product, scraped or finished, to end up in an absorbing state. 
Define this cost as Timeall. 
Expected cost of production with rework. Similarly, if we set ek to represent the average cost of production at stage k, 
the cost formulae in Proposition 2 will yield the expected cost of all products ending in absorbing states, whether these 
products are scraped or finished. Define this cost as Costall. 



Expected cost of rework. To compute the expected cost of rework for all products ending in absorbing states, simply 
note that from Proposition 2 we can compute the expected cost of production with rework and from Proposition 3 we 
can compute the expected cost of production for a system when no rework is permitted. If for a serial production system 
with rework we set qk=0, ∀k, then the system degenerates to one where no rework is permitted and any defective 
product detected at any production stage of the production process will be scraped. Therefore, the cost of rework for a 
serial production system with rework is given by C|q1=0 - C|qk=0,∀k, where C is given Proposition 2. Define this cost as 
Reworkall. 
Expected number of states visited for rework. Similarly, the expected number of states visited for rework by all 
products, whether they end up as scrap in an absorbing state or as finished products in the absorbing state F, is given by 
C|q1=0 - C|qk=0,∀k, when we set ek=1. The function C is given in Proposition 2. Define this quantity as States(Rework)all. 
Expected time spend on rework. To compute the expected time spend on rework by all products ending up in any of 
the absorbing states including F, we simply obtain C|q1=0 - C|qk=0,∀k, when ek represents the average time spend while in 
state (production stage) k. The function C is given in Proposition 2. Define this quantity as Time(Rework)all. 
 
2.3     Expected Costs and Quantities Associated with Finished Products  

The expected costs and quantities computed above are associated with all products ending in any of the 
absorbing states, whether scraped or finished products. These costs are extremely useful to management since they can 
be considered as measures of effectiveness of the serial production system. However, management's attention usually 
focuses on costs and quantities associated with the finished products. 

To compute the related costs and quantities for the finished products only, assume that the serial production 
system has processed N products. This number includes all products ending in all absorbing states whether they are 
scraped products or finished goods. In other words, N represents the number of products that started the first production 
stage and either end up as scraped products in one of the absorbing states Äj,  j=1,…., n, or as finished goods in state F. 
Given the above, the expected total number of states visited for the production of these N products is given by N x 
Statesall. Since S1,F represents the yield of the serial production system, S1,F x N represents the expected number of 
finished products in the case where N products end up in any of the absorbing states. If we define States finished as the 
number of states visited, that a finished product must be “burdened” for its production then, 

States finished
 = (N x Statesall) / (N x S1,F)= Statesall / S1,F 

In other words, for every finished product, States finished must be visited. Following a similar argument as the 
one above, the expected production time that a finished product is “burdened” with for its production is given by 
Timefinished = (N x Timeall) / (N x S1,F) = Timeall /S1,F. In general, if we divide the costs computed for all the products 
ending in absorbing states by the yield of the serial production system S1,F, we obtain the respective costs for the 
finished products only. As such, Costfinished = Costall / S1,F represents he actual cost of a finished product. We can also 
compute the above cost by summing up the cost of production, the cost of rework, and all the value added to products 
that have been  scraped and divide this sum by the number of finished products. 

The quantities States(Rework)finished = States(Rework)all / S1,F, Time(Rework)finished = Time(Rework)all / S1,F, and 
Cost(Rework)finished = Cost(Rework)all /  S1,F represent the expected number of states visited for rework, time spend on 
rework, and the cost of rework, respectively, that a finished product is “burdened” with. An important quantity that can 
be estimated from the Markov chain formulation of a serial production system, is the expected cost of scrap that each 
finished product is “burdened” with. Define Scrapfinished as the cost that a finished product is “burdened” with from 
products that have been scraped during the production process. This cost is given by 

     n        n 
Costfinished - Óek - Cost(Rework)finished < Scrapfinished < Costfinished - Ó ek, 

     k=1       k=1 
where ek represents the average cost of production at production stage k. The upper bound of the cost of scrap equals to 
the true expected cost of production of a finished product minus the cost of rework for a finished product as derived 
above. In other words, the upper bound assumes that all products reworked are scraped. Since though, not all products 
reworked end up as scrap, the theoretical minimum for the cost of scrap, and thus the lower bound, is reflected in the 
case where no product that has been reworked ends up as scrap. 
 
3.     Application of the Modeling Framework 

The applicability of the model presented in this paper is demonstrated in a real life manufacturing 
environment. The company in question performs honey-packing operations. The production process consists of three 
stages that are arranged serially. During the first stage, glass jars received from the glass manufacturers are removed 
from pallets and are placed on a conveyor belt. During the unloading process, glass jars may break resulting in the 
scraping of the whole jar. Breakages occur more frequently in the case where the plant packs small jars with delicate 
handles. During he second stage, the glass jars are moved by the conveyor belt to pneumatic filling machine that 
releases a prespecified quantity of warm honey in the jars. Problems in this stage may be caused from misplaced jars, 
which lead to spillovers, by the filling machine. In such cases, quantities of honey are lost and several jars need to be 
reworked, i.e., cleaned in order to be reused. In addition, rework appears in the form of returning quantities of honey to 
the storage tank from the jars that are to be cleaned. Finally, during the third and final stage, lids are placed on the jars 
emerging from the filling machine (second stage). In addition, a label is attached to the jars by a labeling machine. 



Eventually, jars are manually packed in carton boxes. Defects in this stage result from mis placed labels and/or lids, and 
from breakages during the manual carton-packing process. Rework at this stage includes the removal of labels or lids 
and the proper labeling and capping. 

The transition probabilities of the three stages were supplied by the firm's management based on historical 
data. The values of the transition probabilities are equal to p1=0.96, p2=0.97, p3=0.96, and q1=0, q2=0.02, q3=0.02. The 
average times and costs needed at the three production stages are given by the vectors (1,2,2) and (2,3,1), respectively.  
The “low” forward transition probabilities of the three stages were attributed by management to human error resulting 
from the manual operations and the “aging” machinery. 

Table 1 presents the absorption probabilities of each production stage. Of particular interest is the value of 
S1,F=0.92984 which represents the probability that a product starting from the first production stage will end up as a 
finished product. As such, this value represents the yield of the serial production system. The table also includes the 
various expected costs and quantities discussed earlier for all products ending in absorbing states and also the respective 
costs and quantities for the finished products only. Consider for example the costs and quantities associated with all 
products ending in absorbing states. The expected number of states visited before absorption is equal to 2.98710. If the 
production stages of the serial system were free of quality problems, that is pk=1, ∀k, then the number of states visited 
would have been three. The expected number of states visited before absorption is less than three since in the serial 
production system presented in this paper, products get absorbed before visiting all states. As such, the expected 
number of states visited can be viewed as a performance measure of the serial system. 

From Table 1 we also see that the expected time needed for a product to be absorbed is equal to 4.95423. Since 
the yield of the three production stages is less than one, this implies that the expected time required for a product to be 
absorbed is less than the time need for the completion of a finished product (in the case where no quality problems are 
present). As mentioned above, this occurs when pn=1, ∀k. The closer the expected time until a product is absorbed to 
five (the sum of times at each production stage) the better the performance of the serial production system. Similarly, 
the closer the expected cost of production with rework to six (the sum of costs at each production stage) the better the 
performance of the system. Furthermore, the closer the expected number of states visited for rework, expected time 
spend on rework, and expected cost of rework are to zero, the better the performance of the system. 

Table 1 also presents the true costs associated with the finished products. For example, consider the expected 
number of states visited which is equal to 3.21248. This implies that for every finished product that is completed, 
3.21248 states have to be visited. In the case where no quality problems are present, a product is required to visit three 
production stages for its completion. The difference of 0.21248 can be attributed to the inefficiency of the system due to 
quality problems and rework. Similarly, every finished product produced is “burdened” with 5.32803 units of 
production time. A product undergoing production with no quality problems and thus no rework, would require five 
units of time. The difference represents the excess production time that a finished product is burdened with due to 
quality problems. A more important value is the true expected cost of a finished product which is equal to 6.45717. A 
product that undergoes production without any quality problems, would require a cost of six. Therefore, the difference 
between the two values represents the excess cost due to the scraped material and rework performed. When improving 
the serial system, the expected cost of finished products should be as close as possible to six. Similarly, the expected 
cost of rework should be as close as possible to zero.  

The analysis in this paper can also assist us to determine a range for the cost of scrap. Since the expected cost 
of a finished product is 6.45717 and the cost without any quality problems is six, the difference of 0.45717 includes: (1) 
the cost of rework whose value, from Table 1, is equal to 0.20752 and (2) the per finished product expected cost of 
scrap. Note that some of the products reworked end up as scrap. This implies that 0.45717 is the theoretical maximum 
cost of scrap. The minimum theoretical cost of scrap is given by 0.45717 - 0.20752 = 0.24965, which represents the 
case where no product that has been reworked is scraped. Improvements in the quality of the system would translate 
into a lower minimum and maximum cost of scrap. 



 

 

Absorbing State pk qk Absorption Probability   

   Ä1 0.96 0.00 0.04080  

   Ä2 0.97 0.02 0.00999  

   Ä3 0.96 0.02 0.01937  

   F     0.92984   

 

Costs (For all products ending in absorbing states) ek     

Expected number of state visits  (1,1,1) 2.98710  

Expected time until a product is completed (1,2,2) 4.95423  

Expected cost of production with rework (2,3,1) 6.00416  

Expected number of state visited for rework  0.09590  

Expected time spend on rework  0.17183  

Expected cost of rework  0.19296  

 

Costs (For finished products)       

Expected number of state visits  3.21248  

Expected time until a product is completed  5.32803  

Expected cost of production with rework  6.45717  

Expected cost of rework  0.20752  

Expected cost of scrap     0.24965 < cost of scrap < 0.45717 

 

Table 1: Absorption probabilities and expected costs and quantities from a food-packing serial production system. 

4.     Conclusion 

Serial production systems with rework can be represented as a first-order Markov chain. Using this modeling 
framework, we derive formulae for the final absorption probabilities which represent: (1) the probabilities that a product 
gets scraped at a certain production stage and (2) the probability that a product ends up as a finished product, which is 
equivalent to the yield of the system. In addition, we derive various expected costs and quantities for the serial 
production system. The model can be used to assess changes on the system's yield, costs, and quantities caused by (1) 
changes in the transition probabilities of a product moving to the next or previous production stage and (2) changes in 
various parameters associated with each production stage, such as the average time spend in the stage or the cost while 
in this stage. This provides insights as to where management should focus its efforts when improving the system. It 
allows through a sensitivity analysis to see the system's future performance upon changes in its parameters. The 
applicability of the framework is demonstrated with a real-life example from the food-packing industry.  

Directions of future research include the modeling of a serial production system which adopts batch processing 
instead of continuous processing. In addition, as in Lee and Yano [20], the analysis can be extended to include 
distributions of yield at each production stage. Similarly, we may consider the above analysis for serial systems where 
processing times at each production stage follow a distribution. As evident from the application of the modeling 
framework, improvements in the yield of the production stages of a serial system are more cost effective when 
performed first at the final stages of production. This result can be further pursued in order to obtain an analytical proof 
which is generalizable for any multistage production system. 
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