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Abstract 
 

In this research we are going to develop group maintenance policies for a service/production system by 
considering the number of customers dynamically in the queue. It means that we generate the related group 
maintenance models by allowing the maintenance decision to depend on the number of customers in the system at 
any given time.  

Group maintenance models can be applied in many fields of business and military including production 
process of manufacturing factory, service process of service-providing company, maintenance process of military 
weapon system, etc.. The main idea of group maintenance is to delay the initiation of the maintenance process 
until more servers have failed, so that the fixed repair cost is distributed over more servers.   

The typical approach in the analysis of group replacement policies is to assume that the operating machines 
produce output at a constant rate. It is maybe realistic for automated high-volume production processes of 
manufacturing company, but definitely not the case for service-providing company, such as bank, 
telecommunication business, internet-related service provider, etc. Therefore, it is more reasonable to assume such 
service systems where the customers/jobs arrive according to a random stream.  

In this research we consider a production/service system with multiple independent servers operating in parallel 
and a single Markovian queue. The servers are unreliable with identically exponentially distributed failure times 
and the repair time is also assumed to follow exponential distribution. The repair cost consists of a fixed cost 
associated with starting the repair process and a variable cost proportional to the number of repaired servers. 
Customers arrive in accordance with a Poisson process, and the service time for each customer  follows an 
exponential distribution. Then we can obtain more precise customer holding and loss cost than the traditional 
group replacement models in which generally assume constant production job arrivals. Finally, we try to develop a 
specific class of group maintenance policy: A customer -dependent group maintenance model, where the decision 
on initiating repairs depends on the number of customers present in the system. We formulate this model as a 
continuous time Markov decision process, and  show that the optimal group maintenance policy has a threshold 
structure. 

Keywords: Group maintenance policy; Group replacement policy; Customer-dependent group maintenance 
policy; customer holding cost; customer loss cost; repair cost; opening/setting up 
 
1. Introduction 

A large amount of research has been devoted to finding optimal replacement policies of the group replacement models. 
According to our observation, there are three main types of group replacement policies, which have been studied in most of 
the literature. The first one is T-age group replacement policy. The main idea for this policy is that no failed machine is 
repaired until a scheduled time T. Then all failed machines in the system are repaired simultaneously. In Barlow, Proschan, 
and Hunter, it is shown that the optimal scheduled time for preventive maintenance is nonrandom and there exists a unique 
optimal policy if the distribution of time to failure has an increasing failure rate. A detailed analysis for determining optimal T 
is presented in Okumo to & Elsayed. For the case of exponential distribution, a closed form expression for T* is developed. 
For general underlying failure distribution, bounds for T* are derived. The second one is M-failure replacement policy. The 
main idea for this policy is that we do not repair any failed machine until m failed machines have occurred. Then all failed 
machines in the system are fixed at the same time. Assaf & Shanthikumar has considered two models with exponential failure 
times with parameter λ  and a more general replacement policy f(m,n): when the number of failed machines reaches m, n 
machines are repaired. They show that the optimal repair policy is either not to repair any failed machine or to repair with an 
f(m,m)-type policy. This is effectively a m-failure group replacement policy. By extending Assaf & Shanthikumar’s repair and 
replacement model, optimal m-failure policies with nonnegative random repair time are discussed in Wilson & Benmerzouga. 
The last one is (m,T) group replacement policy. The main idea for this policy is that we do not repair any failed machine until 
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a scheduled time T or upon m failed machines whichever comes first. Then all failed machines in the system are repaired at 

the same time. Nakagawa has considered the optimal numberm*
to minimize the mean cost rate when the scheduled 

replacement time T is specified. Ritchken & Wilson have considered a generalization of the combined (m,T) group 
replacement model which requires inspection at either the scheduled time T or the time when exactly m machines have failed, 
whichever comes first. At an inspection, all failed machines are replaced with new units while operating machines are 
serviced so that they become as good as new. 

Also, the analysis of the group replacement model is somewhat related to or based on that of a single machine 
with minimal repair and replacement options. A comprehensive discussion on different maintenance policies for this 
kind of model is included in Beichelt. The mathematical background for analyzing maintenance policies with minimal 
repair is presented and Standard maintenance policies are summarized. 

The typical approach in the analysis of group replacement policies is to assume that the operating machines 
produce output at a constant rate, that is, there is a continuous input flow of production jobs into the system. This means 
that when a failed machine is left un-repaired, there is a production loss cost incurred at a constant rate. Although the 
assumption of continuous inflow is appropriate for high-volume production processes, it may be realistic for systems 
where the jobs arrive according to a random arrival stream. In this case, the production loss cost rate is not constant, but 
instead it depends on the number of jobs waiting for service at any given time. It means that we can obtain more precise 
production holding cost to respond the random situation of real world than the traditional group replacement models in 
which we assume constant production job arrivals. 

The group replacement problems we described in this paper also fall in two categories of queuing system with 
unreliable servers. In the first category, the matrix-geometric method for steady state analysis of a certain class of continuous 
time Markov processes is usually applied. The earliest results on matrix-geometric solutions are contained in the paper of 
Evans and the Ph.D. thesis of Wallace for block-Jacobi generators of continuous-parameter Markov processes of the GI/M/1 
type, called quasi birth and death (QBD) processes. In Neuts & Lucantoni and Neuts, a M/M/N queueing system is analyzed 
and modeled as a continuous time Markov chain with state (x,w), where x denotes the number of customers in the system, and 
w the number of operating servers. The steady state probability vector is shown to be of matrix-geometric type. The average 
system length and waiting time distribution are also calculated. In the second category, the semi-Markov decision process is 
usually applied to solve this kind of repair problems. Federgruen & So (1989) considers a single-server queueing system with 
Poisson arrivals and general service times. While the server is working, the breakdowns are subject to a Poisson process. 
When the server is failed, it needs to decide to repair the server immediately or delay the repair of failed server until the 
number of customers in the system exceeds certain threshold of an optimal stationary policy. By extending the previous results, 
a modified model is developed by Federgruen & So (1990) to repair the failed server immediately by initiating one of two 
available repair operations. They have proved a weaker result: There exists an optimal stationary policy which applies the 
faster repair if and only if the number of customers in the system exceeds a certain threshold.   

In this research we consider the general class of group replacement policies which allow the maintenance decision 
to depend on the number of customers in the system as well as the number of operating servers at any given time. These 
policies are expected to be more cost-efficient than the standard group replacement policies that depend on the number 
of servers only. The reason is that if at a given instant several servers have failed but the system is not overcrowded, it 
may be beneficial to postpone the group replacement in order to allow for more servers to fail before the replacement is 
started, so that the fixed repair cost is distributed to more servers. At the same time the customer delay costs are not too 
high if the number of customers present is not too large. Because the replacement action is now dynamic, the problem 
of finding a maintenance policy to minimize any cost can be formulated as a continuous-time Markov decision process. 
 
2. Problem Description and Model Formulation 

In this research we consider a production system with N independently operating servers and a single queue. 
Customers arrive in accordance with a Poisson process with rate ë, the service time for each customer follows 
exponential distribution with rate ì. The servers are unreliable with identically exponentially distributed failure times 
and the failure rate of each server is f. In the repair process the repair time follows exponential distribution. When the 
repair process is initiated, repairs are performed by a crew of c repairmen. The repair rate for fixing one machine by 
using one repairman is r. We assume that the repair crew devotes their effort proportionately to all machines being 

repaired at any given time. Therefore, the instantaneous repair rate is equal to 
wN

rc
rw −

= , when w machines are 

operational and N-w under repair. Within the period of maintenance, other transitions such as customer arrival, 
customer service and machine failure are also allowed to happen. Each time the repair process is initiated, there exist a 
fixed cost S and a variable cost r c  per repaired server. In addition a holding cost h is incurred per unit of time for 

every customer present in the system. The existence of the fixed replacement cost makes it desirable to postpone 
replacement until a substantial number of servers have failed. On the other hand, the delay costs increase when failed 
servers are left un-repaired. The objective is to find a dynamic policy to determine when to perform the group 
replacement, in order to minimize the infinite horizon discounted replacement and holding cost per unit of time. 
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The system described above can be formulated in terms of a continuous-time Markov decision process as 
follows: 

1. The state is denoted by (x,w), 0x , and Nw0 , where x denotes the number of customers in the system, and 
w the number of working servers in the system. 2. The action space in state (x,w) is A={1,2}, where a=1 means the 
production process is continued and a=2 means that the group maintenance of failed servers is performed.. 

3. Transition mechanism: 

(1)  When a=1 (continue) 

(x,w) → (x+1,w) with exponential transition rate ë. 

(x,w) → (x,w-1) with exponential transition rate wf. 

(x,w) → (x-1,w) with exponential transition rate ìmin(x,w). 

(2)  When a=2 (do the group maintenance) 

(x,w)→(x+1,w) with exponential transition rate ë. 

(x,w)→(x,w-1) with exponential transition rate wf. 

(x,w)→(x-1,w) with exponential transition rate ì min(x,w) 

(x,w)→(x,N) with exponential transition rate 
wN

cr

−
 

An equivalent way to describe the transition process is the following: 

(1) when a=1, the process remains in state (x,w) for an exponentially distributed time with rate =w)(x,λ ë+wf+ ì 

min(x,w). After a transition occurs, it will move to one of states (x+1,w), (x,w-1), (x-1,w) with respective probabilities :  

w)(x,
=1)=(aP w)1,+w)(x(x, λ

λ
, 

w)(x,

wf
=1)=(aP 1)-ww)(x,(x, λ

, 
w)(x,

w)(x,min
=1)=(aP w)1,-w)(x(x, λ

µ
,  

(2) when a=2, the process remains in state (x,w) for an exponentially distributed time with rate 

ë+wf+ìmin(x,w)+
wN

cr

−
. After a transition occurs, it will move to one of states (x+1,w), (x,w-1), (x-1,w), (x,N) with 

respective probabilities:  

w)(x,
=2)=(aP w)1,+w)(x(x, λ

λ
,

w)(x,

wf
=2)=(aP 1)-ww)(x,(x, λ

,
w)(x,

w)(x,min
=2)=(aP w)1,-w)(x(x, λ

µ
, 

w)(x,
wN

cr

=2)=(aP N)w)(x,(x, λ
−  . 

Conditional on the event that the next state is )w(x, , the time until the transition from w)(x,  to )w(x, is a random 

variable with exponential distribution a)|(F )ww)(x,(x, : 

e-1=1)=a|(tF=1)=a|(tF=1)=a|(tF w))t(x,min+wf+(
w)1,-w)(x(x,1)-ww)(x,(x,w)1,+w)(x(x,

µλ− ,

2)=a|(tF2)=a|(tF=2)=a|(tF=2)=a(tF N)w)(x,(x,w)1,-w)(x(x,1)-ww)(x,(x,w)1,+w)(x(x, =|  

e-1= wN
crw))t(x,min+wf+( −+µλ−  

 
4. Cost structure: 

If action a is chosen when in state w)(x, , then an immediate cost a)w),C((x, is incurred and, in addition, a cost rate 

a)w),c((x, is imposed until the next transition occurs: 

0=1)=aw),C((x, , rw)-(N+S=2)=aw),C((x, c , hx=1)=aw),c((x, , hx=2)=aw),c((x, , 

where S is the fixed cost for starting repairs, rc is the variable repair cost for each machine replaced, and h is the holding 

cost per customer and per unit time. If a transition occurs after t units, then the total cost incurred is given by 
a)w),c((x,t+a)w),C((x, . 

 



 

4

3. Discounted Cost Criterion 
Assume that costs are continuously discounted with a discount rate 0α , and consider minimizing the expected total 

discounted cost w)V(x, . Using standard results from the theory of continuous time MDP (Puterman, 1994), we can 

transform this model into a discrete time MDP with decision epochs at transitions. The details of the transformation are 
presented as follows:  

1. The one step cost a)w),((x,Cα  equivalent of the discrete time process is  

a)|(tdsdFa)w),c((x,e(a)P+a)w),C((x,=a)w),((x,C )ww)(x,(x,
s-

t

00
)ww)(x,(x,

)w(x,

α
α . 

In particular, when a=1 (continue), then 

w),1)((x,Cα dtew)(x,hxdse+0= tw)(x,-s-
t

00

λα λ  
w)(x,+

hx
=

λα
                               (3.1) 

Also, when a=2 (do the group maintenance), 
According to the above transition mechanism, note that the probability of finishing the maintenance is 

wN

cr
)w,x(

wN

cr

−
+λ+α

− . Therefore, the expected repair cost C((x,w),a=2)= ]r)wN(S[

wN

cr
)w,x(

wN

cr

c−+

−
+λ+α

− , which 

reflects the property that the maintenance cost is incurred only if the maintenance is completed before other transitions 
happened. Now we have one step cost as follows: 

)e-(1hxdsde+]rw)-(N+S[

wN

cr
)w,x(

wN

cr

=w),2)((x,C t]
wN

cr
w)(x,[s-

t

00
c −

+λ−α
α

−
+λ+α

−

wN

cr
w)(x,+

hx
+]rw)-(N+S[

wN

cr
)w,x(

wN

cr

= c

−
+λα

−
+λ+α

−                                        (3.2)  

2. The future discounted cost is  

a)|(tdF))w((x,Ve(a)P=a)w),((x,V )ww)(x,(x,
t-

0
)ww)(x,(x,

)w(x,
α

α : 

In particular, when a=1, after some intermediate simple integration: 

w),1)((x,V dtew)(x,))w((x,Ve(1)P = w)t(x,-t-

0
)ww)(x,(x,

)w(x,

λ
α

α λ
 

)
w)(x,+

w)(x,
)()w((x,V(1)P= )ww)(x,(x,

)w(x, λα
λ

α  

w)(x,+

w)(x,
w)]1,-(xV

w)(x,

w)(x,min
+1)-w(x,V

w)(x,

wf
+w)1,+(xV

w)(x,
[=

λα
λ

λ
µ

λλ
λ

ααα

 

w)1,-(xV
w)(x,+

w)(x,min
+1)-w(x,V

w)(x,+

wf
+w)1,+(xV

w)(x,+
= ααα λα

µ
λαλα

λ
   (3.3) 

Similarly, when a=2, 

1)-w(x,V

wN

cr
w)(x,+

wf
+w)1,+(xV

wN

cr
w)(x,+

=)2w),((x,V αα

−
+λα

−
+λα

λ

N)(x,V

wN

cr
w)(x,+

wN

cr

w)1,-(xV

wN

cr
w)(x,+

w)(x,min
+ αα

−
+λα

−+

−
+λα

µ
            (3.4) 

3. Using the above results, the optimality equations for the discrete time version of problem can be expressed as 
w)(x,Vα = w)}(x,V w),(x,V{ Min 21

αα , where 

1)|(tdF))wV((x,e(1)P+w),1)((x,C=w)(x,V )ww)(x,(x,
t-

0
)ww)(x,(x,

)w(x,

1 α
αα  
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w)1,-(xV
w)(x,+

w)(x,min
+1)-w(x,V

w)(x,+

wf
+w)1,+(xV

w)(x,+
+

w)(x,+

hx
= ααα λα

µ
λαλα

λ
λα

 

wN

cr
w)(x,+

hx
+]rw)-(N+S[

wN

cr
)w,x(

wN

cr

 =w)(x,V c
2

−
+λα

−
+λ+α

−
α

w)1,-(xV

wN

cr
w)(x,+

w)(x,min
+1)-w(x,V

wN

cr
w)(x,+

wf
w)1,+(xV

wN

cr
w)(x,+

+ ααα

−
+λα

µ

−
+λα

+

−
+λα

λ
 

N)}(x,V

wN

cr
w)(x,+

wN

cr

α

−
+λα

−+                                             (3.5) 

The state space is uncountable, the one step cost a)w),((x,C is not bounded. Using standard results from unbounded cost 

MDPs (Hernandez-Lerma(1996), Th. 4.2.3, Prop. 4.3.1, (c)), the following Lemma follows. 
 
Lemma 3.1: 
(i) w)(x,Vα is the unique solution to the optimality equations in (3.5). 

(ii) The policy that takes actions to minimize the right hand side of equation (3.5) is an optimal stationary policy. 

(iii) Let ; 0 = 0)=nw;(x,V α  ; 1)}-na;w),((x,V+a)w),((x,C{min=n)w;(x,V
w)A(x,a

α  

Then w)(x,V = n)w;(x,Vlim
n

αα  for any initial state (x,w). 

4. Modified Model by Uniformization 

In Section 3 all transition rates are bounded by crN+Nf++ +µλα  in state (x,w), the process leaves this state 

with rate w)(x,λ  when a=1, and 
wN

cr
w)(x,

−
+λ  when a=2. In this section, we employ a method, referred to in the 

literature as the uniformization approach (Puterman(1994) and Tijms(1994) ) to transform the problem in Section 3 into 
an equivalent model where all sojourn times follow exponential distribution with the same 

rate crN+Nf++ +µλαλ . This model is defined as follows: 

Transitions out of each state occur at a constant rate λ . When the process is in state (x,w), however, only a 

fraction
λ

λ w)(x,
or 

λ
−

+λ
wN

cr
w)(x,

are those transitions from (x,w) to state (x,w)’≠ (x,w) and the rest are transitions 

back to state (x,w) (These are the “virtual transitions”). Specifically, define an equivalent discrete-time Markov chain of 
which transition mechanism are given by 
(1) When a=1 (continue)  

(x,w) → (x+1,w) with probability 
λ
λ

.  (x,w) → (x,w-1) with probability 
λ

wf
. 

(x,w) → (x-1,w) with probability
λ

µ w)(x,min
.  (x,w) → absorbing with probability 

λ
α

. 

(x,w) → (x,w) with probability )
w)(x,+

-(1
λ

λα
.(virtual transitions) 

(2) When a=2 (do the group maintenance) 

(x,w) → (x+1,w) with probability 
λ
λ

.  (x,w) → (x,w-1) with probability 
λ

wf
. 

(x,w) → (x-1,w) with probability
λ

µ w)(x,min
. (x,w) → (x,N) with probability

λ
− wN

cr

. 

(x,w) → absorbing state with probability 
λ
α

. (x,w) → (x,w) with probability )wN

cr
w)(x,+

-(1
λ

−
+λα

.  

By using this modified MDP, the optimality equation can be derived as follows:    
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Recall the optimality equation in (3.5), when action a=1, we have w)(x,V=w)(x,V 1
αα . By multiplying both sides of 

the equation with
λ

λα w)(x,+
 , then adding both sides of the above equation with w)(x,Vα  and 

moving w)(x,V
w)(x,+

α
λ

λα
from left side of equation to right side of equation, we get w)(x,V1

α  

w)(x,V)
w)(x,+

-(1+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

= αααα
λ

λα

λ

µ

λλ

λ

λ
 (4.1) 

When action a=2, we have w)(x,V=w)(x,V 2
αα . 

After multiplying both sides of the above equation with 
λ

−
+λα

wN

cr
w)(x,+

, then by adding both sides of the above 

equation with w)(x,V α and moving w)(x,VwN

cr
w)(x,+

αλ
−

+λα
from left side of equation to right side of equation, 

we get 

1)-w(x,V
wf

+w)1,+(xV+
hx

]r)wN(S[wN

cr

=w)(x,V c
2

ααα
λλ

λ

λ
+−+

λ
−

w)(x,V)wN

cr
w)(x,+

-(1+)N,x(VwN

cr

w)1,-(xV
w)(x,min

+ ααα
λ

−
+λα

λ
−+

λ

µ
       (4.2) 

From the results of (4.1) and (4.2), the modified optimality equations by Uniformization can be written as 
w)}(x,Vw),(x,V{Min=w)(x,V 21U

ααα  where 

w)(x,V)
w)(x,+

-(1+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

=w)(x,V1
ααααα

λ

λα

λ

µ

λλ

λ

λ

1)-w(x,V
wf

+w)1,+(xV+
hx

]r)wN(S[wN

cr

=w)(x,V c
2

ααα
λλ

λ
λ

+−+
λ
−

w)(x,V)wN

cr
w)(x,+

-(1+)N,x(VwN

cr

w)1,-(xV
w)(x,min

+ ααα
λ

−
+λα

λ
−+

λ

µ
        (4.3) 

The optimality equations in (3.5) and (4.3) are equivalent.  
In the sequel we will use optimality equation (4.3) in order to prove properties of the value function and the optimal 

policy. Now we define the successive approximation version of equation (4.3) as follows: 
0,=w;0)(x,Vα   

1)-nw;1,-(xV
w)(x,min

+1)-n1;-w(x,V
wf

+1)-nw;1,+(xV+
hx

{Min=n)w;(x,V αααα
λ

µ

λλ

λ

λ

1),-nw;(x,V)
w)(x,+

-(1+ α
λ

λα
 

)1n;w1,-(xV
w)(x,min

+)1n;1-w(x,V
wf

+)1n;w1,+(xV+
hx

]r)wN(S[wN

cr

c −
λ

µ−
λ

−
λ
λ

λ
+−+

λ
−

ααα

1nfor)1n;w(x,V)wN

cr
w)(x,+

-(1+)1n;N,x(VwN

cr

−
λ

−
+λα

−
λ
−+ αα              (4.4) 

 
5. The Properties of Optimal Policy 

We first prove the monotonicity property for the optimal discounted cost function w)(x,Vα , which will be 

used in proving the structure of optimal policy. 
 
Theorem 5.1 w)(x,Vα is an increasing function of x. 

Proof: 
The proof will be by induction on n. For n=1, we have 
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}
hx

+]rw)-(N+S[wN

cr

 ,
hx

{Min =1)=nw;(x,V c
λλ

−
λα  crNf+N++= where +µλαλ  

1)=nw;(x,Vα is increasing in x, because it is the minimum of two increasing functions of x. 

Assume that n)w;(x,Vα is increasing in x, then we need to prove 1)+nw;(x,Vα is also increasing in x. 

(1) 1)+nw;(x,V1
α is increasing in x. 

From (4.4), we need to show that 01)+nw;1,+(xV-1)+nw;(x,V 11 , for all w. 

Case 1: wx : 

Then x+1>w and min(x,w)=min(x+1,w)=w, and the difference 1)+nw;1,+(xV-1)+nw;(x,V 11  is simplified as 

follows:     

n)]1;-w1,+(xV-n)1;-w(x,V[
wf

+n)]w;2,+(xV-n)w;1,+(xV[+
h

- αααα
λλ

λ
λ

 

 n)]w;1,+(xV-n)w;(x,V)[
wu+wf++

-(1+n)]w;(x,V-n)w;1,-(xV[
wu

+ αααα
λ

λα
λ

 

Because all quantities in brackets are non-positive from the induction hypothesis, the above expression is non-positive. 
Case 2: x<w : 
Then min(x,w)=x, min(x+1,w)=x+1, and 

1)+nw;1,+(xV-1)+nw;(x,V 11

n)]1;-w1,+(xV-n)1;-w(x,V[
wf

+n)]w;2,+(xV-n)w;1,+(xV[+
h

-= αααα
λλ

λ
λ

 

n)]w;1,+(xV-n)w;(x,V)[
1)u+(x+wf++

-(1+n)]w;(x,V-n)w;1,-(xV[
xu

+ αααα
λ

λα

λ
 

Since all terms in brackets are non-positive, 01)+nw;1,+(xV-1)+nw;(x,V 11  for x<w. Now 

because 01)+nw;1,+(xV-1)+nw;(x,V 11 for all x, we can conclude that 1)+nw;(x,V1 is increasing in x. 

(2) 1)+nw;(x,V 2  is increasing in x. 

From (4.4), we need to show that 01)+nw;1,+(xV-1)+nw;(x,V 22  for all w. 

Case 1: wx : 
Then x+1>w and min(x,w)=min(x+1,w)=w, and  

1)+nw;1,+(xV-1)+nw;(x,V 22  

n)]1;-w1,+((xV-n)1;-w(x,V[
wf

+n)]w;2,+(xV-n)w;1,+(xV[+
h

-= αααα λλ
λ

λ
 

]n)N;,1(xV-n)N;(x,V[wN

cr

+n)]w;(x,V-n)w;1,-(xV[
w

+ +
λ
−

λ
µ

αααα  

n)]w;1,+(xV-n)w;(x,V)[wN

cr
w+wf++

-(1 ααλ
−

+µλα
+  

Because all quantities in brackets are non-positive from the induction hypothesis, the above expression is non-positive 
for wx . 
Case 2: x<w: 
Then min(x,w)=x, min(x+1,w)=x+1, and 1)+nw;1,+(xV-1)+nw;(x,V 22  

n)]1;-w1,+(xV-n)1;-w(x,V[
wf

+n)]w;2,+(xV-n)w;1,+(xV[+
h

-= αααα λλ
λ

λ
 

]n)N;,1(xV-n)N;(x,V[wN

cr

n)]w;(x,V-n)w;1,-(xV[
xu

+ +
λ
−+

λ αααα  

0n)]w;1,+(xV-n)w;(x,V)[wN

cr
1)u+(x+wf++

-(1+
λ

−
+λα

αα  

Because all quantities in above brackets are non-positive from the induction hypothesis, 
1)+nw;1,+(xV-1)+nw;(x,V 22 is non-positive for x<w.  

Since 01)+nw;1,+(xV-1)+nw;(x,V 22 for all x, we can conclude that 1)+nw;(x,V 2  is increasing in x. 
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(3) 1)}+nw;(x,V 1),+nw;(x,V{Min=1)+nw;(x,V 21
α is the minimum of two increasing functions, and this 

concludes that 1)+nw;(x,V α  is also increasing in x, and this concludes the induction proof. Therefore, n)w;(x,V α  is 

increasing in x for all n, and by using standard arguments from successive approximations for discounted Markovian 
Decision Processes, n)w;(x,Vlim=w)(x,V

n
αα  is also increasing in x. The proof is completed.     oo   

In this section we derive the monotonicity properties for the difference function between )w,x(V1
α  and )w,x(V2

α . 

These properties are important for providing the threshold structure of the optimal policy. Before this, we need to prove 
the following Theorem.  
 

Theorem 5.2 N)(x,V-w)(x,V αα  is increasing in x. 

Proof: 

Since w)}(x,Vw),(x,V{min=w)(x,V 21
ααα , we consider two cases as follows: 

(1) w)(x,V=w)(x,V 2
αα :    

The proof will be by induction on n. From (4.4), for n=1, we have 

]r)wN(S[w-N

cr

=1)=nN;(x,V-1)=nw;(x,V=1)=nN;(x,V-1)=nw;(x,V c
12 −+

λ
αααα  

It is obvious that 1)=nN;(x,V-1)=nw;(x,V αα  is non-decreasing in x. 

We now assume that n)N;(x,V-n)w;(x,V αα  is increasing in x, then we need to prove that  

1)+nN;(x,V-1)+nw;(x,V αα  is also increasing in x. From (4.4), we have  

1)+nN;(x,V-1)+nw;(x,V αα 1)+nN;(x,V-1)+nw;(x,V = 12
αα  

n)w;1,-(xV
w)(x,min

[+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c ααα λ
µ

λ
λ

λ
 

n)N;(x,Vw-N

cr

+n)]1;-N(x,V
Nf

-n)1;-w(x,V
wf

[+n)]N;1,-(xV
N)(x,min

- αααα λλλλ
µ

 

n)]N;(x,V)
N)(x,+

-(1-n)w;(x,V)w-N

cr
+w)(x,+

-[(1+ αα λ
λα

λ

λα
            (5.1) 

Now we consider three cases for x:   

Case 1: Nx  

In this case min(x,N)=N and min(x,w)=w, therefore (5.1) becomes 

1)+nN;(x,V-1)+nw;(x,V αα  

n)]N;1,-(xV-n)w;1,-(xV[
w

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα
λ
µ

λ
λ

λ
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n)1;-N(x,V
w)f-(N

-n)]1;-N(x,V-n)1;-w(x,V[
wf

+n)N;1,-(xV
w)-(N

- αααα λλλ
µ

 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+N++

-(1+n)N;(x,Vw-N

cr

+ ααα
λ

µλα

λ
 

n)N;(x,Vw-N

cr

-n)w;(x,V
w)f-(N

+n)w;(x,V
w)-(N

+ ααα λλλ
µ

 

n)]N;1,-(xV-n)w;1,-(xV[
w

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα
λ
µ

λ
λ

λ
 

n)]1;-N(x,V-n)1;-w(x,V[
wf

+n)]N;1,-(xV-n)w;(x,V[
w)-(N

+ αααα
λλ

µ
 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+N++

-(1+n)]1;-N(x,V-n)w;(x,V[
w)f-(N

+ αααα
λ

µλα

λ
 

After rearranging terms, we obtain 1)+nN;(x,V-1)+nw;(x,V αα  

n)]N;1,-(xV-n)w;1,-(xV[
w

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα
λ
µ

λ
λ

λ
 

n)]N;(x,V-n)1;-w(x,V[
wf

+n)]N;(x,V-n)w;(x,V[
w)-(N

+ αααα
λλ

µ

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+N++

-{(1+n)]N;(x,V-n)w;(x,V[
w)f-(N

+ αααα
λ

µλα

λ
 

n)]}N;(x,V-n)1;-N(x,V[
Nf

-n)]N;(x,V-n)N;1,-(xV[
w)-(N

- αααα
λλ

µ
            (5.2) 

According to the induction hypothesis, 

The first six terms in (5.2) are clearly increasing in x. To finish this proof, we need to show 1)+nw;(x,1∆ is increasing 

in x, where 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+N++

-(1 = 1)+nw;(x,1
αα

λ

µλα
∆

n)]N;(x,V-n)1;-N(x,V[
Nf

-n)]N;(x,V-n)N;1,-(xV[
w)-(N

- αααα
λλ

µ
 

Recall that parameter λ  used in the uniformization approach must be greater than cr+N+Nf++= µλαλ . Here we 

choose cr+M+Mf++ µλαλ   where M is sufficiently large number. Then we rearrange 1)+nw;(x,1∆  as 

follows: 
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1)+nw;(x,1∆ n)]N;(x,V-n)w;(x,V)[w-N

cr
+Mf+M++

-(1 = αα
λ

µλα
 

n)]N;(x,V-n)w;(x,V[
N)f-(M+N)-(M

αα
λ

µ
 

n)]N;(x,V-n)1;-N(x,V[
Nf

-n)]N;(x,V-n)N;1,-(xV[
w)-(N

- αααα
λλ

µ
 

In the above expression, the first term is increasing in x. The coefficient of the second increasing 

term
λ

µ N)f-(M+N)-(M
, because of large M, is arbitrarily close to 1, while the coefficient of the last three terms is 

arbitrarily small. Therefore, the entire expression should be increasing in x, for M sufficiently large. Therefore, 

1)+nw;(x,1∆  is increasing in x. Now we can conclude that 1)+nN;(x,V-1)+nw;(x,V αα  is increasing in x 

when Nx . 

Case 2: N<xw  

In this case min(x,N)=x and min(x,w)=w, therefore (5.1) becomes 

1)+nN;(x,V-1)+nw;(x,V αα  

n)]N;1,-(xV-n)w;1,-(xV[
w

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα λ
µ

λ
λ

λ

n)1;-N(x,V
w)f-(N

-n)]1;-N(x,V-n)1;-w(x,V[
wf

+n)N;1,-(xV
w)-(x

- αααα
λλλ

µ
 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-(1+n)N;(x,Vw-N

cr

+ ααα
λ

µλα

λ
 

n)N;(x,Vw-N

cr

-n)w;(x,V
w)f-(N

+n)w;(x,V
w)-(x

+ ααα λλλ
µ

 

n)]N;1,-(xV-n)w;1,-(xV[
w

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα
λ
µ

λ
λ

λ
 

n)]1;-N(x,V-n)1;-w(x,V[
wf

+n)]N;1,-(xV-n)w;(x,V[
w)-(x

+ αααα
λλ

µ
 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-(1+n)]1;-N(x,V-n)w;(x,V[
w)f-(N

+ αααα
λ

µλα

λ
 

After rearranging terms, we obtain 1)+nN;(x,V-1)+nw;(x,V αα  



 

11

n)]N;1,-(xV-n)w;1,-(xV[
w

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα
λ
µ

λ
λ

λ

n)]N;(x,V-n)1;-w(x,V[
wf

+n)]N;(x,V-n)w;(x,V[
w)-(x

+ αααα λλ
µ

 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-{(1+n)]N;(x,V-n)w;(x,V[
w)f-(N

+ αααα
λ

µλα

λ
 

])n;N,(xV-n)1;-NV[
Nf

n)]N;(x,V-n)w;,1(xV[
w)-(x

αααα λ
−−

λ
µ− .           (5.3) 

According to the induction hypothesis, the first six terms in (5.3) are clearly increasing in x.                                           

To finish this proof, we need to show 1)+nw;(x,2∆ is increasing in x, where 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-(1 = 1)+nw;(x,2
αα

λ

µλα
∆  

n)]N;(x,V-n)1;-N(x,V[
Nf

-n)]N;(x,V-n)N;1,-(xV[
w)-(x

- αααα
λλ

µ
n)N;(x,Vw-N

cr

- αλ
 

Here we use the same assumption cr+M+Mf++ µλαλ   as case 1. Then we rearrange 1)+nw;(x,2∆  as 

follows: 

1)+nw;(x,2∆ n)]N;(x,V-n)w;(x,V)[w-N

cr
+Mf+M++

-(1 = αα
λ

µλα
 

n)]N;(x,V-n)N;1,-(xV[
w)-(x

-n)]N;(x,V-n)w;(x,V[
N)f-(M+x)-(M

αααα λ
µ

λ
µ

     

n)N;(x,Vw-N

cr

-n)]N;(x,V-n)1;-N(x,V[
Nf

- ααα λλ
 

In the above expression, by the induction hypothesis, the first two terms are clearly increasing in x. Because of  large 

M, the coefficient of the second term, 
λ

µ N)f-(M+x)-(M
 is arbitrarily close to 1, while the coefficients of the last 

three terms are arbitrarily small. Therefore, 01)+nw;1,+(x-1)+nw;(x, 22 ∆∆ , for M sufficiently large. 

Since 01)+nw;1,+(x-1)+nw;(x, 22 ∆∆ , we can conclude that 1)+nw;(x,2∆  is increasing in x. 

Therefore, 1)+nN;(x,V-1)+nw;(x,V αα  is increasing in x when N<xw .   

Case 3: w<x  

1)+nN;(x,V-1)+nw;(x,V αα

n)]N;1,-(xV-n)w;1,-(xV[
x

+n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αααα
λ
µ

λ
λ

λ
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n)1;-N(x,V
w)f-(N

-n)]1;-N(x,V-n)1;-w(x,V[
wf

+ ααα
λλ

 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-(1+n)N;(x,Vw-N

cr

+ ααα
λ

µλα

λ
 

n)N;(x,Vw-N

cr

-n)w;(x,V
w)f-(N

+ αα
λλ

 

n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αα
λ
λ

λ
 

n)]1;-N(x,V-n)1;-w(x,V[
wf

+n)]N;1,-(xV-n)w;1,-(xV[
x

+ αααα
λλ

µ
 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-(1+n)]1;-N(x,V-n)w;(x,V[
w)f-(N

+ αααα
λ

µλα

λ
 

After rearranging terms, we obtain 1)+nN;(x,V-1)+nw;(x,V αα  

n)]N;1,+(xV-n)w;1,+(xV[+]rw)-(N+[Sw-N

cr

= c αα
λ
λ

λ

n)]N;(x,V-n)1;-w(x,V[
wf

+n)]N;1,-(xV-n)w;1,-(xV[
x

+ αααα
λλ

µ

 

n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-{(1+n)]N;(x,V-n)w;(x,V[
w)f-(N

+ αααα
λ

µλα

λ
 

n)]N;(x,V-n)1;-N(x,V[
Nf

- αα
λ

                                          (5.4) 

According to the induction hypothesis, The first five terms in (5.4) are increasing in x. To finish the proof, we need to 

show 1)+nw;(x,3∆  is increasing in x, where 1)+nw;(x,3∆  

n)]N;(x,V-n)1;-N(x,V[
Nf

-n)]N;(x,V-n)w;(x,V)[w-N

cr
+Nf+x++

-(1 = αααα
λλ

µλα
  

We first use the same assumption cr+M+Mf++ µλαλ  as case 1, then we rearrange   

1)+nw;(x,3∆ n)]N;(x,V-n)w;(x,V)[w-N

cr
+Mf+x++

-(1= αα
λ

µλα
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   n)]N;(x,V-n)w;(x,V[
N)f-(M

+ αα
λ

n)]N;(x,V-n)1;-N(x,V[
Nf

- αα
λ

 

In the above expression, by the induction hypothesis, the first two terms are clearly increasing in x. Because of large M, 

the coefficient of the second term, 
λ

N)f-(M
 is arbitrarily close to 1, while the coefficients of the last term is arbitrarily 

small.  

Therefore, 01)+nw;1,+(x-1)+nw;(x, 33 ∆∆ , for M sufficiently large. Since 01)+nw;1,+(x-1)+nw;(x, 33 ∆∆ , 

we can conclude 1)+nw;(x,3∆  is increasing in x.  Therefore, 1)+nN;(x,V-1)+nw;(x,V αα  is increasing in x 
when w<x .   

Depending on the results in above three cases, we can conclude that 

1)+nN;(x,V-1)+nw;(x,V αα  is increasing in x when 1)+nw;(x,V=1)+nw;(x,V 2
αα  

(2) w)(x,V=w)(x,V 1
αα :    

The proof will be by induction on n. From (4.4), for n=1, we have 

0=
hx

-
hx

=1)=nN;(x,V-1)=nw;(x,V
λλαα  

It is obvious that 1)=nN;(x,V-1)=nw;(x,V αα  is non-decreasing in x. 

From the above result, we can assume that n)N;(x,V-n)w;(x,V αα  is increasing in x, then we need to prove 

1)+nN;(x,V-1)+nw;(x,V αα  is also increasing in x. From (4.4), we have    

n)1;-w(x,V
wf

+n)w;1,+(xV+
hx

[=1)+nN;(x,V-1)+nw;(x,V αααα λλ
λ

λ
 

n)]w;(x,V)
w)(x,+

-(1+n)w;1,-(xV
w)(x,min

+ αα λ
λα

λ
µ

n)N;1,+(xV+
hx

[- αλ
λ

λ
 

n)]N;(x,V)
N)(x,+

-(1+n)1;-N(x,V
Nf

+n)N;1,-(xV
N)(x,min

+ ααα λ
λα

λλ
µ

 

n)]N;1,-(xV
N)(x,min

-n)w;1,-(xV
w)(x,min

[+n)]N;1,+(xV-n)w;1,+(xV[= αααα
λ

µ

λ

µ

λ

λ
 

-n)w;(x,V)
w)(x,+

-[(1+n)]1;-N(x,V
Nf

-n)1;-w(x,V
wf

[+ ααα
λ

λα

λλ
 

n)]N;(x,V)
N)(x,+

-(1 α
λ

λα
                                           (5.5) 

The above equation (5.5) is similar to the equation (5.1) from case (1), but with three terms 

( ]rw)-(N-S[wN

cr

c
λ
− , )n;N,x(VwN

cr

αλ
− and )n;w,x(VwN

cr

αλ
−−  ) short. Although these differences, we can still 

apply the similar deriving procedures in case (1) with little modification to prove equation (5.5) is increasing in x. 
Therefore, 1)+nN;(x,V-1)+nw;(x,V αα  is increasing in x when 1)+nw;(x,V=1)+nw;(x,V 1

αα . 
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According the results of case (1) and case (2) , we can conclude that 1)+nN;(x,V-1)+nw;(x,V αα  is increasing in x. 

By using standard arguments from successive approximation for discounted MDPs, 
}n)N;(x,V-n)w;(x,V{lim=N)(x,V-w)(x,V

n
αααα  is certainly increasing in x.  The proof is complete.  o  

Theorem 5.3 w)(x,V-w)(x,V 21
αα  is increasing in x. 

Proof: 

The proof will be by induction on n. 

 From (4.4), for n=1, we have ]rw)-(N+[Sw-N

cr

-=1)=nw;(x,V-1)=nw;(x,V c
21

λ
αα  

It is obvious that 1)=nw;(x,V-1)=nw;(x,V 21
αα  is non-decreasing in x. 

From the above result, we can assume that n)w;(x,V-n)w;(x,V 21
αα  is increasing in x, then we need to prove 

1)+nw;(x,V-1)+nw;(x,V 21
αα  is also increasing in x. From (4.4), we have    

1)+nw;(x,V-1)+nw;(x,V 21
αα n)]N;(x,V-n)w;(x,V[w-N

cr

+]rw)-(N+[Sw-N

cr

-= c αα
λλ

 

According the above result and Theorem 5.2, we can conclude that 1)+nw;(x,V-1)+nw;(x,V 21
αα  is increasing in x. 

By using standard arguments from successive approximations for discounted MDPs, 

}n)w;(x,V-n)w;(x,V{lim=w)(x,V-w)(x,V 21

n

21
αααα  is increasing in x.  The proof is complete.  o  

Theorem 5.4  There are thresholds 0(w)x*  such that when the system is in state (x,w) an á-optimal policy do the 

group replaces if and only if  (w)xx * .   

Proof: 

From (4.4), we have 

w),(x,V)
w)(x,+

-(1+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

{Min=w)(x,V ααααα
λ

λα

λ

µ

λλ

λ

λ
 

N)(x,Vw-N

cr

+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

+]rw)-(N+[Sw-N

cr

c αααα
λλ

µ
λλ

λ
λλ

 

w)(x,V)w-N

cr
+w)(x,+

-(1+ α
λ

λα
.   Let  

w)(x,V)
w)(x,+

-(1+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

: x{Min=(w)x*
αααα

λ

λα

λ

µ

λλ

λ

λ

N)(x,Vw-N

cr

+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

+]rw)-(N+[Sw-N

cr

> c αααα
λλ

µ
λλ

λ
λλ
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w)}(x,V)w-N

cr
+w)(x,+

-(1+ α
λ

λα
 

Now, by Theorem 5.3, it follows that w)(x,V-w)(x,V 21
αα  is increasing in x, and hence we have 

 
α
α

α (w)xfor x    w)(x,V 
(w)x<for x    w)(x,V =w)(x,V *2

*1
 where 

w)(x,V)
w)(x,+

-(1+w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

=w)(x,V1
ααααα

λ

λα

λ

µ

λλ

λ

λ
 

w)1,-(xV
w)(x,min

+1)-w(x,V
wf

+w)1,+(xV+
hx

+]rw)-(N+[Sw-N

cr

=w)(x,V c
2

αααα
λ

µ
λλ

λ
λλ

 

w)(x,V)w-N

cr
+w)(x,+

-(1+N)(x,Vw-N

cr

+ αα
λ

λα

λ
. The proof is completed.  o 

6. Conclusions and Extensions 

In this paper we have developed the problem formulation as a continuous time Markovian decision process, and derived 
the optimality equations for the discounted cost model. For simplifying the analysis process of this model, we have 
transformed it into an equivalent model where all sojourn times follow exponential distribution with the same rate by 
employing the uniformization approach. In the analysis of threshold policy structure, we have proved the following 
main properties. 

w)(x,Vα  is an increasing function in x. 

••  w)(x,V-w)(x,V 21
αα  is increasing in x. 

••  There are thresholds 0(w)x*  such that when the system is in state (x,w) a group maintenance is performed 

if and only if (w)xx * . 

In this model we assume the positive maintenance time and clearly show that the optimal group maintenance policy 
has a threshold structure. It is also possible to consider extensions which perform positive maintenance but not allow 
server failures during maintenance.  
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