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Abstract 

The maximum flow (max-flow) problem is a 
fundamental network optimization problem which 
computes for the largest possible amount of flow sent 
through the network from a source node to a sink node. 
This problem appears in many applications and has been 
investigated extensively over the recent four decades. 
Traditional max-flow problem may require some 
modification in its constraints to deal with real-world 
applications. Fang and Qi proposed a new max-flow 
model, named as manufacturing network flow model, to 
describe a network with special distillation nodes or 
combination nodes. Based on this new model, Ting 
proposes an approach to solve the max-flow problem in a 
distribution network which contains both ordinary and 
distillation nodes. Her approach identifies an augmenting 
subgraph connecting both source and sink nodes which 
can be further decomposed into several components 
where flows in each component can be expressed by a 
single variable and solved by a system of homogeneous 
linear equations. Their method requires manual detection 
for components and thus is not trivial to implement. In this 
paper, we first propose a polynomial-time network 
compaction algorithm which simplifies the distribution 
network, and then present detailed procedures for solving 
the max-flows on a distribution network. 
 
1. Introduction  

In the competitive business environment nowadays, 
cooperative and competitive relationship among 
customers, retailers, distributors, manufacturers, and 
vendors in a supply chain becomes much more 
complicated to achieve a better supply chain management. 
For example, suppose one unit of product A (10g/unit) is 
made of two units of material B (1g/unit) and one unit of 
material C (8g/unit). Material B and C may be purchased 
from different vendors by different channels. There may 
be several manufacturers who make product A with 
different production rates and obtain materials B and C via 
different channels. Using Figure 1 as an example, there 
are two manufactures (M1 and M2) and three vendors (V1, 
V2 and V3) denoted by white circles. The process of 
decomposing products or semi-products into materials can 
be represented by gray circles and half-circles. The 
materials or semi-products are then purchasable from 
several vendors. For each outgoing arc of a gray 
half-circle, we associate a bracket with a number 

indicating the weight proportions of materials required for 
composing one unit of product. An arc connecting circles 
or half-circles may represent a process of production, 
decomposing, shipping, or outsourcing. We also associate 
a parenthesis for each arc indicating the object name and 
capacity for the process. If a process has unlimited 
capacity, we use a " ∞ " to represent its capacity. For 
example, the capacity of arc (M1, M2) means M2 can 
provide at most 300g of product A to M1. To produce x g 
of product A, M2 has to purchase 0.2x g of material B and 
0.8x g of material C. Also, M2 can purchase at most 40g 
and 10g of B from V1 and V2, respectively. This 
transformed network thus only differs from the 
conventional one by the appearance of gray half-circles 
and the flow distribution constraints associated with their 
leaving arcs. Such a network model is called a distribution 
network, a special case of a manufacturing network flow 
model investigated by Fang and Qi [4]. In their model, a 
gray half-circle is called a distillation node or a 
combination node depending on its orientation.  

 

 
Figure 1. A supply chain example 

 
In general, manufacturers either produce final 

products made of materials purchased from several 
vendors, or put part of their production out to contract 
with other manufacturers. Thus a final product may be 
made through several channels in different stages of a 
supply chain. Identifying the bottleneck for a supply chain 
becomes an important issue to improve the entire 
efficiency. In other words, calculating the maximum 
throughput (i.e. product flow) for either the entire chain or 
part of the chain helps us to evaluate the chain's efficiency. 
This problem in fact is a maximum flow problem on a 
distribution network in which the flow passing through 
some specific nodes has to be distributed or combined by 
predefined proportions. This maximum flow example as 



 

shown in Figure 1 just illustrates possible relationships in 
a 2-stage supply chain. In practice, similar relationships 
and interactions among different stages in the supply 
chain do exist and make the problem much more 
complicated and difficult to solve. 

To solve the maximum flow problem for a distribution 
network, Ting [12] proposes an approach which identifies 
an augmenting subgraph connecting both source and sink 
nodes. The augmenting subgraph can be further 
decomposed into several components where flows in each 
component can be expressed by a single variable and 
solved by a system of linear equations. Their method 
requires manual detection for components and thus is 
difficult to implement by modern computers. In this paper, 
we observe special properties for a distribution network 
and propose a method to compact the network which 
simplifies the problem. Then we suggest an 
implementation for Ting's approach and analyze its 
complexity.  
 
2. Preliminaries 

2.1 Notation and formulation 

The traditional maximum flow problem was first 
formulated by Fulkerson and Dantzig. Let G = (N,A) be a 
directed graph with node set N and arc set A. We consider 
a capacitated network G where each arc (i,j) in A is 
associated with a nonnegative capacity . Let iju

, n N m A= = , and . There are three 
types of nodes: S-node, T-node and O-node (see Figure 2). 
An S-node is a source node connected only by outgoing 
arcs. A T-node denotes a sink node connected only by 
incoming arcs. An O-node represents a transshipment 
node connected with both incoming and outgoing arcs. 
For each node i, we associate an integer b(i) representing 
its supply/demand. In particular, b(i) > 0 if i is a supply 
node; b(i) < 0 if i is a demand node; and b(i) = 0 for each 
transshipment node i. Usually an S-node is a supply node, 
a T-node is a demand node, and any transshipment is an 
O-node. 

( , )max { }i j A ijU ∈= u

 

  

 
Figure 2. S-node, T-node, O-node and D-node 

 
A network flow model has to obey the constraints for flow 
balance and bounds. In particular, for each node i, the 

amount of flow leaves i minus the amount of flow enters i 
should equal to b(i). Also, the flow passing through an arc 
(i,j) can not exceed its capacity , but must be more than 
its lower bound . In this thesis we assume 

iju

ijl 0ijl =  for 
each arc (i,j). The traditional maximum flow problem 
seeks the maximum amount of flow, denoted by V, that is 
shipped from the S-node to the T-nodes while the flow 
assignment satisfies the arc capacities and flow balance 
constraints for all arcs and nodes. Let S, T, and O denote 
the set of S-nodes, T-nodes, and O-nodes, respectively. 

Most maximum flow algorithms are applied on an 
induced graph G(x) named as the residual network for a 
given flow vector x. In particular, for each arc (i,j) with 
flow ijx , we replace (i,j) by two arcs, (i,j)and (j,i) with 
residual capacities ij ij ijr u x= −  and , respectively. 
An arc ( ,

ji ijr x=

)i j A∈  is saturated when . The residual 
network only contains arcs with positive residual 
capacities. An augmenting path from s to t is a path 
connecting s and t in the residual network. Therefore, if 
there exists an augmenting path in G(x) from an S-node to 
a T-node, it means more flow can be shipped along this 
augmenting path and thus the current flow vector x is not 
optimal. 

0ijr =

 
2.2 Conventional max-flow problem and solution 
methods 

The traditional maximum flow problem can be 
formulated as follows: 
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Assuming  and  to be integral for each node i and 
arc (i,j), the optimal solution for this linear programming 
problem has to be integral due to the total unimodular 
property of the constraint matrix [9]. 

ib iju

 
Table 1. Summary of conventional max-flow algorithms 
Algorithm Complexity 
Fulkerson and Dantzig [7]  O n2mU  
Ford and Fulkerson [5]  O nmU  
Edmonds and Karp [3]  O n2m  
Dinic [2]  O n2m  
Sleator and Tarjan [11]  O nm logn  
Karzanov [10]  O n3  
Goldberg and Tarjan [8]  O nm log n 2

m  
Fujishige [6]  O n m n logn lognU
 

Fulkerson and Dantzig [7] formulate the conventional 
maximum flow problem as a special minimum cost flow 
problem and then solve it by simplex algorithm. Ford and 

 



 

Fulkerson [5] propose the first augmenting path algorithm 
which searches for a path connecting the source and sink 
and then augment flow as much as possible. Edmonds and 
Karp [3] suggest a polynomial-time augmenting path 
algorithm. Similar algorithm has also been proposed by 
Dinic [2] and further improved by Sleator and Tarjan [11]. 
Karzanov [10] introduce the first preflow-push algorithm 
in a layered network. Goldberg and Tarjan [8] give a better 
preflow-push algorithm. Recently, Fujishige [6] propose a 
MA ordering algorithm, which can be regarded as an 
acceleration to the Edmonds-Karp algorithm. Table 1 
summarizes the complexity of these max-flow algorithms. 
More max-flow algorithms can be found in [1].  
 
2.3 Distribution max-flow problem and solution 
methods 

The distribution network model is first introduced by 
Fang and Qi [4]. Besides the three types of nodes (i.e. 
S-nodes, T-nodes, and O-nodes), the distribution network 
model further introduces a type of distillation node, 
denoted by D-node, as the half-circle previously appeared 
in Figure 1 and Figure 2.  

A D-node i has only one incoming arc (l,i) and at least 
two outgoing arcs called distribution arcs. Each 
distribution arc (i,j) is associated with a positive rational 
number, denoted by , to specify the percentage of the 
flow in (l,i) to be distributed into the distribution arc (i,j). 
We also assume   and  for each 
distribution arc (i,j). Let 

ijk

1ijk =∑ i D∀ ∈ 0ijk >

ijx  represents the flow in arc (i,j), 
then the flow along each distribution arc (i,j) for a D-node 
i with one incoming arc (l,i) can be calculated by 

ij ij lix k x= . We call the relationship for flows on arcs 
connecting a D-node as "flow distillation", and  as a 
distillation factor. For each distribution arc (i,j), we define 
a normalized capacity 

ijk

/ij ij iju u k=  to represent the least 
amount of flow required in arc (l,i) to saturate arc (i,j). 
 

 
Figure 3. Two examples of distribution networks 

 
A D-family is a group of nodes other than D-nodes 

adjacent to the same D-node. We call the node in a 
D-family that sends flow to the D-node as its mother node, 
and the nodes that receive flow from the D-node in a 
D-family as its member nodes. Within a D-family, the 
M-arc connects the mother node to the D-node, while an 

S-arc connects the D-node to a member node. By 
definition of a D-node, there is only one D-node, one 
mother node, and at least two member nodes in a D-family. 
For example, nodes 1, 2, 3 and 4 in Figure 3(a) form a  
D-family in which node 1 is the mother node, nodes 3 and 
4 are member nodes, arc (1,2) is the M-arc, and arcs (2,3) 
and (2,4) are S-arcs. For cases where a D-node is adjacent 
to anther D-node, by definition they can not form a 
D-family. We call the set containing the maximum number 
of adjacent D-nodes as a D-group. For example nodes 2 
and 4 in Figure 3(b) form a D-group. 
 

The distribution maximum flow problem solves for the 
maximum amount of flow that the T-nodes can receive 
from the S-node as long as the flow obeys the constraints 
of conservation, bounds, and distillation in a distribution 
network. We denote the set of D-nodes by D. A distributed 
maximum flow problem can be formulated as follows: 
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Unlike the traditional maximum flow problem, 
assuming  and  to be integral for each node i and arc 
(i,j) and  to be rational for each distribution arc (i,j), the 
optimal solution for this linear programming problem is 
not guaranteed to be integral, since the property of total 
unimoduality has been affected by the flow distillation 
constraints. We may view this problem as a traditional 
maximum flow problem with side constraints (i.e. flow 
distillation). This problem is still a linear programming 
problem and thus can be solved by any LP algorithms and 
software. 

ib iju
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Although Fang and Qi [4] firstly introduce the 
maximum flow problem in distributed networks, they do 
not provide its solution method. This maximum flow 
problem is more complicated and difficult to solve than 
the traditional one due to the flow distillation constraints. 
For example, suppose there exists an augmenting path 
connecting an S-node and T-node, but this path passes 
through a D-node. In such a case, we have to consider the 
D-node as another source node, and for each of its 
outgoing arcs we have to check whether there exists an 
augmenting path passing through that outgoing arc to a 
T-node. If we fail to find such an augmenting path from 
the D-node, we can not use the original augmenting path 
connecting a S-node and T-node, since sending flow via 
that path will force the D-node to send flows along all of 
its outgoing arcs and some of them will be "blocked out" 
somewhere in the network. 

Ting [12] proposes an approach to solve this problem 
by adopting the concept of the Depth-First Search (DFS) 
which tries out every augmenting subgraph that goes to 
the sink or source and satisfies flow balance, bound and 
distillation constraints. After finding such an augmenting 

 



 

subgraph, the algorithm then identifies components in the 
augmenting subgraph. Flow inside each component can 
be represented by a single variable. The flow balance 
constraints for all nodes that joint different components 
form a system of linear equations. Components joint with 
each other by nodes. Thus, the flow on an augmenting 
graph can be calculated by solving such a system of linear 
equations. The maximum flow can be calculated by 
iteratively identifying an augmenting subgraph, 
decomposing components, solving for variables 
associated with each component, and then calculating 
flows inside each component. 

The correctness of Ting's approach relies on the 
correctness of the modified DFS algorithm she uses. Her 
algorithm is quite generic and also requires manual 
detection for some procedures. In Section 3 we will 
propose a network compaction procedure that reduces the 
problem size and then give an efficient implementation of 
her algorithm in Section 4. 

 
3. Compacting distribution network 

Any given distribution network may contain topology 
that is reducible. A preprocessing procedure can be 
applied to compact the original network to an equivalent 
one of smaller size. Here we explain why solving the 
maximum flow on these two networks gives the same 
answer and how the transformation can be conducted by a 
preprocessing procedure. 

We observe that a distribution network may be further 
simplified by either merging several nodes or arcs, or 
unifying the effect of the capacities for some arcs. In 
particular, we give four rules to detect whether a 
distribution network is compactable, and then explain the 
compacting procedures. 

 
(C1) Compacting D-groups 

Nodes in the same D-group can be compacted into a 
D-node. A D-group contains the maximum set of adjacent 
D-nodes. Since flows over all arcs adjacent to a D-node 
are proportional to each other by some constants, we can 
easily calculate flow over an adjacent D-node which then 
can be used to calculate flows on all of its arcs. Therefore 
the arcs adjacent to a D-group have flows proportional to 
each other. The process of calculating flows and resetting 
capacities on all arcs adjacent to a D-group have the same 
result as merging all adjacent D-nodes. Thus an entire 
D-group can be replaced by a single representative 
D-node. Suppose there are  O-nodes ( ) 
adjacent to a D-group with a representative D-node . 
Suppose an O-node  is connected to  by a path 

rq
1 2
, , ,

rq q qi i iK

oi

wqi oi 0 qwi ip  

(i.e. ) composed of 
woi → →K qi o qwi ip  S-arcs. The 

compacting process is as follows: 
Among all the adjacent D-nodes, we retain the one ( ) 
closest to the S-node and use  to represent the final 
merged D-node. For example, node 2 in Figure 4(a) is  

retained to be the representative D-node for that D-group. 

oi

oi

a) Delete all original S-arcs associated with this D-group 
and add new S-arcs from {

1 2
( , }. 

In Figure 4(b), we create new arc (2,5) and arc (2,6).  
), ( , ), , ( , )

ro q o q o qi i i i i iK

b) The distillation factors on new S-arcs can be 
calculated by multiplying the distillation factors of 
S-arcs passing through intermediate D-nodes. In 
particular, 

( , )o w i qo w
i q iji j p

k
∈

= k∏ . For example, the 

distillation factor for the new arc (2,5) in Figure 4(b) is 
0.8 0.5 0.4∗ = . 

c) The capacities for the new S-arcs can be calculated by 
lies on , ( , ')  and ( ', )  lies on ' '( , )  lies on 

min { , }
i q w i q wo w o w yqw

y p y y w q p w q ij yyi j p
u k∏ u

For example, the capacity of arc (2,5) in Figure 4(b) 
equals to . 45 24 45 24min{ , }u k k u
It takes  time to apply this compacting rule by a 

search algorithm. Each time when we compact a D-group, 
at least one D-node and one arc connecting D-nodes will 
be reduced. 

( )O m

 

 
Figure 4. Adjacent D-nodes can be compacted 

 
(C2) Compacting single transshipment O-nodes 

Any O-node with only one incoming arc and one 
outgoing arc can be compacted. When an O-node with 
single incoming and output arcs, this O-node is simply 
used for transshipment and has no affection to the flows in 
those arcs. Thus we may remove this O-node and merge 
these two arcs into one single arc with new capacity equal 
to the minimum capacity of the original two arcs. 
Moreover, if the O-node is adjacent to a D -node, the 
capacities for all arcs adjacent with that D-node have to be 
adjusted accordingly by the first rule stated above. Take 
the distribution network in Figure 5(a) for example, after 
removing node 4 and merging arc (2,4) and (4,5) by an arc 
(2,5) with capacity equal to mi  as shown in 
Figure 5(b). 

n{8, 4} 4=

This compacting process takes  time since we 
only need to scan each node once. Each time when we 
compact an O-node, one O-node and one arc connecting 
this O-node will be reduced. 

( )O n
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Figure 5. Any O-node with only one incoming arc and one 
outgoing arc can be compacted. 
 
(C3) Compacting parallel arcs 

Parallel arcs connecting to the same end nodes can be 
compacted. Although we assume no parallel arcs in the 
network, they may be formed in the intermediate 
compacting process. Since we may view those arcs with 
the same tail and head nodes as one huge arc, we merge 
these parallel arcs into one new arc and sum up their 
capacities to be its capacity. There are two cases for 
parallel arcs. One case is that the parallel arcs connect to 
the same end O-nodes and we sum up their capacities to be 
the capacity of new arc. See Figure 6 for example. The 
other case is that the parallel arcs connect to the same 
D-node and O-node. In this case, we merge parallel S-arcs 
into a single S-arc and calculate its distillation factor by 
summing up the distillation factors of these parallel S-arcs. 
Then, the new capacity can be calculated by finding out 
the minimum normalized capacity in these parallel S-arcs 
and multiplying it with the new distillation factor. See 
Figure 7 for examples. The distillation factor of new arc 
(2,3) is 0. . The capacity of the new arc (2,3) 
will be 

2 0.3 0.5+ =
31

0.2 0.3min{ , }*0.5 2.5= . This compacting process 

takes  time by scanning all outgoing arcs for each 
node. Each time when we compact parallel arcs, at least 
one arc will be reduced. 
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Figure 6. Parallel arcs connecting to the same end nodes 
can be compacted 
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Figure 7. Parallel arcs connecting to the same D node and 

O-node can be compacted 
 
(C4) Compacting mismatched capacities 

Any D-node connected with arcs of mismatched 
capacities can be compacted. According to the flow 
distillation constraints, the flow on each outgoing arc from 
a D-node is proportional to the flow on the incoming arc. 
Therefore we may easily identify the first saturated arc for 
a D-node by calculating the normalized capacity for each 
outgoing arc relative to the incoming arc. Take Figure 8(a) 
as an example, 12x  has to be at least 20

0.2 100=  to saturate 
arc (2,3), and 8

0.8 10=  to saturate arc (2,4). Thus the 
bottleneck happens on arc (2,4) since it is the first arc to be 
saturated when we increase 12x . By this observation we 
can identify the minimum normalized capacity minu  
among all arcs adjacent to a D-node i, reset the capacity of 
its incoming arc (l,i) to be minu , and then reset the capacity 
for each distribution arc (i,j) by minijk u . For the example in 
Figure 8(a), 20 8

min 0.2 0.8min{15, , } 10u = = . Thus arc (2,4) is 
the bottleneck and we can reset 12 min 10u u= =  and 

23 min0.2 2u u= =  as shown in Figure 7(b). This 
compacting process simplify the problem since now once 
an arc adjacent to a D-node is saturated, all the other arcs 
will also be saturated. Thus a maximum flow algorithm 
may detect a bottleneck arc much earlier on this 
compacted network than the original one. This 
compacting process takes O(m) time, but only needs to be 
conducted once in the end. 
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Figure 7. Any D-node with mismatch capacities of arcs 
can be compacted 
 

These four compacting rules may induce each other. 
For example, Figure 6(a) shows when we compact a 
single transshipment O-node, we may induce parallel arcs. 
Figure 9 illustrates inducing relations between these four 
compacting rules. Note that there are two directed cycles: 

 



 

(C1)-(C3)-(C2)-(C1) and (C2)-(C3)-(C2). Thus we may 
iteratively conduct (C1), (C3) and (C2) or (C2) and (C3) 
until they finish their inducing relations and then conduct 
(C4) in the end of the process as illustrated in the 
following algorithm COMPACT. 

 
Algorithm COMPACT(G) 
While (G is not in compact form) 

Case 1: detect a D-group, then apply (C1)                
Case 2: detect a single transshipment O-node,  

then apply (C2) 
Case 3: detect parallel arcs, then apply (C3)  

End while 
Case 4: detect capacity-mismatched arcs, then apply (C4) 
 

Each time when any of compacting rules (C1), (C2) 
and (C3) is applied, the network will be reduced by at least 
one arc or one node. Thus the entire compacting process 
takes  time and produces a simplified network 
which has smaller size and is easier to detect the 
bottleneck for solve a maximum flow problem. 

2( )O m

 

 
Figure 9. Inducing relations of different compacting rules 

 
In summary, we observe two properties for a 

compacted distribution network. First, every intermediate 
node (i.e. an O-node or a D-node) is adjacent to at least 
three arcs, including one incoming arc and one outgoing 
arc. Second, D-node will not be adjacent to any other 
D-node. By these observations we may easily check 
whether a distribution network is compactable. For a 
distribution network not in its compact form, we may 
compact using the algorithm COMPACT. 
 
4. Modified augmenting path algorithm 

Ting [12] proposes an approach to solve the maximum 
flow problem in distributed network. However, her 
approach only contains a couple of rules, and is not 
described as an algorithm. Additionally, her approach 
requires manual detection for components, which is not 
trivial for implementation. Here we organize their 
approach and propose an implementation for their 
approach. 

 

Modified augmenting path algorithm

flow:=0
flag:=true

(flag==true)

(flow<=0 )

Find another AG

(AG exists)
Identify components in the AG
Solve the linear equations
Determine the flow could be sent

break
flag := false

(flag==true)
Send flow
Update the residual network
flow:=0

break

While do

Begin

While do

If then

Else then

If then

Else then

End

// if the AG is invalid, find another one

// if there is another AG, find the flow

// if there is no AG, exit the loop

// if there is a valid AG, send the flow

// if there is no AG, exit the loop

Begin

End

 
Figure 10. Pseudo code for implementing Ting’s approach 
 

First we introduce additional notation required for our 
algorithm. Let AG represent an augmenting subgraph, flag 
indicate whether any AG exists (flag=1) in the current 
residual network, and flow be the total amount of flow that 
could be sent in an AG. Figure 10 illustrates steps for our 
implementation which includes five major procedures: (1) 
to construct an augmenting subgraph, (2) to identify 
components in an augmenting subgraph, (3) to solve a 
system of linear equations, (4) to determine the flow to be 
sent in an augmenting subgraph, and (5) to update the 
residual network 
 
4.1 Constructing an augmenting subgraph 

Ting [12] adopts the concept of the Depth-First Search 
(DFS) to try out every augmenting subgraph, which goes 
to the sink or source and satisfies flow distillation 
constraints. As we know, an augmenting path is a directed 
path from the source to the sink. Nevertheless, when the 
augmenting path in a distribution network reaches the sink, 
the algorithm has to track back any D-node in the 
augmenting subgraph and go along the outgoing arc of the 
D-nodes to satisfy flow distillation constraints, which may 
turn the augmenting path into the augmenting subgraph. 
In the intermediate stage of tracking back any D-node, the 
subgraph grows by adding arcs scanned by DFS and 
pauses when the sink, source or a node that is on current 
augmenting subgraph is re-visited, then it checks whether 
all the distribution arcs out of a visited D-node have been 
passed or not. If there exists a distribution arc not scanned 
out of a visited D-node, the algorithm keeps searching via 
that distribution arc. The procedure continues until no 
such distribution arc exists. 
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Figure 11. An example of constructing an augmenting 
subgraph 
 

Take Figure 11 for example. Given a residual network 
as shown in Figure 11(a), the bold arc in Figure 11(b) 
denotes the augmenting subgraph that reaches a T-node 
but has not tracked back other distribution arcs from 
D-nodes. After tracking other distribution arcs from a 
D-node, we get the augmenting subgraph using bold arcs 
in Figure 11(c). We repeat the tracking back operations for 
each D-node in the augmenting subgraph. Finally, the 
complete augmenting subgraph is determined as shown in 
Figure 11(d) 

Although the idea of using DFS looks straightforward, 
this procedure is in fact not so trivial. In fact, the searching 
order for an unscanned distribution arc does affect the 
validity of the algorithm. In particular, if there is more 
than one unscanned distribution arc out of a visited 
D-node, which unscanned distribution arc to be scanned 
first will affect the correctness of the algorithm. (See [12] 
for details) To guarantee the correctness of the algorithm, 
when we backtrack from a D-node connected by α  
unscanned arcs, we must finish probing all the !α  
searching orders. Thus although a modified DFS only 
takes  time, the exponentially grown searching 
orders make this algorithm take exponential time. 

( )O m

 
4.2 Identifying components in an augmenting 
subgraph 

After an augmenting subgraph is constructed, the 
algorithm then identifies components in the augmenting 
subgraph. A component is a maximum subgraph in which 
arc flows can be expressed by linear functions of a single 
variable. In other words, once the amount of flow on one 
of the arcs inside a component is determined, all the other 
arc flows in the same component can be determined right 
away. Components are separated with each other by O 
-nodes which have at least three adjacent arcs in an 
augmenting subgraph. If an O-node has only two adjacent 
arcs, which must be one incoming arc and one outgoing 
arc (otherwise an  O-node becomes an S-node or a T-node, 
which violates its definition), the flows on these two arcs 
must be the same and could be represented by a single 
variable which means these two arcs belong to the same 
component. Likewise, arcs connecting to the same D-node 
will be in the same components since the arc flows are 

proportional to each other. Therefore, arcs with flows 
represented by functions of the same variable belong to 
the same component 

Continuing on the above example in Figure 11, 
suppose the flow in arc (1,2) is a , then the flows in arc 
(2,3) and arc (2,4) become 0.6  and  respectively. 
As for node 3 , because the flow in arc (2,3) equals to the 
flow in arc (3,5), we will know the flow in arc (3,5) is 

. As for node 4, we can not determine the flows on 
arc (4,6) and arc (4,7), so we may first assign two more 
variables to represent them but later we will find the flows 
on (4,6) and (4,7) are proportional to each other since they 
are in the same component. The result is shown in Figure 
12(a). The flow balance constraints for all nodes that joint 
different components form a system of linear equations. 
The equation associated with node 4 is 0.  

a 0.4a

0.6a

4 0.5 0.3 .= +a b b

)

In implementation, we first identify the O-nodes which 
are incident to more than two arcs in an augmenting 
subgraph and define these nodes as boundary nodes. 
Starting from the source, a Breadth-First-Search (BFS) is 
applied to identify all of its reachable nodes. We may 
modify the BFS to backtrack whenever a boundary node is 
encountered, so that we can determine the flow value for 
each arc in the same component as a function of a single 
variable. We repeat the same procedures by starting from a 
different boundary node as long as it has an adjacent arc 
that has not been visited by the modified BFS. This 
procedure takes ( +O n m  time. 

 
4.3 Solving a system of linear equations 

By the flow balance constraints associated with each 
O-node jointing different components, we can obtain a 
system of homogeneous linear equations. Solving this 
system of linear equation can help us to unify the variables 
of different components. In particular, the objective is to 
replace all variables with a single variable instead of 
solving for the arc flow value directly. However, it is 
possible that this system of linear equation may have rank 
higher than the total number of components, which means 
the system of linear equations may only have the trivial 
solution (i.e. zero is the only solution). In such a case, the 
augmenting subgraph is ineffective since there is zero 
flow to be augmented. Otherwise, we can replace all 
variables with a single variable. 

 

 



 

 
Figure 12. Identify components and replace all variables 
with a single variable 
 

Using the example in Figure 12, there are two 
components jointed at node 4. The flow balance constraint 
at node 4 shows 0.  which can be reduced 
to , and then we can replace all variable b  with 

 as shown in Figure 12(b). The total flow we could send 
in the augmenting subgraph is the total incoming flow of 
the source minus the outgoing flow of it. In the example of 
Figure 12(b), it will be . 

4 0.5 0.3= +a b b
a

a

′

0.5=b
a

0.5 0.5− =a a
In implementation, we may detect the existence of 

nontrivial solution by counting the number of components 
and jointed O-nodes. To solve the system of homogeneous 
linear equations, we may use directive method such as 
Gaussian elimination to express each variable as a linear 
function of one universal variable. The time of this 
process takes  where  represents the total number 
of components. 

3( )O q q

 
4.4 Calculating the flow to be sent on an 
augmenting subgraph 

After unifying the arc flows by linear functions of a 
single variable, we normalize the capacity again for each 
arc. In particular, suppose an augmenting subgraph 

 and we use the flow on arc ( , , ( , )′ ′=G N A )′ ′i j x , to be 
the single variable to express flows over all other arcs. 
Suppose ′=uv uvx k x  where  is a rational constant. Then 
the normalized capacity of arc   relative to arc 

′
uvk

( , )u v ( , )′ ′i j  
becomes  which means the amount of flow ( ,/ ′

uv uvu k )′ ′i j  
should contain to saturate ( , . Exploiting the property 
of normalized capacity, we can identify the bottleneck arcs 
easily by calculating mi for each ( ,

)u v

n{ / }ij iju k ′ )i j A′∈ . 
Refer to Figure 11, the flow a  can be calculated by 

10 6 20 10 10 612 4 4
0.1,1 0.6 0.6 0.4 0.5 0.25 0.25 0.15min{ , , , , , , , } 10= , the maximum 

flow over the entire augmenting subgraph is 0.5 5=a  and 
arc (1,2) is the first arc to be saturated when we increase 
the flow over the augmenting subgraph. 

In implementation, this procedure can be done in 
 time. ( )O m

 
4.5 Updating the residual network 

After calculating the maximum flow along an 
augmenting subgraph, we update the residual network and 
repeat the above steps until there is no more augmenting 
subgraph. The maximum flow can be calculated by 
iteratively constructing an augmenting subgraph, 
decomposing components, solving for variables 
associated with each component, calculating flows inside 
each component, and then updating the residual network. 
 
5. Conclusion and future research 

This paper investigates the max-flow problem on a 
specialized network called distribution network in which a 
specialized D-node has to distribute its incoming flows by 
a vector of predefined distillation factors to its outgoing 
arcs. To simplify the problem, we propose a 
polynomial-time network compaction algorithm which 
reduces the size of the network and unifies the upper 
bounds so that an equivalent and simpler problem with 
smaller size can be solved. We propose a modified 
augmenting path algorithm with detailed procedures 
based on Ting’s method [12], and analyze the complexity 
of our algorithm. The modified augmenting path 
algorithm may be not efficient since it involves total 
enumeration on searching orders for arcs connecting a 
D-node in the augmenting subgraph. This is very different 
from the conventional augmenting path algorithm. The 
inefficiency is caused by the distillation constraints 
associated with D-nodes and is inevitable. 

On another thought, since the distillation constraints 
are locally associated with D-nodes, it may be worthy 
trying to modify the preflow-push algorithm [8] and 
handle the distillation constraints locally for each D-node. 
In particular, a preflow-push algorithm pushes flows via 
individual arcs instead of via augmenting paths, so it 
allows flow to be accumulated at some nodes (called 
active nodes) and violates flow balance constraints at 
intermediate stages. It pushes flow from an active node to 
its eligible neighbors which is one-arc closer to the sink 
than itself, and relabels an active node when there exist no 
eligible neighbors. If all the paths from active nodes to the 
sink nodes are saturated, these excess flows have to be 
shipped back to the source nodes. When one modifies the 
preflow-push algorithm to solve max-flow problem in a 
distribution network, one may encounter the difficulties 
such as how to label a D-node and how to send flows via a 
D-node when it connects with both active and inactive 
nodes. How to efficiently resolve these difficulties should 
be an interesting and challenging topic for future research. 
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