
Solving Maximum Flows on Distribution Networks:
Network Compaction and Algorithm

 I-Lin Wang

Institute of Information Management
National Cheng Kung University, Taiwan

ilinwang@mail.ncku.edu.tw

Ju-Chun Lin
Institute of Information Management

National Cheng Kung University, Taiwan
r7692110@mail.ncku.edu.tw

Abstract

The maximum flow (max-flow) problem is a
fundamental network optimization problem which
computes for the largest possible amount of flow sent
through the network from a source node to a sink node.
This problem appears in many applications and has been
investigated extensively over the recent four decades.
Traditional max-flow problem may require some
modification in its constraints to deal with real-world
applications. Fang and Qi proposed a new max-flow
model, named as manufacturing network flow model, to
describe a network with special distillation nodes or
combination nodes. Based on this new model, Ting
proposes an approach to solve the max-flow problem in a
distribution network which contains both ordinary and
distillation nodes. Her approach identifies an augmenting
subgraph connecting both source and sink nodes which
can be further decomposed into several components
where flows in each component can be expressed by a
single variable and solved by a system of homogeneous
linear equations. Their method requires manual detection
for components and thus is not trivial to implement. In this
paper, we first propose a polynomial-time network
compaction algorithm which simplifies the distribution
network, and then present detailed procedures for solving
the max-flows on a distribution network.

1. Introduction

In the competitive business environment nowadays,
cooperative and competitive relationship among
customers, retailers, distributors, manufacturers, and
vendors in a supply chain becomes much more
complicated to achieve a better supply chain management.
For example, suppose one unit of product A (10g/unit) is
made of two units of material B (1g/unit) and one unit of
material C (8g/unit). Material B and C may be purchased
from different vendors by different channels. There may
be several manufacturers who make product A with
different production rates and obtain materials B and C via
different channels. Using Figure 1 as an example, there
are two manufactures (M1 and M2) and three vendors (V1,
V2 and V3) denoted by white circles. The process of
decomposing products or semi-products into materials can
be represented by gray circles and half-circles. The
materials or semi-products are then purchasable from
several vendors. For each outgoing arc of a gray
half-circle, we associate a bracket with a number

indicating the weight proportions of materials required for
composing one unit of product. An arc connecting circles
or half-circles may represent a process of production,
decomposing, shipping, or outsourcing. We also associate
a parenthesis for each arc indicating the object name and
capacity for the process. If a process has unlimited
capacity, we use a " ∞ " to represent its capacity. For
example, the capacity of arc (M1, M2) means M2 can
provide at most 300g of product A to M1. To produce x g
of product A, M2 has to purchase 0.2x g of material B and
0.8x g of material C. Also, M2 can purchase at most 40g
and 10g of B from V1 and V2, respectively. This
transformed network thus only differs from the
conventional one by the appearance of gray half-circles
and the flow distribution constraints associated with their
leaving arcs. Such a network model is called a distribution
network, a special case of a manufacturing network flow
model investigated by Fang and Qi [4]. In their model, a
gray half-circle is called a distillation node or a
combination node depending on its orientation.

Figure 1. A supply chain example

In general, manufacturers either produce final

products made of materials purchased from several
vendors, or put part of their production out to contract
with other manufacturers. Thus a final product may be
made through several channels in different stages of a
supply chain. Identifying the bottleneck for a supply chain
becomes an important issue to improve the entire
efficiency. In other words, calculating the maximum
throughput (i.e. product flow) for either the entire chain or
part of the chain helps us to evaluate the chain's efficiency.
This problem in fact is a maximum flow problem on a
distribution network in which the flow passing through
some specific nodes has to be distributed or combined by
predefined proportions. This maximum flow example as

shown in Figure 1 just illustrates possible relationships in
a 2-stage supply chain. In practice, similar relationships
and interactions among different stages in the supply
chain do exist and make the problem much more
complicated and difficult to solve.

To solve the maximum flow problem for a distribution
network, Ting [12] proposes an approach which identifies
an augmenting subgraph connecting both source and sink
nodes. The augmenting subgraph can be further
decomposed into several components where flows in each
component can be expressed by a single variable and
solved by a system of linear equations. Their method
requires manual detection for components and thus is
difficult to implement by modern computers. In this paper,
we observe special properties for a distribution network
and propose a method to compact the network which
simplifies the problem. Then we suggest an
implementation for Ting's approach and analyze its
complexity.

2. Preliminaries

2.1 Notation and formulation

The traditional maximum flow problem was first
formulated by Fulkerson and Dantzig. Let G = (N,A) be a
directed graph with node set N and arc set A. We consider
a capacitated network G where each arc (i,j) in A is
associated with a nonnegative capacity . Let iju

, n N m A= = , and . There are three
types of nodes: S-node, T-node and O-node (see Figure 2).
An S-node is a source node connected only by outgoing
arcs. A T-node denotes a sink node connected only by
incoming arcs. An O-node represents a transshipment
node connected with both incoming and outgoing arcs.
For each node i, we associate an integer b(i) representing
its supply/demand. In particular, b(i) > 0 if i is a supply
node; b(i) < 0 if i is a demand node; and b(i) = 0 for each
transshipment node i. Usually an S-node is a supply node,
a T-node is a demand node, and any transshipment is an
O-node.

(,)max { }i j A ijU ∈= u

Figure 2. S-node, T-node, O-node and D-node

A network flow model has to obey the constraints for flow
balance and bounds. In particular, for each node i, the

amount of flow leaves i minus the amount of flow enters i
should equal to b(i). Also, the flow passing through an arc
(i,j) can not exceed its capacity , but must be more than
its lower bound . In this thesis we assume

iju

ijl 0ijl = for
each arc (i,j). The traditional maximum flow problem
seeks the maximum amount of flow, denoted by V, that is
shipped from the S-node to the T-nodes while the flow
assignment satisfies the arc capacities and flow balance
constraints for all arcs and nodes. Let S, T, and O denote
the set of S-nodes, T-nodes, and O-nodes, respectively.

Most maximum flow algorithms are applied on an
induced graph G(x) named as the residual network for a
given flow vector x. In particular, for each arc (i,j) with
flow ijx , we replace (i,j) by two arcs, (i,j)and (j,i) with
residual capacities ij ij ijr u x= − and , respectively.
An arc (,

ji ijr x=

)i j A∈ is saturated when . The residual
network only contains arcs with positive residual
capacities. An augmenting path from s to t is a path
connecting s and t in the residual network. Therefore, if
there exists an augmenting path in G(x) from an S-node to
a T-node, it means more flow can be shipped along this
augmenting path and thus the current flow vector x is not
optimal.

0ijr =

2.2 Conventional max-flow problem and solution
methods

The traditional maximum flow problem can be
formulated as follows:

(,) (,)

max

0,
. . 0,

0,

0 (,)

i
i S

ij ji i
i j A j i A

ij ij

b

i S
s t x x b i

i T

x u i j A

∈

∈ ∈

≥ ∀ ∈⎧
⎪ O− = = ∀ ∈⎨
⎪≤ ∀ ∈⎩

≤ ≤ ∀ ∈

∑

∑ ∑

Assuming and to be integral for each node i and
arc (i,j), the optimal solution for this linear programming
problem has to be integral due to the total unimodular
property of the constraint matrix [9].

ib iju

Table 1. Summary of conventional max-flow algorithms
Algorithm Complexity
Fulkerson and Dantzig [7] O n2mU
Ford and Fulkerson [5] O nmU
Edmonds and Karp [3] O n2m
Dinic [2] O n2m
Sleator and Tarjan [11] O nm logn
Karzanov [10] O n3
Goldberg and Tarjan [8] O nm log n 2

m
Fujishige [6] O n m n logn lognU

Fulkerson and Dantzig [7] formulate the conventional
maximum flow problem as a special minimum cost flow
problem and then solve it by simplex algorithm. Ford and

Fulkerson [5] propose the first augmenting path algorithm
which searches for a path connecting the source and sink
and then augment flow as much as possible. Edmonds and
Karp [3] suggest a polynomial-time augmenting path
algorithm. Similar algorithm has also been proposed by
Dinic [2] and further improved by Sleator and Tarjan [11].
Karzanov [10] introduce the first preflow-push algorithm
in a layered network. Goldberg and Tarjan [8] give a better
preflow-push algorithm. Recently, Fujishige [6] propose a
MA ordering algorithm, which can be regarded as an
acceleration to the Edmonds-Karp algorithm. Table 1
summarizes the complexity of these max-flow algorithms.
More max-flow algorithms can be found in [1].

2.3 Distribution max-flow problem and solution
methods

The distribution network model is first introduced by
Fang and Qi [4]. Besides the three types of nodes (i.e.
S-nodes, T-nodes, and O-nodes), the distribution network
model further introduces a type of distillation node,
denoted by D-node, as the half-circle previously appeared
in Figure 1 and Figure 2.

A D-node i has only one incoming arc (l,i) and at least
two outgoing arcs called distribution arcs. Each
distribution arc (i,j) is associated with a positive rational
number, denoted by , to specify the percentage of the
flow in (l,i) to be distributed into the distribution arc (i,j).
We also assume and for each
distribution arc (i,j). Let

ijk

1ijk =∑ i D∀ ∈ 0ijk >

ijx represents the flow in arc (i,j),
then the flow along each distribution arc (i,j) for a D-node
i with one incoming arc (l,i) can be calculated by

ij ij lix k x= . We call the relationship for flows on arcs
connecting a D-node as "flow distillation", and as a
distillation factor. For each distribution arc (i,j), we define
a normalized capacity

ijk

/ij ij iju u k= to represent the least
amount of flow required in arc (l,i) to saturate arc (i,j).

Figure 3. Two examples of distribution networks

A D-family is a group of nodes other than D-nodes

adjacent to the same D-node. We call the node in a
D-family that sends flow to the D-node as its mother node,
and the nodes that receive flow from the D-node in a
D-family as its member nodes. Within a D-family, the
M-arc connects the mother node to the D-node, while an

S-arc connects the D-node to a member node. By
definition of a D-node, there is only one D-node, one
mother node, and at least two member nodes in a D-family.
For example, nodes 1, 2, 3 and 4 in Figure 3(a) form a
D-family in which node 1 is the mother node, nodes 3 and
4 are member nodes, arc (1,2) is the M-arc, and arcs (2,3)
and (2,4) are S-arcs. For cases where a D-node is adjacent
to anther D-node, by definition they can not form a
D-family. We call the set containing the maximum number
of adjacent D-nodes as a D-group. For example nodes 2
and 4 in Figure 3(b) form a D-group.

The distribution maximum flow problem solves for the
maximum amount of flow that the T-nodes can receive
from the S-node as long as the flow obeys the constraints
of conservation, bounds, and distillation in a distribution
network. We denote the set of D-nodes by D. A distributed
maximum flow problem can be formulated as follows:

(,) (,)

max

0,
. . 0, or

0,

0 (,)

i
i S

ij ji i
i j A j i A

ij ij

ij ij li

b

i S
s t x x b i O

i T

x u i j A
x k x i D

∈

∈ ∈

≥ ∀ ∈⎧
⎪− = = ∀ ∈⎨
⎪≤ ∀ ∈⎩

≤ ≤ ∀ ∈
= ∀ ∈

D

∑

∑ ∑

Unlike the traditional maximum flow problem,
assuming and to be integral for each node i and arc
(i,j) and to be rational for each distribution arc (i,j), the
optimal solution for this linear programming problem is
not guaranteed to be integral, since the property of total
unimoduality has been affected by the flow distillation
constraints. We may view this problem as a traditional
maximum flow problem with side constraints (i.e. flow
distillation). This problem is still a linear programming
problem and thus can be solved by any LP algorithms and
software.

ib iju

ijk

Although Fang and Qi [4] firstly introduce the
maximum flow problem in distributed networks, they do
not provide its solution method. This maximum flow
problem is more complicated and difficult to solve than
the traditional one due to the flow distillation constraints.
For example, suppose there exists an augmenting path
connecting an S-node and T-node, but this path passes
through a D-node. In such a case, we have to consider the
D-node as another source node, and for each of its
outgoing arcs we have to check whether there exists an
augmenting path passing through that outgoing arc to a
T-node. If we fail to find such an augmenting path from
the D-node, we can not use the original augmenting path
connecting a S-node and T-node, since sending flow via
that path will force the D-node to send flows along all of
its outgoing arcs and some of them will be "blocked out"
somewhere in the network.

Ting [12] proposes an approach to solve this problem
by adopting the concept of the Depth-First Search (DFS)
which tries out every augmenting subgraph that goes to
the sink or source and satisfies flow balance, bound and
distillation constraints. After finding such an augmenting

subgraph, the algorithm then identifies components in the
augmenting subgraph. Flow inside each component can
be represented by a single variable. The flow balance
constraints for all nodes that joint different components
form a system of linear equations. Components joint with
each other by nodes. Thus, the flow on an augmenting
graph can be calculated by solving such a system of linear
equations. The maximum flow can be calculated by
iteratively identifying an augmenting subgraph,
decomposing components, solving for variables
associated with each component, and then calculating
flows inside each component.

The correctness of Ting's approach relies on the
correctness of the modified DFS algorithm she uses. Her
algorithm is quite generic and also requires manual
detection for some procedures. In Section 3 we will
propose a network compaction procedure that reduces the
problem size and then give an efficient implementation of
her algorithm in Section 4.

3. Compacting distribution network

Any given distribution network may contain topology
that is reducible. A preprocessing procedure can be
applied to compact the original network to an equivalent
one of smaller size. Here we explain why solving the
maximum flow on these two networks gives the same
answer and how the transformation can be conducted by a
preprocessing procedure.

We observe that a distribution network may be further
simplified by either merging several nodes or arcs, or
unifying the effect of the capacities for some arcs. In
particular, we give four rules to detect whether a
distribution network is compactable, and then explain the
compacting procedures.

(C1) Compacting D-groups

Nodes in the same D-group can be compacted into a
D-node. A D-group contains the maximum set of adjacent
D-nodes. Since flows over all arcs adjacent to a D-node
are proportional to each other by some constants, we can
easily calculate flow over an adjacent D-node which then
can be used to calculate flows on all of its arcs. Therefore
the arcs adjacent to a D-group have flows proportional to
each other. The process of calculating flows and resetting
capacities on all arcs adjacent to a D-group have the same
result as merging all adjacent D-nodes. Thus an entire
D-group can be replaced by a single representative
D-node. Suppose there are O-nodes ()
adjacent to a D-group with a representative D-node .
Suppose an O-node is connected to by a path

rq
1 2
, , ,

rq q qi i iK

oi

wqi oi 0 qwi ip

(i.e.) composed of
woi → →K qi o qwi ip S-arcs. The

compacting process is as follows:
Among all the adjacent D-nodes, we retain the one ()
closest to the S-node and use to represent the final
merged D-node. For example, node 2 in Figure 4(a) is

retained to be the representative D-node for that D-group.

oi

oi

a) Delete all original S-arcs associated with this D-group
and add new S-arcs from {

1 2
(, }.

In Figure 4(b), we create new arc (2,5) and arc (2,6).
), (,), , (,)

ro q o q o qi i i i i iK

b) The distillation factors on new S-arcs can be
calculated by multiplying the distillation factors of
S-arcs passing through intermediate D-nodes. In
particular,

(,)o w i qo w
i q iji j p

k
∈

= k∏ . For example, the

distillation factor for the new arc (2,5) in Figure 4(b) is
0.8 0.5 0.4∗ = .

c) The capacities for the new S-arcs can be calculated by
lies on , (, ') and (',) lies on ' '(,) lies on

min { , }
i q w i q wo w o w yqw

y p y y w q p w q ij yyi j p
u k∏ u

For example, the capacity of arc (2,5) in Figure 4(b)
equals to . 45 24 45 24min{ , }u k k u
It takes time to apply this compacting rule by a

search algorithm. Each time when we compact a D-group,
at least one D-node and one arc connecting D-nodes will
be reduced.

()O m

Figure 4. Adjacent D-nodes can be compacted

(C2) Compacting single transshipment O-nodes

Any O-node with only one incoming arc and one
outgoing arc can be compacted. When an O-node with
single incoming and output arcs, this O-node is simply
used for transshipment and has no affection to the flows in
those arcs. Thus we may remove this O-node and merge
these two arcs into one single arc with new capacity equal
to the minimum capacity of the original two arcs.
Moreover, if the O-node is adjacent to a D -node, the
capacities for all arcs adjacent with that D-node have to be
adjusted accordingly by the first rule stated above. Take
the distribution network in Figure 5(a) for example, after
removing node 4 and merging arc (2,4) and (4,5) by an arc
(2,5) with capacity equal to mi as shown in
Figure 5(b).

n{8, 4} 4=

This compacting process takes time since we
only need to scan each node once. Each time when we
compact an O-node, one O-node and one arc connecting
this O-node will be reduced.

()O n

1

2

3 4

10

2 8

5

4

1

2

3

10

2

5

4

()b()a

[0.2] [0.8] [0.2] [0.8]

Figure 5. Any O-node with only one incoming arc and one
outgoing arc can be compacted.

(C3) Compacting parallel arcs

Parallel arcs connecting to the same end nodes can be
compacted. Although we assume no parallel arcs in the
network, they may be formed in the intermediate
compacting process. Since we may view those arcs with
the same tail and head nodes as one huge arc, we merge
these parallel arcs into one new arc and sum up their
capacities to be its capacity. There are two cases for
parallel arcs. One case is that the parallel arcs connect to
the same end O-nodes and we sum up their capacities to be
the capacity of new arc. See Figure 6 for example. The
other case is that the parallel arcs connect to the same
D-node and O-node. In this case, we merge parallel S-arcs
into a single S-arc and calculate its distillation factor by
summing up the distillation factors of these parallel S-arcs.
Then, the new capacity can be calculated by finding out
the minimum normalized capacity in these parallel S-arcs
and multiplying it with the new distillation factor. See
Figure 7 for examples. The distillation factor of new arc
(2,3) is 0. . The capacity of the new arc (2,3)
will be

2 0.3 0.5+ =
31

0.2 0.3min{ , }*0.5 2.5= . This compacting process

takes time by scanning all outgoing arcs for each
node. Each time when we compact parallel arcs, at least
one arc will be reduced.

()O m

1

2

2

3

5

()b()a

3

1

2

5

3

5

Figure 6. Parallel arcs connecting to the same end nodes
can be compacted

1

2

3

10

1 5

4

3

()b()a

[0.2] [0.5]

[0.3]

1

2

3

10

2.5 5

4

[0.5] [0.5]

Figure 7. Parallel arcs connecting to the same D node and

O-node can be compacted

(C4) Compacting mismatched capacities

Any D-node connected with arcs of mismatched
capacities can be compacted. According to the flow
distillation constraints, the flow on each outgoing arc from
a D-node is proportional to the flow on the incoming arc.
Therefore we may easily identify the first saturated arc for
a D-node by calculating the normalized capacity for each
outgoing arc relative to the incoming arc. Take Figure 8(a)
as an example, 12x has to be at least 20

0.2 100= to saturate
arc (2,3), and 8

0.8 10= to saturate arc (2,4). Thus the
bottleneck happens on arc (2,4) since it is the first arc to be
saturated when we increase 12x . By this observation we
can identify the minimum normalized capacity minu
among all arcs adjacent to a D-node i, reset the capacity of
its incoming arc (l,i) to be minu , and then reset the capacity
for each distribution arc (i,j) by minijk u . For the example in
Figure 8(a), 20 8

min 0.2 0.8min{15, , } 10u = = . Thus arc (2,4) is
the bottleneck and we can reset 12 min 10u u= = and

23 min0.2 2u u= = as shown in Figure 7(b). This
compacting process simplify the problem since now once
an arc adjacent to a D-node is saturated, all the other arcs
will also be saturated. Thus a maximum flow algorithm
may detect a bottleneck arc much earlier on this
compacted network than the original one. This
compacting process takes O(m) time, but only needs to be
conducted once in the end.

1

2

3 4

[0.2]

15

[0.8]

20 8

1

2

3 4

10

2 8

()b()a

[0.2] [0.8]

uij ji

[]kij

i

j

Figure 7. Any D-node with mismatch capacities of arcs
can be compacted

These four compacting rules may induce each other.
For example, Figure 6(a) shows when we compact a
single transshipment O-node, we may induce parallel arcs.
Figure 9 illustrates inducing relations between these four
compacting rules. Note that there are two directed cycles:

(C1)-(C3)-(C2)-(C1) and (C2)-(C3)-(C2). Thus we may
iteratively conduct (C1), (C3) and (C2) or (C2) and (C3)
until they finish their inducing relations and then conduct
(C4) in the end of the process as illustrated in the
following algorithm COMPACT.

Algorithm COMPACT(G)
While (G is not in compact form)

Case 1: detect a D-group, then apply (C1)
Case 2: detect a single transshipment O-node,

then apply (C2)
Case 3: detect parallel arcs, then apply (C3)

End while
Case 4: detect capacity-mismatched arcs, then apply (C4)

Each time when any of compacting rules (C1), (C2)
and (C3) is applied, the network will be reduced by at least
one arc or one node. Thus the entire compacting process
takes time and produces a simplified network
which has smaller size and is easier to detect the
bottleneck for solve a maximum flow problem.

2()O m

Figure 9. Inducing relations of different compacting rules

In summary, we observe two properties for a

compacted distribution network. First, every intermediate
node (i.e. an O-node or a D-node) is adjacent to at least
three arcs, including one incoming arc and one outgoing
arc. Second, D-node will not be adjacent to any other
D-node. By these observations we may easily check
whether a distribution network is compactable. For a
distribution network not in its compact form, we may
compact using the algorithm COMPACT.

4. Modified augmenting path algorithm

Ting [12] proposes an approach to solve the maximum
flow problem in distributed network. However, her
approach only contains a couple of rules, and is not
described as an algorithm. Additionally, her approach
requires manual detection for components, which is not
trivial for implementation. Here we organize their
approach and propose an implementation for their
approach.

Modified augmenting path algorithm

flow:=0
flag:=true

(flag==true)

(flow<=0)

Find another AG

(AG exists)
Identify components in the AG
Solve the linear equations
Determine the flow could be sent

break
flag := false

(flag==true)
Send flow
Update the residual network
flow:=0

break

While do

Begin

While do

If then

Else then

If then

Else then

End

// if the AG is invalid, find another one

// if there is another AG, find the flow

// if there is no AG, exit the loop

// if there is a valid AG, send the flow

// if there is no AG, exit the loop

Begin

End

Figure 10. Pseudo code for implementing Ting’s approach

First we introduce additional notation required for our
algorithm. Let AG represent an augmenting subgraph, flag
indicate whether any AG exists (flag=1) in the current
residual network, and flow be the total amount of flow that
could be sent in an AG. Figure 10 illustrates steps for our
implementation which includes five major procedures: (1)
to construct an augmenting subgraph, (2) to identify
components in an augmenting subgraph, (3) to solve a
system of linear equations, (4) to determine the flow to be
sent in an augmenting subgraph, and (5) to update the
residual network

4.1 Constructing an augmenting subgraph

Ting [12] adopts the concept of the Depth-First Search
(DFS) to try out every augmenting subgraph, which goes
to the sink or source and satisfies flow distillation
constraints. As we know, an augmenting path is a directed
path from the source to the sink. Nevertheless, when the
augmenting path in a distribution network reaches the sink,
the algorithm has to track back any D-node in the
augmenting subgraph and go along the outgoing arc of the
D-nodes to satisfy flow distillation constraints, which may
turn the augmenting path into the augmenting subgraph.
In the intermediate stage of tracking back any D-node, the
subgraph grows by adding arcs scanned by DFS and
pauses when the sink, source or a node that is on current
augmenting subgraph is re-visited, then it checks whether
all the distribution arcs out of a visited D-node have been
passed or not. If there exists a distribution arc not scanned
out of a visited D-node, the algorithm keeps searching via
that distribution arc. The procedure continues until no
such distribution arc exists.

(C1)
D-groups

(C2)
1-in,1-out
O-nodes

(C3)
Parallel

arcs

(C4)
Mismatched

arcs

1

3

5

4

2 6

7

1

3

5

4

2 6

7

1

3

5

4

2 6

7

()a ()b ()c

Arc that has been chosen as part of augmenting graph

Arc that has not been chosen as part of augmenting graph

rij ji

[]kij

i

j

1

3

5

4

2 6

7

4

20

6

5

10

2

10
10

6 4

12

6

2 4

510

10

3

6

[0.5] [0.5][0.6] [0.4]

[0.6]
[0.4]

()d
Figure 11. An example of constructing an augmenting
subgraph

Take Figure 11 for example. Given a residual network
as shown in Figure 11(a), the bold arc in Figure 11(b)
denotes the augmenting subgraph that reaches a T-node
but has not tracked back other distribution arcs from
D-nodes. After tracking other distribution arcs from a
D-node, we get the augmenting subgraph using bold arcs
in Figure 11(c). We repeat the tracking back operations for
each D-node in the augmenting subgraph. Finally, the
complete augmenting subgraph is determined as shown in
Figure 11(d)

Although the idea of using DFS looks straightforward,
this procedure is in fact not so trivial. In fact, the searching
order for an unscanned distribution arc does affect the
validity of the algorithm. In particular, if there is more
than one unscanned distribution arc out of a visited
D-node, which unscanned distribution arc to be scanned
first will affect the correctness of the algorithm. (See [12]
for details) To guarantee the correctness of the algorithm,
when we backtrack from a D-node connected by α
unscanned arcs, we must finish probing all the !α
searching orders. Thus although a modified DFS only
takes time, the exponentially grown searching
orders make this algorithm take exponential time.

()O m

4.2 Identifying components in an augmenting
subgraph

After an augmenting subgraph is constructed, the
algorithm then identifies components in the augmenting
subgraph. A component is a maximum subgraph in which
arc flows can be expressed by linear functions of a single
variable. In other words, once the amount of flow on one
of the arcs inside a component is determined, all the other
arc flows in the same component can be determined right
away. Components are separated with each other by O
-nodes which have at least three adjacent arcs in an
augmenting subgraph. If an O-node has only two adjacent
arcs, which must be one incoming arc and one outgoing
arc (otherwise an O-node becomes an S-node or a T-node,
which violates its definition), the flows on these two arcs
must be the same and could be represented by a single
variable which means these two arcs belong to the same
component. Likewise, arcs connecting to the same D-node
will be in the same components since the arc flows are

proportional to each other. Therefore, arcs with flows
represented by functions of the same variable belong to
the same component

Continuing on the above example in Figure 11,
suppose the flow in arc (1,2) is a , then the flows in arc
(2,3) and arc (2,4) become 0.6 and respectively.
As for node 3 , because the flow in arc (2,3) equals to the
flow in arc (3,5), we will know the flow in arc (3,5) is

. As for node 4, we can not determine the flows on
arc (4,6) and arc (4,7), so we may first assign two more
variables to represent them but later we will find the flows
on (4,6) and (4,7) are proportional to each other since they
are in the same component. The result is shown in Figure
12(a). The flow balance constraints for all nodes that joint
different components form a system of linear equations.
The equation associated with node 4 is 0.

a 0.4a

0.6a

4 0.5 0.3 .= +a b b

)

In implementation, we first identify the O-nodes which
are incident to more than two arcs in an augmenting
subgraph and define these nodes as boundary nodes.
Starting from the source, a Breadth-First-Search (BFS) is
applied to identify all of its reachable nodes. We may
modify the BFS to backtrack whenever a boundary node is
encountered, so that we can determine the flow value for
each arc in the same component as a function of a single
variable. We repeat the same procedures by starting from a
different boundary node as long as it has an adjacent arc
that has not been visited by the modified BFS. This
procedure takes (+O n m time.

4.3 Solving a system of linear equations

By the flow balance constraints associated with each
O-node jointing different components, we can obtain a
system of homogeneous linear equations. Solving this
system of linear equation can help us to unify the variables
of different components. In particular, the objective is to
replace all variables with a single variable instead of
solving for the arc flow value directly. However, it is
possible that this system of linear equation may have rank
higher than the total number of components, which means
the system of linear equations may only have the trivial
solution (i.e. zero is the only solution). In such a case, the
augmenting subgraph is ineffective since there is zero
flow to be augmented. Otherwise, we can replace all
variables with a single variable.

Figure 12. Identify components and replace all variables
with a single variable

Using the example in Figure 12, there are two
components jointed at node 4. The flow balance constraint
at node 4 shows 0. which can be reduced
to , and then we can replace all variable b with

 as shown in Figure 12(b). The total flow we could send
in the augmenting subgraph is the total incoming flow of
the source minus the outgoing flow of it. In the example of
Figure 12(b), it will be .

4 0.5 0.3= +a b b
a

a

′

0.5=b
a

0.5 0.5− =a a
In implementation, we may detect the existence of

nontrivial solution by counting the number of components
and jointed O-nodes. To solve the system of homogeneous
linear equations, we may use directive method such as
Gaussian elimination to express each variable as a linear
function of one universal variable. The time of this
process takes where represents the total number
of components.

3()O q q

4.4 Calculating the flow to be sent on an
augmenting subgraph

After unifying the arc flows by linear functions of a
single variable, we normalize the capacity again for each
arc. In particular, suppose an augmenting subgraph

 and we use the flow on arc (, , (,)′ ′=G N A)′ ′i j x , to be
the single variable to express flows over all other arcs.
Suppose ′=uv uvx k x where is a rational constant. Then
the normalized capacity of arc relative to arc

′
uvk

(,)u v (,)′ ′i j
becomes which means the amount of flow (,/ ′

uv uvu k)′ ′i j
should contain to saturate (, . Exploiting the property
of normalized capacity, we can identify the bottleneck arcs
easily by calculating mi for each (,

)u v

n{ / }ij iju k ′)i j A′∈ .
Refer to Figure 11, the flow a can be calculated by

10 6 20 10 10 612 4 4
0.1,1 0.6 0.6 0.4 0.5 0.25 0.25 0.15min{ , , , , , , , } 10= , the maximum

flow over the entire augmenting subgraph is 0.5 5=a and
arc (1,2) is the first arc to be saturated when we increase
the flow over the augmenting subgraph.

In implementation, this procedure can be done in
 time. ()O m

4.5 Updating the residual network

After calculating the maximum flow along an
augmenting subgraph, we update the residual network and
repeat the above steps until there is no more augmenting
subgraph. The maximum flow can be calculated by
iteratively constructing an augmenting subgraph,
decomposing components, solving for variables
associated with each component, calculating flows inside
each component, and then updating the residual network.

5. Conclusion and future research

This paper investigates the max-flow problem on a
specialized network called distribution network in which a
specialized D-node has to distribute its incoming flows by
a vector of predefined distillation factors to its outgoing
arcs. To simplify the problem, we propose a
polynomial-time network compaction algorithm which
reduces the size of the network and unifies the upper
bounds so that an equivalent and simpler problem with
smaller size can be solved. We propose a modified
augmenting path algorithm with detailed procedures
based on Ting’s method [12], and analyze the complexity
of our algorithm. The modified augmenting path
algorithm may be not efficient since it involves total
enumeration on searching orders for arcs connecting a
D-node in the augmenting subgraph. This is very different
from the conventional augmenting path algorithm. The
inefficiency is caused by the distillation constraints
associated with D-nodes and is inevitable.

On another thought, since the distillation constraints
are locally associated with D-nodes, it may be worthy
trying to modify the preflow-push algorithm [8] and
handle the distillation constraints locally for each D-node.
In particular, a preflow-push algorithm pushes flows via
individual arcs instead of via augmenting paths, so it
allows flow to be accumulated at some nodes (called
active nodes) and violates flow balance constraints at
intermediate stages. It pushes flow from an active node to
its eligible neighbors which is one-arc closer to the sink
than itself, and relabels an active node when there exist no
eligible neighbors. If all the paths from active nodes to the
sink nodes are saturated, these excess flows have to be
shipped back to the source nodes. When one modifies the
preflow-push algorithm to solve max-flow problem in a
distribution network, one may encounter the difficulties
such as how to label a D-node and how to send flows via a
D-node when it connects with both active and inactive
nodes. How to efficiently resolve these difficulties should
be an interesting and challenging topic for future research.

Acknowledgements

This research is supported by NSC
93-2213-E-006-096

References

[1] Ahuja, R. K., Magnanti, T. and Orlin, J. Network flows:
theory, algorithms and applications. Englewood Cliffs, New
Jersey, U.S.A.: Prentice Hall, 1993.
[2] Dinic, E. A. “Algorithm for solution of a problem of

maximum flow in networks with power estimation,” Soviet Math.
Dokl., 1970, 11, 1277-1280.

[8] Goldberg, A. V. and Tarjan, R. E. “A new approach to the
maximum flow problem,” Journal of the Association for
Computation Machine, 1988, 35, 921-940. [3] Edmonds, J. and Karp, R. M. “Theoretical improvements in

algorithmic efficiency for network flow problems,” Journal of
the Association for Computation Machine, 1972, 19, 248-264.

[9] Hoffman, A. and Kruskal, J. 1956. Integral boundary points
of convex polyhedra. In H. Kuhn and A. Tucker (Eds.), Linear
inequalities and related systems (pp. 233-246). Princeton, NJ:
Princeton University Press.

[4] Fang, S. C. and Qi, L. “Manufacturing network flows: A
generalized network flow model for manufacturing process
modeling,” Optimization Methods and Software, 2003, 18,
143-165.

[10] Karzanov, A. V. “Determining the maximal flow in a
network by the method of preflows,” Soviet Math. Dokl., 1974,
15, 434-437. [5] Ford, L. R. and Fulkerson, D. R. “Maximal flow through a

network,” Canadian Journal of Mathematics, 1956, 8, 399-404. [11] Sleator, D. D. and Tarjan, R. E. “A data structure for
dynamic trees,” Journal of Computer and System Sciences, 1983,
24, 362-391.

[6] Fujishige, S. “A maximum flow algorithm using ma
orderings,” Operations Research Letters, 2003, 31, 176 -178.

[12] Ting, M. J. 2005. Maximum flow problem in the distribution
network model. Master's thesis, National Cheng Kung
University.

[7] Fulkerson, D. R. and Dantzig, G. B. “Computation of
maximum flow in networks,” Naval Research Logistics
Quarterly, 1955, 2, 277-283.

