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Abstract 
 

This paper presents a 3D model for pricing defaultable 
bonds with embedded put options. The pricing model 
incorporates three essential ingredients in the pricing of 
defaultable bonds: stochastic interest rate, stochastic 
default risk, and put provision. Both the stochastic 
interest rate and the stochastic default risk are modeled as 
a square-root diffusion process. The default risk process 
is allowed to be correlated with the default-free term 
structure. The put provision is modeled as a constraint on 
the value of the bond in the finite difference scheme. This 
paper can provide new insight for future research on 
defaultable bond pricing models. 
 
1. Introduction 
 
     The pricing of defaultable securities has occupied a 
central place in the academic and practitioner literature. 
The standard theoretical paradigm for pricing defaultable 
securities is the contingent claims approach pioneered by 
Black and Scholes [1]. Much of the literature follows 
Merton [9] by explicitly linking the risk of a firm’s 
default to the variability in the firm’s asset value. 
Although this line of research has proven very useful in 
addressing the qualitatively important aspects of pricing 
defaultable securities, it has been less successful in 
practical applications. The lack of success owes to the 
fact that firms’ capital structures are typically quite 
complex and priority rules are often violated. In response 
to these difficulties, an alternative modeling approach has 
been pursued in a number of papers, including Madan 
and Unal [8], Jarrow and Turnbull [7], Duffie and 
Singleton [4]. At each instant, there is some probability 
that a firm defaults on its obligation. This is called the 
instantaneous probability of default. The processes of 
both this probability and the recovery rate determine the 
value of default risk. Although these processes are not 
formally linked to the firm’s asset value, there is 
presumably some underlying relation, thus Duffie and 
Singleton describe this alternative approach as a reduced-
form model (Duffee, [3]).  
 
     This paper is an effort to develop one such model in a 
3D setting for pricing defaultable bonds with embedded 
put options. The remainder of this paper is organized as 

follows. Section 2 presents the model. Section 3 describes 
the methodology. Section 4 concludes this paper. 
 
2. Model 
 
     I derive the pricing model for defaultable bonds with 
embedded put options by adopting Duffie and Singleton 
[4]’s reduced-form approach and Hull [5]’s replicating-
portfolio approach. 
 
     According to Duffie and Singleton, defaultable bonds 
can be valued by discounting at a default-adjusted interest 
rate, R:  

hLrR +=      (1) 
where r is the risk-free interest rate, h is the hazard rate 
for default (i.e., the instantaneous probability of default) 
at time t, and L is the loss rate (i.e., the expected 
fractional loss in the market value) if default were to 
occur at time t, conditional on the information available 
up to time t. That is, the price at time 0 of a defaultable 
discount bond, f, is: 

∫−=
T

XRdtEf
0

])[exp( ,   (2) 

where X is the face value, T is the maturity time, and E  
is the risk-neutral, conditional expectation at date 0. This 
is natural, in that hL is the risk neutral mean-loss rate of 
the defaultable discount bond due to default. Discounting 
at the default-adjusted short-term interest rate R therefore 
accounts for both the probability and timing of default, as 
well as for the effect of losses on default. A key feature of 
Equation (2) is that, assuming the risk neutral mean-loss 
rate process hL being given exogenously, standard term-
structure models for default-free debt are directly 
applicable to defaultable debt by parameterizing R instead 
of r (Duffie and Singleton, [4]). 
  
     I assume that both the default-adjusted interest rate R 
and the hazard rate h fit a Cox, Ingersoll, and Ross (CIR)-
style model [2], a square-root diffusion model: 

RRRR dzRdtRbadR σ+−= )( ,    (3) 

hhhh dzhdthbadh σ+−= )( ,      (4) 
where dzR and dzh are Wiener processes, and the drift and 
the diffusion parameters are constants and are assumed to 
be known. The CIR-style model incorporates mean 



  

reversion and ensures that the default-adjusted interest 
rates and the hazard rates are always non-negative. As for 
the loss rate L, it is assumed to be a constant.  
 
     I make the assumption that there are a total of three 
defaultable bonds whose prices depend on the default-
adjusted interest rate R and the hazard rate h. Because the 
three defaultable bonds are all dependent on the default-
adjusted interest rate R and the hazard rate h, it follows 
from Ito’s lemma that the price of the jth defaultable 
bond, fj, follows a diffusion process: 

hjhjRjRjjjj dzfdzfdtfdf σσµ ++= ,    (5) 
where 

,)(
2
1

)(
2
1)(

)(

2

2
2

2

2

2
2

h
f

h

hR
f

hR

R
f

Rhba
h
f

Rba
R
f

t
f

f

j
h

j
hRRh

j
Rhh

j

RR
jj

jj

∂

∂
+

∂∂

∂
+

∂

∂
+−

∂

∂
+

−
∂

∂
+

∂

∂
=

σ

σσρ

σ

µ

     (6) 

,R
R
f

f R
j

jRj σσ
∂

∂
=         (7) 

.h
h
f

f h
j

jhj σσ
∂

∂
=                    (8) 

In these equations, jµ  is the instantaneous mean rate of 

return provided by jf , Rjσ  and hjσ  are the 
components of the instantaneous standard deviation of the 
rate of return provided by jf  that may be attributed to R 

and h, and Rhρ  is the correlation between Rdz  and hdz . 
 
     Because there are three defaultable bonds and two 
Wiener processes in Equation (5), it is possible to form an 
instantaneously riskless portfolio, ∏, using the 
defaultable bonds. Define kj as the amount of the jth 
defaultable bond in the portfolio, so that  

∑=∏
j

jj fk .       (9) 

The kj must be chosen so that the stochastic components 
of the returns from the defaultable bonds are eliminated. 
From Equation (5) this means that  

∑ =
j

jRjj fk 0σ ,    (10) 

∑ =
j

jhjj fk 0σ .  (11) 

The return from the portfolio is then given by 

∑=∏
j

jjj dtfkd µ .    (12) 

The cost of setting up the portfolio is ∑
j

jj fk . If there 

are no arbitrage opportunities, the portfolio must earn the 
default-adjusted interest rate, so that 

∑ ∑=
j j

jjjjj fkRfk µ       (13) 

or 

∑ =−
j

jjj Rfk 0)(µ .   (14) 

Equations (10), (11) and (14) can be regarded as three 
homogeneous linear equations in the kj‘s. The kj‘s are not 
all zero. From a well-known theorem in linear algebra, 
Equations (10), (11) and (14) can be consistent only if 

jhjhjRjRjj ffRf σλσλµ +=− )(   (15) 
or 

hjhRjRj R σλσλµ +=−    (16) 

for Rλ  and hλ  that are dependent only on the default-
adjusted interest rate R, the hazard rate h and time t.    
 
     Substituting from Equations (6), (7) and (8) into 
Equation (15), I obtain 
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that reduces to 
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Dropping the subscripts to f, I deduce that any defaultable 
bond whose price, f, is contingent on the default-adjusted 
interest rate, R, the hazard rate, h, and time, t, satisfies the 
second-order differential equation 
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     Q.E.D.  (19) 

  
     On a coupon date, the bond value must jump by the 
amount of the coupon payment. Hence, to incorporate 
coupon payments into the model, I impose a jump 
condition: 

CCC KthRfthRf += +− ),,(),,( ,              (20) 

where a coupon of CK  is received at time Ct .  
 
     Some bonds have a put feature. This right permits the 
holder of the bond to return it to the issuing company for 
a specified amount. According to the no-arbitrage 
argument, to incorporate a put feature into the model, I 
must impose a constraint on the bond’s value: 

EE XthRf ≥),,( ,               (21) 

where EX  is the put price and Et  is the put date.  
 

     To find a unique solution of Equation (19), I must 
impose one final condition and four boundary conditions.  
 
     The final condition corresponds to the payoff at 
maturity and so for a coupon-paying bond: 

TT KPThRf +=),,( ,                (22) 

where a principal amount of TP  and a coupon payment 

of TK  are received at maturity. 
 
     The first boundary condition, when the default-
adjusted interest rate, R, approaches to zero percent, can 
be stated as: 

)(),,(),,( tTReThRfthRf −−=               
     = ),,( ThRf .                             (23) 

 
     The second boundary condition, when the default-
adjusted interest rate, R, approaches to infinity, can be 
stated as: 

)(),,(),,( tTReThRfthRf −−=  
     = 0.                                 (24) 

 
     The third boundary condition, when the hazard rate, h, 
approaches to zero percent, can be stated as: 

)(),,(),,( tTReThRfthRf −−=               

    ))((),,( tThLreThRf −+−=  

                                 )(),,( tTreThRf −−= .  (25) 
 
     The forth boundary condition, when the hazard rate, h, 
approaches to infinity, can be stated as: 

)(),,(),,( tTReThRfthRf −−=               

        ))((),,( tThLreThRf −+−=  
        = 0.                   (26) 
 
3. Methodology 
 
     I solve the pricing model for defaultable bonds with 
embedded put options by a 3D explicit finite difference 
method (Hull, [6]; Wilmott, [10]).  
 
     Suppose that the number of months to maturity is T. I 
divide this into L equally spaced intervals of length ∆ t = 
T / L. ∆ t is fixed at one month. A total of L+1 times are, 
therefore, considered: 

0, ∆ t, 2∆ t, …, T. 
 
     Suppose that hmax is a hazard rate sufficiently high that, 
when it is reached, the bond has virtually no value. I 
define ∆ h = hmax / M and consider a total of M+1 
equally spaced hazard rates: 



  

0, ∆ h, 2∆ h, …, hmax. 

∆ h is set to be one percent. 
 
     Suppose that Rmax is a default-adjusted interest rate 
sufficiently high that, when it is reached, the bond has 
virtually no value. I define ∆ R = Rmax / N and consider a 
total of N+1 equally spaced default-adjusted interest 
rates: 

0, ∆ R, 2∆ R, …, Rmax. 

∆ R is set to be one percent. 
 
     The time points, hazard rate points and default-
adjusted interest rate points define a 3D grid consisting of 
a total of (L+1)(M+1)(N+1) points. The (i, j, k) point on 
the 3D grid is the point that corresponds to default-
adjusted interest rate i ∆ R, hazard rate j ∆ h and time 
k∆ t. I use the variable k

jif ,  to denote the value of the 
bond at the (i, j, k) point. 

 
     Recall that the differential equation for the price of a 
defaultable bond, f(R, h, t), is given as: 
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For an interior point (i, j, k) in the 3D grid, 
t
f
∂
∂

 can be 

approximated by using a symmetric central difference:     
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central difference: 
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Substituting equations (28), (29), (30), (31), (32) and (33) 
into the differential equation (27) and noting that R = 
i∆ R, h = j∆ h and f = k

jif , , the corresponding difference 
equation can be shown as: 
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where i = 0, 1, …, N, j = 0, 1, …, M and k = 0, 1, …, L. 
Rearranging terms, this equation becomes: 
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i = 0, 1, …, N, j = 0, 1, …, M and k = 0, 1, …, L. 
 
     The value of the bond at time T is TP + TK , where 

TP  is the principal amount and TK  is the coupon 
payment. Hence, 

TT
k
ji KPf +=,                   (36) 

for i = 0, 1, …, N, j = 0, 1, …, M-1 and k = 0.   
   
     The value of the bond when the default-adjusted 
interest rate is zero percent is ),,( ThRf . Hence, 

k
ji

k
ji ff ,

1
, =+                   (37)  

for i = 0, j = 0, 1, …, M-1 and k = 0, 1, …, L-1. 
 
     I assume that the bond is worth zero when the default-
adjusted interest rate is one hundred percent, so that 

01
, =+k
jif                   (38) 

for i = N, j = 0, 1, …, M-1 and k = 0, 1, …, L-1. 
 
     The value of the bond when the hazard rate is zero 
percent is )(),,( tTreThRf −− . Hence, 

)(
,

1
,

tTrk
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k
ji eff −−+ =                 (39)  

for i = 1, 2, …, N-1, j = 0 and k = 0, 1, …, L-1. 
 
     I assume that the bond is worth zero when the hazard 
rate is one hundred percent, so that 

01
, =+k
jif                  (40) 

for i = 0, 1, …, N, j = M and k = -1, 0, …, L-1. 
 
     To incorporate coupon payments into the model, I 
impose a jump condition. Hence,  

C
k
ji

k
ji Kff += ,,                (41) 

for i = 0, 1, …, N-1, j = 0, 1, …, M-1, k = Ct  or the 

coupon date and CK  is the coupon payment. 
 
     To incorporate put features into the model, I impose a 
constraint on the bond’s value. Hence, 

E
k
ji Xf ≥,                              (42) 



  

for i = 0, 1, …, N-1, j = 0, 1, …, M-1, k =  Et  or the put 

date and EX  is the put price. 
 
     Equations (36), (37), (38), (39) and (40) define the 
value of the bond along the five planes of the 3D grid, 
where t = T, R = 0%, R = 100%, h = 0% and h = 100%. 
Equation (35) defines the value of the bond at all other 
points.   
 
     Equation (35) shows that there are nine known bond 
values linked to one unknown bond value. Hence, for 
each time layer there are (N-1)(M-1) equations in (N-
1)(M-1) unknowns; the boundary conditions yield the 
values at the four boundaries for each time layer and the 
final condition gives the values in the last time layer. 

 
     To find the bond value of interest, go backwards in 
time, solving for a sequence of linear equations. 
Eventually, Lf 1,1 , Lf 2,1 , Lf 3,1 , …, L

MNf 1,1 −−  are obtained. 
One of these is the bond price of interest. If the initial 
default-adjusted interest rate or the initial hazard rate 
does not lie on the grid point, I use a linear interpolation 
between the two bond prices on the neighboring grid 
points to find the bond price of interest.  

 
4. Conclusion 
 
     This paper presents a 3D model for pricing defaultable 
bonds with embedded put options. The pricing model 
incorporates three essential ingredients in the pricing of 
defaultable bonds: stochastic interest rate, stochastic 
default risk, and put provision. Both the stochastic 
interest rate and the stochastic default risk are modeled as 
a square-root diffusion process. The default risk process 
is allowed to be correlated with the default-free term 
structure. The put provision is modeled as a constraint on 
the value of the bond in the finite difference scheme. The 
model is by no means a complete success. To improve the 
model, one can assume that the recovery rate in the event 
of default varies stochastically through time. In summary, 
this paper can provide new insight for future research on 
defaultable bond pricing models. 
 
References 
 
[1] Black, F., and Scholes, M. 1973. The pricing of options and 
corporate liabilities. Journal of Political Economy, 81: 637-654. 
 
[2] Cox, J., Ingersoll, J., and Ross S. 1985. A theory of the term 
structure of interest rates. Econometrica, 53: 385-408. 
 
[3] Duffee, G. 1999. Estimating the price of default risk. Review 
of Financial Studies, 12: 197-226. 
 

[4] Duffie, D., and Singleton, K. J. 1999. Modeling the term 
structure of defaultable bonds. Review of Financial Studies, 12: 
687-720.  
 
[5] Hull, J. 2000. Options, futures, and other derivatives. New 
Jersey: Prentice Hall. 
 
[6] Hull, J. 2003. Options, futures, and other derivatives. New 
Jersey: Prentice Hall. 
 
[7] Jarrow, R. A., and Turnbull, S. M. 1995. Pricing derivatives 
on financial securities subject to credit risk. Journal of Finance, 
50: 53-86. 
 
[8] Madan, D. B., and Unal, H. 1994. Pricing the risks of 
default. Working paper, Wharton School, University of 
Pennsylvania. 
 
[9] Merton, R. C. 1974. On the pricing of corporate debt: The 
risk structure of interest rates. Journal of Finance, 29: 449-470. 
 
[10] Wilmott, P. 2000. Quantitative finance. New York: John 
Wiley & Sons. 


