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Abstract 

This paper examines the performance of various 

statistical models to forecast the volatility of daily stock 

index futures, including TAIEX futures (TX), TSE 

Electronic Sector Index futures (TE) and TSE Banking 

Insurance Sector Index Futures (TF) in the Taiwan futures 

market. The forecasting models chosen for this study are 

conditionally Gaussian ARCH-class models, including 

both linear (GARCH and IGARCH) and non-linear 

(GARCH-M, EGARCH, GJR-GARCH and APARCH) 

GARCH processes. The models are also augmented by 

adding lagged volume or open interest to investigate 

whether there is a relationship between volatility and 

either volume or open interest. We find that, out of all the 

linear and non-linear GARCH models examined, the 

models that perform best in forecasting volatility on the 

Taiwan futures market are non-linear GARCH models 

that incorporate market volume information as additional 

explanatory variables within the volatility forecasting 

equation. 

1. Introduction 

In recent years, a great deal of interest in econometrics 

and empirical finance has recently centered on modeling 

the temporal variation in financial market volatility. 

Volatility estimation and forecasting is an important topic 

for policy makers and financial market participants 

because volatility is often perceived as a measure of risk, 

playing a crucial role in many different areas of finance, 

such as risk management, time series forecasting and the 

pricing of derivative securities. The volatility of 

underlying asset prices enters directly into the 

Black-Scholes formula for deriving the value of traded 

options.  

Volatility estimates implied from option pricing 

models have frequently been used in conjunction with 

trading strategies to examine whether arbitrage profits 

were possible. However, estimating the return volatility 

of underlying asset is the most difficult and controversial 

aspect of option valuation. One approach for pricing 

equity options is to assume that the volatility is constant 

and use historical prices to calculate the variance of the 

continuously compounded returns. This forecast is 

referred to the traditional forecast or estimator. The 

primary disadvantage with the traditional estimator is that 

the volatility of returns may change over time, which in 

turn affects the accuracy of the option valuation.  

Chu and Freund [17] compare implied standard 

deviation (ISD) using option price and GARCH and 

IGARCH models using underlying asset price to estimate 

option price and find that the ISD method is best. 

Similarly, Poon and Granger [50], find that the ISD tends 

to outperform the volatility forecasts provided by 

time-series models. However, among time-series models, 

they find that neither historical volatility nor ARCH 

models dominate the other in terms of forecasting future 

volatility, although both of these types of forecasts appear 



 

to be better than those provided by stochastic volatility 

models.  

One of the key areas where volatility forecasts are 

employed is the futures markets. These markets fulfill 

two social functions. One function is price discovery, 

which is the revealing of information about future cash 

market prices. The other is hedging, which is the prime 

rationale for futures trading. Hedgers are exposed to a 

preexisting risk of some form that leads them to use 

futures transactions as a substitute for a cash market 

transaction. However, arbitrage plays a crucial role for 

pricing index futures contracts. The spot and futures 

market prices are linked by arbitrage; i.e., participants 

liquidate positions in one market and take comparable 

positions at better prices in another market, or choose to 

acquire positions in the market with the most favorable 

prices. Futures index markets typically offer the investor 

the opportunity to trade at a substantially lower cost and 

higher liquidity than trading directly on the spot market. 

Therefore, one would expect futures markets to exhibit 

more instantaneous reactions to new information than the 

equity markets. Because volatility measures the 

magnitude of price movement in a series, it is an 

appropriate variable for examining the length of time 

required for the markets to fully incorporate new 

information. Consequently, volatility can be considered a 

measure of information flow in derivative instruments 

(see Ross [54]) and has always been an essential tool for 

trading strategies. Thus, forecasting volatility has 

important implications for investors. 

Within the futures markets, stock index futures and 

options on stock index futures are especially important 

areas of research. These financial instruments have very 

high trading volumes due to hedging, speculative trading, 

and arbitrage activities. Insight into the behavior of 

futures price volatility can have important implications 

for investors using stock index futures contracts, such as 

a portfolio manager implementing put-replication 

portfolio insurance during a period of high market 

volatility. In calculating the optimal hedge ratio to use in 

implementing such a strategy, the portfolio manager in 

this situation would be faced with the issue of whether to 

use a volatility forecast based on the high level of 

volatility within the recent past or, alternatively, some 

other forecast of volatility based on conditioning 

information appropriate for the insurance horizon.  

Related to this issue, Hill et al. [33] show that 

unexpected changes in volatility are the most important 

risk factor in determining the cost of portfolio insurance. 

Similarly, Chu and Bubnys [16] use a likelihood ratio test 

to compare the variance measure of price volatilities of 

stock market indices and their corresponding futures 

contracts during the bull market of the 1980s, and find 

that spot market volatilities are significantly lower than 

their respective futures price volatilities. Bera et al. [4] 

investigate the effectiveness of using conventional OLS 

estimates of volatility to determine the optimal hedge 

ratios and find that, compared to ARCH-based hedge 

ratios, the hedge ratios based on conventional OLS 

estimates may cause investors to sell short either too 

many or too few futures contracts. 

Most studies of volatility forecasting have noted the 

empirical observation that volatility in financial time 

series is highly persistent with clearly demonstrated 

volatility clustering behavior, and numerous models have 

been proposed to describe the evolution of volatility over 

time. On these models, the Autoregressive Conditional 

Heteroscedasticity (ARCH) and Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) 

processes developed by Engle [21] and Bollerslev [5], 

respectively, appear to be appropriate models for the daily 

returns of many financial time series. The GARCH(1,1) 



 

and Exponential GARCH (EGARCH) models are two of 

the most successful such parameterizations for 

characterizing high-frequency financial market volatility. 

A common finding in many empirical applications of 

each of these models concerns the apparent persistence of 

the estimated conditional variance process (see Bollerslev 

et al. [7]).  

There is a great deal of literature on forecasting 

volatility, in which many econometric models are 

compared, yet no single model is shown to be superior. 

As an example, Akgiray (1989) and Pagan and Schwert 

(1989) find, using US stock and futures data, that the 

GARCH(1,1) models outperform most competitors, while 

Najand (2002) compares linear models with nonlinear 

models for forecasting the price volatility on S&P 500 

Index futures and finds EGARCH to be the best model 

for forecasting price volatility for stock index futures. 

However, using data sets from the Japanese and 

Singaporean markets, respectively, Tse [58] and Tse and 

Tung [59] find that exponentially weighted moving 

average models provide more accurate forecasts than 

GARCH models. Braiisford and Faff [8], on the other 

hand, find that GARCH models are slightly superior to 

most simple models for forecasting Australian monthly 

stock index volatility, and Frances and van Dijk [27] find 

that the non-linear GARCH models perform no better 

than the standard GARCH model in forecasting the 

weekly volatility of various European stock markets. 

Gokcan [30] finds that, for emerging stock markets, the 

basic GARCH(1,1) model performs better than EGARCH 

models, while. Wei [61] presents QGARCH as a better 

model than either the basic GARCH or the GJR-GARCH 

model for forecasting the weekly volatility on the China 

stock market. 

Several theories predict a positive relationship 

between return volatility and trading volume, and, for 

futures markets, open interest is considered as another 

important variable. Karpoff [38] argues that the absolute 

price and volume measures should exhibit positive 

contemporaneous correlation between each other and 

reviews eighteen studies examining evidence with regard 

to this relationship. Tan and Gannon [56] find that, apart 

from the return-volume relationship, the 

interrelationships between return, volatility and volume 

upon information arrival are generally consistent with 

what theory would anticipate. Chan and Chung [13] argue 

that mis-pricing produces both subsequent volatility and 

trading volume, whereas Chen et al. [15] find that the 

magnitude of mis-pricing is inversely related to volatility 

in the pricing of US stock index futures. Ferris et al. [26] 

suggest that the level of open interest is a good proxy for 

assessing the amount capital flows into and out of the 

nearest S&P 500 Index futures contracts, and 

consequently provides information about pricing error 

shocks. Ragunathan and Peker [51] provide evidence that 

positive volume shocks have a greater impact on 

volatility than negative shocks and reach a similar 

conclusion regarding open interest. Therefore, market 

depth (reflected in trading volume, open interest, etc.) 

does appear to have an effect on volatility. Watanabe [60] 

also presents evidence of a significant positive 

relationship between volatility and unexpected volume, as 

well as a significant negative relationship between 

volatility and expected open interest, but finds that the 

relationship between price volatility, volume and open 

interest may vary depending on the market’s regulatory 

structure. Epps [25] proposes a model in which volume 

tends to be higher when stock prices are rising than 

falling, although there is no strong reason why the 

relationship should be contemporaneous rather than 

lead-lag, since volume may react more quickly to changes 

in the directing variable than volatility, or vice versa. If 

market volume, which is used as an exogenous right-hand 

side variable in the variance equation of the GARCH 



 

model, is part of a larger system of equations where 

volume is itself partly determined by volatility, then 

failure to appropriately model the system as such will 

cause a simultaneity bias in the coefficient estimates. One 

potential solution to this problem is to use lagged 

measures of volume, which will be predetermined and 

therefore not subject to the simultaneity problem. 

Although Lamoureux and Lastrapes [40] find lagged 

volume to be a poor instrument for forecasting volatility, 

Najand and Yung [45] find it to be quite acceptable in an 

analysis of price variability in Chicago Board of Trade 

futures data. Finally, Brooks [9] presents many models 

(GARCH, EGARCH, GJR-GARCH, and so on.), which 

are augmented by the addition of a measure of lagged 

volume to form more general ex-ante forecasting models, 

but finds only very modest improvements, if any, in 

forecasting performance.  

In the present study, we focus on Taiwan stock market 

futures traded on the Taiwan Futures Exchange (TAIFEX). 

The total trading volume was 7,944,254 and 4,351,390 

contracts for the years 2002 and 2001, respectively, 

which represents a growth rate of 312.31%. This comes 

on top of a growth rate of 125.84% relative to the 

1,926,789 contracts traded in 2000. In terms of trading 

volume (excluding options), although the TAIFEX is 

ranked 29th among exchanges worldwide in 2002, taking 

third place in terms of the growth rate, investors in the 

emerging Taiwan market suffer from a lack of 

information as well as reliability. However, Brooks [9] 

suggests the existence of an informational relationship 

between volatility and volume or open interest. Open 

interest represents the number of futures contracts 

outstanding at any point in time, whereas trading volume 

captures the number of contracts traded during a specific 

time period. Open interest supplements the information 

provided by the trading volume. In this study, all 

ARCH-class model variance equations are augmented 

through the addition of lags of market volume or open 

interest as predictor variables. We then compare, for 

returns on the TAIEX futures (TX), the TSE Electronic 

Sector Index futures (TE), and the TSE Banking 

Insurance Sector Index Futures (TF), respectively, the 

volatility-forecasting ability of each of the ARCH-class 

models, both with and without market volume and open 

interest included in the variance forecasting equestions. 

The purpose of this research is to examine the 

performance of the various models in forecasting daily 

stock index futures volatility and to see whether volume 

and open interest data help to improve the accuracy of the 

forecasting models. The paper is structured as follows. 

Section 2 describes the data and sample period used. 

Section 3 provides the methodology and explains the 

various models and their formulation. The results of 

In-sample estimation and out-of-sample forecasting, both 

with and without lagged volume and open interest, are 

given in Section 4, and the conclusions are drawn in the 

final section. 

2. Data and Descriptive Statistics 

The data used in this study include data from the 

Taiwan Stock Exchange (TSEC)1 and from the Taiwan 

Futures Exchange (TAIFEX). Trading on the TAIFEX 

started in July 21, 1998, with the introduction of TSEC 

Capitalization Weighted Stock Index (TAIEX) futures 

(TX), a futures contract on the TAIEX2 stock index. 

Subsequently, the TAIFEX issued three additional futures 

products: the TSE Electronic Sector Index Futures (TE), 

the TSE Banking Insurance Sector Index Futures (TF) 

and Mini-TAIEX Futures. TE and TF began to be traded 

in July 21, 1999. We choose only TX, TE, and TF to 

forecast return volatility, because TAIEX futures (TX) 

and Mini-TAIEX Futures have the same underlying 

assets. Of the five different contract maturities for each 

kind of futures, we choose the nearest month’s contract, 



 

up until the beginning of the month of delivery, when the 

second nearest contract to expiration begins to be used in 

order to avoids idiosyncrasies that may be specific to the 

futures markets during the month of delivery..  

The data used are the daily closing prices, trading 

volumes, and open interests for the TX, TE, and TF 

contracts traded on the TAIFEX. We analyze TX data for 

the period from July 21, 1998, to December 31, 2002, and 

the data for TE and TF from July 21, 1999, to December 

31, 2002. Daily closing prices of the TX used for the 

in-sample data cover the period from July 21, 1998, to 

June 28, 2002, yielding a total of 1023 observations. For 

TE and TF, a total of 754 observations are included 

within-the sample period.  

The daily return series are calculated as the first 

differences of the logarithms of the daily closing futures 

prices: 

)/ln( 1−= ttt PPr  (1) 

where tP  is the daily closing price at time t for the 

relevant TX, TE, or TF futures contract, and tr  is its 

daily rate of return, assuming continuous compounding. 

The use of the logarithm of price changes reduces the 

impact of price-level nonstationarity on the estimated 

return volatility. Following Chan, Christie, and Schultz 

[12], Day and Lewis [18], West and Cho [62], and 

Brooks [9], we measure the daily volatility as simply the 

square of the day’s return. As Jorion [37] notes3, 

22
1 ][ ttt rE σ=− . (2) 

Before proceeding to the estimation of the various 

volatility-forecasting models, we will first examine the 

distributional properties of the various daily returns series. 

Descriptive statistics for these return series are reported 

in Table 1.  

Table 1: Descriptive statistics for futures returns 

Futures Contract TX TE TF 

Beginning Date 98/0722 99/07/22 99/07/22 

Ending Date 01/12/31 01/12/31 01/12/31 

Sample Size 1023 754 754 

Mean −0.04 −0.05 −0.06 

Max 6.77 6.77 7.38 

Min −7.26 −7.26 −7.26 

Std. Dev. 2.09 2.69 2.47 

Skewness 0.07 0.17 0.22 

Kurtosis 4.41 3.53 3.93 

Bera-Jarque 85.96*** 12.80*** 33.58*** 

Qx(6) 9.95 11.35* 13.29** 

Qx(12) 13.91 19.60* 17.32 

Qx(18) 33.11** 39.70*** 22.89 

Qxx(6) 163*** 143*** 128*** 

Qxx(12) 233*** 219*** 177*** 

Qxx(18) 288*** 298*** 185*** 

Note: The symbols ***, **, and * indicate statistical significance 

at the 1%, 5%, and 10% levels, respectively. 

Over the sample period covered, the mean daily 

returns of all three futures returns series are all close to 

zero, though slightly negative (−0.04%, −0.05% and 

−0.06%). The standard deviations range from 2.09% for 

the TX futures returns to 2.69% for the TE futures. As is 

typical with financial time series, all three series exhibit 

excess kurtosis, and, as a consequence, the Bera-Jarque 

skewness-kurtosis test of normality results in a rejection 

of normality at a 1% for all three series. Note that these 

leptokurtic departures from normality come in spite of the 

tail truncation effects of the 7% daily price limits that 

exist on the Taiwan financial markets. As shown by 

Ammermann and Patterson [2], the effects of these daily 



 

price limits not only serve to truncate the tails of the 

distribution of daily returns, leading to relatively low 

levels of leptokurtosis as compared to other financial 

markets throughout the world, but, when Taiwan’s 

markets become especially volatile, the price limits also 

serve to convert this extant daily return volatility into 

autocorrelation between daily returns.  

The autocorrelations within each of the three futures 

returns series and the evolution of their levels of volatility 

over time are explored via the next set of descriptive 

statistics, the Ljung-Box (Qx) test statistic and the 

McLeod and Li (Qxx) test statistic. These tests examine 

the joint significance of the autocorrelations among the 

first 6, 12, and 18 lags of the return and squared return 

series, respectively, of the futures contracts. As noted by 

Taylor [57], among others, these two sets of 

autocorrelation functions can be used to explore the 

degree of predictability of various moments within 

financial data. For the three futures return series, the 

significant Q-statistics suggest at least a moderate degree 

of predictability among the returns of each of these series, 

and, as indicated by the much more highly significant 

Qxx statistics, a high degree of predictability among the 

squared returns for each of the three series, reflecting the 

possible presence of nonlinear serial dependencies, such 

as autoregressive conditional heteroscedasticity (ARCH) 

effects, various possible formulations of which will be 

explored in Section 3. 

Before proceeding to the description and estimation of 

such models for forecasting volatility, the stationarity of 

the explanatory variables with which we plan to augment 

such models must first be verified. We used the 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) 

tests to assess the stationarity of the volume for the 

nearest month’s contract for a given future (VOL), total 

volume across all the contracts for the given future 

(TVOL), open interest for the nearest month’s contract 

(OP), and total open interest (TOP), and the null 

hypothesis of a unit root is rejected for all four variables 

for each of the three sets of futures contracts. Thus, all of 

the series are indicated to be stationary, apart from the 

total volume (TVOL) series for the TE and TF futures 

contracts, which are found to be trend stationary. 

3. Models 

3.1. Linear GARCH Models 

Our basic model for forecasting the mean of the 

returns series for each of the sets of futures contracts is 

the AutoRegressive Moving Average (ARMA) model: 

∑ ∑
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where tr is the return on each contract at time t, and the 

a0, ai, and bj  are constant parameters. For each set of 

futures contracts, we use the likelihood ratio (LR) tests to 

select the best-fitting autoregressive (AR), moving 

average (MA) or ARMA model. If L(θn) and L(θa) are the 

maximum log-likelihood function values under the null 

and the alternative hypotheses, respectively, then the 

statistic  -2[L(θn) - L(θa)] will be asymptotically 
2χ distributed with the number of degrees of freedom 

equaling the difference in the number of parameters under 

the null and the alternative hypotheses. To forecast the 

volatility of the returns series for each of the three sets of 

futures contracts, we consider the following linear and 

non-linear GARCH(p,q) model specifications and, 

following Akgiray [1], again use the LR test approach to 

determine the appropriate orders for p and q. 

3.1.1. GARCH Model 

Most studies that examine nonlinearity and the 



 

time-varying volatility of stock market returns find that 

GARCH models perform well in explaining and 

modeling volatility, as well as in capturing the extant 

nonlinearity within the return series (see, e.g., Bollerslev 

et al. [7] and Hsieh [34] and [35]). This suggests that the 

GARCH model would also be useful for predicting 

volatility. In terms of structure, GARCH models entail 

the joint estimation of equations for the conditional mean 

and the conditional variance. Specifically, the linear 

GARCH model can be formulated as:  
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where Ψt-1 denotes all available information at time t–1, 

α0, α1, and β are constant, non-negative parameters, with 

α1 + β < 1. These restrictions on the parameter space 

prevent negative variances (see Bollerslev [5]). Among 

all the different linear GARCH models, the GARCH(1,1) 

depicted above has been found to be the most popular. 

(see, e.g., Bollerslev et al. [7])  

3.1.2. IGARCH Model 

In many high-frequency time-series applications, the 

conditional variance estimated using a GARCH(p,q) 

process exhibits a strong persistence, that is: 
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So long as ∑ ∑
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1αβ , the series εt is 

second-order stationary, and a shock to the conditional 

variance σt
2 has a decaying impact on  σt+h

2 as h 

increases and is asymptotically negligible. However, if 

∑ ∑
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1αβ , the effect on σt+h
2 does not die out 

asymptotically. This property is called persistence in the 

literature. When the GARCH parameters sum to one, we 

are confronted with an Integrated GARCH (IGARCH) 

process (see Engle and Bollerslev [22]), in which case 

any shocks to the conditional variance persist indefinitely, 

meaning that current information remains of importance 

when forecasting the volatility for all horizons.  

The IGARCH model is estimated as a constrained 

GARCH model, where the GARCH polynomial is 

constrained to equal one: 
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or: 

( ) ( )[ ] 01 ≡−− LL βα , (7) 

where L is the lag operator. As a reflection of the 

persistence of volatility shocks to such a process, the 

IGARCH model is strictly but not weakly stationary. 

3.1.3. FIGARCH Model 

Occupying a middle ground between the GARCH and 

IGARCH models is the Fractionally Integrated GARCH 

(FIGARCH) model of Baillie et al. [3]. Under the 

FIGARCH(1,d,1) model, the evolution of the variance of 

the process can be described through the following 

relationship: 
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where νt = εt
2 – ht. If d = 1, we have an IGARCH process, 

while d = 0 yields the basic GARCH process. Under 

FIGARCH, 0 < d < 1. As a consequence, like IGARCH, a 



 

FIGARCH process is strictly but not weakly stationary, 

but, unlike IGARCH, volatility shocks to a FIGARCH 

process are not permanent, but instead decay at a 

hyperbolic rate.  

3.2. Non-Linear GARCH Models 

In addition to the volatility clustering that is described 

by the linear GARCH models, a number of researchers 

have also found asymmetry in financial time series, such 

that negative return shocks seem to increase volatility 

more than positive return shocks of the same magnitude 

(see Bollerslev et al. [7], Engle and Ng [23], and Pagan 

and Schwert [48]). Despite the success of the linear 

GARCH models, they cannot capture the asymmetry and 

skewness of the financial time series. This is the 

advantage of the non-linear GARCH models, which 

include the GARCH-in-Mean (GARCH-M) model, the 

Exponential GARCH (EGARCH) model, the 

GJR-GARCH model and the Asymmetric Power ARCH 

(APARCH).model. 

3.2.1. GARCH-M Model 

One of the earlier extensions of the GARCH model, 

developed by Engle et al. [24], allows the conditional 

variance to enter the mean equation, thereby allowing a 

proxy for risk to directly influence the expected return. 

The GARCH-in-Mean (GARCH-M) model specification 

thus includes the conditional variance, from the variance 

equation, as an added regressor variable within the return 

equation. A typical specification, the GARCH-M (1,1), 

can be written as: 
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where Ψt-1 denotes all available information at time t–1 

and δ provides a measure of investor risk aversion. The 

model indicates that a large conditional variance tends to 

be followed by both another large conditional variance 

and a higher expected return. 

3.2.2. EGARCH Model 

An alternative form of non-linear GARCH model is 

the Exponential GARCH (EGARCH) model, which was 

developed by Nelson [46]. A description of a typical 

EGARCH(1,1) model specification is as follows: 
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where α0, α1, β, and γ are constant parameters. The 

EGARCH specification holds many advantages over the 

linear GARCH specifications. For example, due to the 

exponential form of its variance equation (which ensures 

that ht is always positive), the EGARCH specification 

does not require any additional restrictions on the 

parameter space to ensure non-negativity of the 

conditional variances, which is in contrast to the linear 

GARCH model specifications, 

Moreover, Eq. (10) is able to incorporate volatility 

asymmetry through the direct inclusion in the model of 

the term, εt-1, normalized by the standard derivation of the 

data. Consequently, the EGARCH model allows good 

news (positive return shocks, such that εt-1 > 0) and bad 

news (negative return shocks, such that εt-1 < 0) to have 

asymmetrical impacts on volatility, while the linear 

GARCH model does not (see Engle and Ng [23]). The 

degree and direction of such asymmetry is a function of 

the parameter, γ. If γ = 0, then a positive return shock has 

the same effect on volatility as a negative return shock of 



 

the same magnitude. If γ < 0, a negative return shock will 

have a greater impact on future volatility while a positive 

return shock will actually have an ameliorating effect 

(which is consistent with the findings of the research on 

volatility asymmetry), while if γ > 0, these impacts would 

be reversed.  

3.2.3. GJR-GARCH Model 

The GJR-GARCH model was proposed by Glosten et 

al. [29]. For this model, the conditional mean and 

conditional variance equation specifications are as 

follows: 
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where α0, α1, β, and γ are constant parameters. In Eq. (11) 

the asymmetry arises from the inclusion of a 

“negative-return-shock” dummy variable, St
-, which takes 

a value of one whenever εt-1 ≤ 0 and zero otherwise. Thus, 

the GJR-GARCH model specification assumes that 

negative return shocks will have a greater impact on 

volatility.  

3.2.4. APARCH Model 

The Asymmetric Power ARCH, or APARCH, model 

was introduced by Ding, Granger, and Engle [20]. The 

general APARCH (p,q) model specification can be 

expressed as: 
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where δ > 0 and -1 < γi < 1 (i = 1, … , q). 

This model couples the flexibility of a varying 

volatility exponent, δ, together with the existence of a set 

of asymmetry coefficients, the set γi < 1 (i = 1, … , q), 

which take the “leverage effect” into account. The 

flexibility of the APARCH model allows it to comprise 

seven alternative ARCH model specifications as special 

cases, including: 

(1) The ARCH model of Engle [21], when δ = 2, γi = 0 (i 

= 1, … , q) and βj = 0 (j = 1, … , p),  

(2) The GARCH model of Bollerslev [5], when δ = 2, and 

γi = 0 (i = 1, … , q),  

(3) The conditional standard deviation model of Taylor 

[56] and Schwert [54], when δ = 1 and γi = 0 (i = 

1, … , q),  

(4) The GJR-GARCH model (Glosten, et al. [29]), when 

δ = 2,  

(5) The TARCH model of Zakoian [62], when δ = 1,  

(6) The NARCH model of Higgins and Bera [32], when γi = 0 (i 

= 1, … , q) and βj = 0 (j = 1, … , p), and  

(7) The Log-ARCH model of Geweke [28] and Pentula 

[49], when δ → 0. 

3.3. Forecasting Models with Lagged Volume or 
Open Interest 

In order to improve the prediction ability of the 

GARCH models beyond what their basic univariate 

specifications would allow, we add lagged values of 

market volume and open interest as predictor variables to 

the volatility equations of both the linear and non-linear 

GARCH models. Because one week is made up of five 

trading days, we consider up to five lags of each of these 

variables. The five lags of market volume or open interest 

are added to the right-hand side of the variance equations 

of the ARCH-class models. Thus, the augmented version 

of the GARCH(1,1) model specification, for example, 



 

could be written as: 
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where Volt-i denotes the ith lag of the market volume of the 

nearest month’s contract. The other models follow the 

same method. Then, the final model specification is 

determined through a sequential process of testing the 

significance of the γis, the coefficients of the lagged 

volume levels. Specifically, if the coefficient of the Volt-5 

(i.e., γ5) is not significant, then we delete this parameter 

(Volt-5) from the model. This process is continued, down 

from five lags to one, until a lag with a significant 

coefficient is found. This step helps us both to determine 

how many lags of market volume are suitable, as well as 

to understand the relationship between the volatility and 

market volume. Next, continuing to follow the same 

procedure, we consider the open interest of the nearest 

month’s contract (OP), the total volume (TVOL), and the 

total open interest (TOP). This will enable us to better 

understand the relationship between volatility of the 

returns on each set of futures contracts and the level of 

market volume or open interest for each contract. 

3.4. Forecasting Evaluation 

3.4.1. Regression Test 

In order to assess and compare the out-of-sample 

forecasting abilities of that various GARCH model 

specifications that are being fit to the three sets of futures 

contracts returns, we follow an approach used by Diebold 

and Mariand [19]. This method uses the following model 

to compare the various possible pairs of forecasts to each 

other: 

tt cd ε+= , (14) 

where dt ≡ eit - ejt is the loss differential, 22
titite σσ −=  

and 22
tjtjte σσ −= . σt

2 is defined by Eq. (2). σit
2 and 

σjt
2 denote the variances forecasted by the given model i 

and the model j, respectively. The null hypothesis is c = 0, 

denoting that the coefficient of the constant is not 

significant, which in turn would suggest that each of the 

two sets of forecasts is equally close, on average, to the 

“true” values for the given daily variances for the futures 

returns. If we reject the null hypothesis, a finding of c ≠ 0 

with c < 0 would denote that model i is preferred to model 

j, while c ≠ 0 with c > 0 would denote that model j is 

preferred to model i. In conjunction with this regression 

approach, we use the Newey and West [47] 

HAC–consistent standard errors to determine the 

significance levels of the various parameters of interest. 

We then use this approach to compare the variance 

forecasts of each of the various GARCH specifications 

with those of each of the rest of the various GARCH 

specifications (i.e., every model is compared with every 

other model). We then used these results to rank all of the 

models, for each of the three sets of futures contracts, in 

terms of their out-of-sample forecasting ability.  

4. Empirical Results 

4.1. In-Sample Estimation 

Before estimating the various GARCH model 

specifications, we first fit an AutoRegressive (AR) model 

for the means of each of the three sets of futures returns. 

We use a log-likelihood-ratio test approach to determine 

the best order of AR model to fit to the data. For example, 

the χ1
2 test statistic for comparing the AR(1) and AR(2) 

model specifications for the TX futures is -2⋅[(-2201.48) - 

(-2198.58)] = 5.8, which is significant at a 5% level 



 

(critical χ1
2 value = 3.84). Similar results were obtained 

for the other series of futures returns, suggesting that the 

AR(2) model is a suitable formulation for the mean 

equations for each of the three series of futures returns.  

For the variance equations for the various forms of 

GARCH models, the specification of p = 1 and q = 1 

(implying a GARCH(1,1) specification, for example) 

appears to show the best fit. Other specifications such as 

GARCH(p,q) for p = 1,…,5 and q = 1,…,5 did not appear 

to make any significant improvements in goodness-of-fit 

with LR tests. Similar results were also found for the 

categories of linear and non-linear GARCH models that 

were estimated. Thus, although there is little theoretical 

justification for this, the GARCH(1,1) model 

specification appears to work quite well in practice as a 

general-purpose model for capturing the nonlinearity in 

financial returns. 

Table 2 reports the estimates of the primary 

parameters of interest for each of the categories of 

GARCH models that are fitted to each of the three sets of 

futures returns. The parameters whose values are reported 

include α0, α1, and β1, for the GARCH(1,1) model, the 

risk-aversion parameter γ for the GARCH-M model, the 

volatility asymmetry parameter δ for the GJR-GARCH, 

EGARCH, and APARCH models, as well as the 

volatility-scaling parameter γ for the APARCH model.  

From the table, it is clear that the α1 and β1 parameters 

in the GARCH(1,1) model are typically significant at the 

1% level; hence, the constant variance model can readily 

be rejected, at least within sample. Moreover, the α1 and 

β1 parameters are positive and sum to less than unity for 

each of the three sets of contracts, so that an IGARCH 

specification does not seem to be required. (Related to 

this issue, it is notable that initial attempts to fit 

FIGARCH models to these sets of returns were only 

partially successfully; this may be at least partially a 

consequence of the conversion, by the price limits 

imposed on the Taiwan markets, of large magnitude 

return shocks into autocorrelation instead of into 

persistent volatility, as was described in the discussion 

following Table 1.) 

Table 2: Estimation results for GARCH, GARCH-M, 

GJR-GARCH, EGARCH and APARCH models fit to 

the three series of futures returns 

Model Parameters TX TE TF 

GARCH(1.1) 

α0 0.13*** 0.31*** 0.50*** 

α1 0.09*** 0.09*** 0.12*** 

β1 0.88*** 0.87*** 0.80*** 

GARCH-M 

δ 0.04 0.06* 0.06* 

GJR 

γ 0.11*** 0.08*** 0.06* 

EGARCH 

γ −0.08*** −0.05*** −0.05** 

APARCH 

γ 0.57*** 0.24** 0.37*** 

δ 0.40*** 1.89*** 0.44* 

Note: The symbols ***, **, and * indicate statistical significance 

at the 1%, 5%, and 10% levels, respectively. 

Table 2 also reports the estimation results for 

asymmetry parameters γ incorporated into the 

GJR-GARCH, EGARCH, and APARCH model 

specifications. Due to differences in the way volatility 

asymmetry is incorporated into each of the three model 

specifications, the γ estimates are positive for the 

GJR-GARCH and APARCH models and negative for the 

EGARCH models. Nonetheless, all three model 

specifications lead to significant γ parameter estimates, 

suggesting the existence of a significant leverage or 



 

volatility asymmetry effect during the sample period for 

all three sets of returns, such that bad news (negative 

return shocks) would have a greater impact on future 

volatility than good news. 

In addition to fitting the basic specification forms of 

the various GARCH-type models described above, we 

also added lagged values of volume and open interest 

data to the right-hand sides of the various variance 

equations4. For all three sets of contracts, both lagged 

total volume and lagged total open interest are found to 

have a significant relationship with volatility. This result 

is consistent with Najand and Yung [45]. For TX, only the 

coefficients out to the second lag of total volume (TVOL) 

and total open interest (TOP) were significant for all of 

the GARCH specifications, so only two lags of each of 

these predictor variables were added to the variance 

equations for the models fitted to the TX returns. 

Following the same approach, four lags of total volume 

and total open interest were found to be suitable for 

inclusion in the variance equations for the TF returns, 

while only three lags of total open interest were chosen 

for inclusion for TE return variance equations. 

Once we have decided upon the number of lags of the 

predictor variables with which to augment the various 

GARCH model specifications, we next test their 

in-sample performance. We use the values of the 

log-likelihood function (LnL) and perform Likelihood 

Ratio (LR) tests to compare the various GARCH model 

specifications with and without market volume and open 

interest. For example, for the GARCH(1,1) model fitted 

to the TX returns, the basic model specification is 

compared to a specification that includes two lags of total 

volume. Comparing the two likelihood functions for this 

situation yields a LR test statistic of 3.92, which is not 

significant at the 5% level (critical χ2
2 value = 5.99). 

Similarly, the augmentative models using two lags of 

total volume and open interest such as IGARCH, 

GARCH-M and APARCH models are all found to be 

significant at the 5% level, which indicates that the 

addition of two lags of volume and open interest data as 

predictor variables can improve the performance of these 

variance prediction models for the TX returns. However, 

models with three or four lags of these predictor variables 

do not necessarily produce the same results for the other 

sets of futures contracts.  

For the TE futures, the forecasting models with three 

lags of total open interest are found to perform better than 

the models without any predictor variables in the variance 

equations, as indicated by significant (at a 5% level) LR 

tests for these augmented models. By contrast, the results 

for the TF futures returns are mixed. While the models 

augmented with four lags of total volume as predictor 

variables are found to provide improved performance, the 

models augmented with three lags of total open interest, 

on the other hand, do not appear to offer significant 

improvement. Overall, the majority of augmentative 

models (with lagged market volume and open interest) 

are found to outperform the basic models (without these 

predictor variables added) in capturing the dynamic 

behavior of Taiwan futures market returns. 

4.2. Forecasting Results 

In assessing the out-of-sample forecasting ability of 

our various candidate models, we calculate the following 

one-period-ahead forecasting errors for each of the 

different models: 

2
1,

2
11 +++ −= tfttu σσ  (15) 

where ut+1 is the forecasting error of the given forecasting 

model, σt+1
2 is defined by Eq. (2), and σf,t+1

2 is the 

forecasted variance generated by using the variance 



 

equations. In order to find the one-day-ahead forecast of 

the variance for July 1, 2002, we use the data from July 

22, 1998 to June 28, 2002 in TX (from July 22, 1999 to 

June 28, 2002 in TE and TF) as our initial in-sample 

modeling period to estimate the parameters of the models. 

The sample is then rolled forward by removing the first 

observation of the sample and adding one to the end, and 

another one-step-ahead forecast of the next day’s variance 

is made. This forecasting procedure is then repeated for 

each subsequent trading day during the period from July 

1, 2002, through December 31, 2002. Computation of 

forecasts using a rolling window of data should ensure 

that the forecasts are made using models whose 

parameters have been estimated using all the relevant 

information available at the time. 

Unfortunately, good performance in parameter 

estimates and diagnostic statistics does not guarantee 

good performance in forecasting. Thus the sequences of 

one-step-ahead forecasts are generated and then evaluated 

through the regression testing procedure described in 

Section 3.4.1. Under this test procedure, the variance 

forecasts of each model are compared, one-by-one, with 

the forecasts of each of the other models. Using the 

results of these comparisons, a global ranking of the 

various models is made.  

For the TX futures returns, the model that ranks 

number one in terms of out-of-sample variance forecast 

performance is the EGARCH model augmented with two 

lags of total open interest. Tied for second place in terms 

forecasting performance are the EGARCH model 

augmented with two lags of total volume and the 

augmented GARCH-M model with two lags of total open 

interest. For the TE futures, the number one model in 

terms of out-of-sample variance forecast performance is, 

similarly to the TX futures, the augmented EGARCH 

model with three lags of total open interest. The second 

and third place models, on the other hand, are the 

augmented GJR-GARCH and the augmented simple 

GARCH models, respectively, each with three lags of 

total open interest. Finally, for the TF futures, the top 

three models are all variations of Asymmetric Power 

ARCH models. The first place model is APARCH 

augmented with four lags of total volume, the second 

place model is APARCH augmented with three lags of 

total open interest, and, finally, the third place model is 

the basic, unaugmented APARCH model. In general, the 

non-linear GARCH models augmented with lagged 

market volume and open interest data as predictor 

variables within the conditional variance equations 

appear to be better able to capture and explain the 

evolution of the daily return variances of the TX, TE, and 

TF futures.  

 

Note: Actual denotes the volatility defined by Eq. (2). 

Figure 1: Esimation of TX volatility via EGARCH 

model augmented with two lags of total open interest 

(7/1/2002 – 12/31/2002) 
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Note: Actual denotes the volatility defined by Eq. (2). 

Figure 2: Esimation of TE volatility via EGARCH 

model augmented with three lags of total open interest 

(7/1/2002 – 12/31/2002) 
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Note: Actual denotes the volatility defined by Eq. (2). 

Figure 3: Esimation of TF volatility via APARCH 

model augmented with four lags of total volume 

(7/1/2002 – 12/31/2002) 

The variance forecasting performance of each of the 

three first-place models, for the TX, TE, and TF futures, 

are displayed in Figures 1, 2, and 3, respectively. Each 

figure compares the actual daily futures return variances 

to the sequence of in-sample and one-step-ahead 

out-of-sample variance forecasts provided by the model 

found to best forecast the variances for the given set of 

futures contracts. These figures demonstrate how well the 

first-place candidate models perform at capturing the 

trends in the daily futures volatility of these three sets of 

futures contracts on the Taiwan market. 

5. Conclusions 

This paper examines the temporal behavior of the 

volatility of daily returns on stock index futures in the 

Taiwan futures markets, using various specifications of 

GARCH-type models, with and without market volume 

and open interest data as added predictor variables. The 

three sets of futures contracts examined are the TAIEX 

futures (TX), the TSE electronic sector Index futures 

(TE), and the TSE banking insurance sector index futures 

(TF). The candidate models chosen for forecasting the 

variances of the given sets of futures returns are 

conditionally Gaussian GARCH-type models, including 

both linear (GARCH and IGARCH) and non-linear 

(GARCH-M, EGARCH, GJR-GARCH and APARCH) 

GARCH model specifications.  

Other potential models for variance prediction that 

were not chosen for examination in this study include 

stochastic volatility models and conditionally leptokurtic 

GARCH models. While the GARCH models that were 

examined in this study were all conditionally Gaussian, or 

Normal GARCH models, such models generally cannot 

account for the degree of leptokurtosis typically found in 

financial time series. This observation led to the 

development of the conditionally leptokurtic GARCH 

models, such as, most notably, the Student’s t GARCH 

(GARCH-t) model of Bollerslev [5] (see Bollerslev et al. 

[7] and Mills [43] for additional examples of 



 

conditionally leptokurtic GARCH models), which has 

been found to provide a better fit than the Normal 

GARCH model for most other financial time series, 

However, as a consequence of the tail truncation that 

results from the daily price limits imposed on Taiwan’s 

financial markets, the Normal GARCH models actually 

appear to provide a better fit than the conditionally 

leptokurtic models.  

With regard to the other category of time series 

volatility model, the stochastic volatility models, Poon 

and Granger [50] find that they do not perform as well as 

GARCH models. However, a recent variation of 

stochastic volatility model, the Multifractal Model of 

Asset Returns (MMAR) (see Mandelbrot et al. [42], 

Calvet & Fisher [10][11], and Lux [41]) shows promise in 

providing better longer-term volatility forecasts than the 

GARCH models and would provide a promising area for 

future research into volatility on the Taiwan markets. 

For the conditionally Gaussian GARCH-type models 

that we did fit to the Taiwan stock index futures returns, 

we also examine the relationship between volatility of the 

futures returns and market trading volume and open 

interest by directly adding the lagged volume and open 

interest data to the right-hand side of the variance 

prediction equations. We find significant relationships 

between the futures’ daily volatilities and both the lagged 

total market volume and the total open interest, with the 

exceptions of the lagged volume and open interest of the 

nearest month’s contract. This result may be attributed to 

the data selection method and the fact that the second 

nearest month’s futures contract is not very actively 

traded in the Taiwan futures market. Regarding the 

in-sample estimation performance of the various models 

examined, the forecasting models with lagged total 

volume and open interest appear to outperform the other 

model specifications for all three sets of futures contracts, 

as determined by the LR test.  

With regard to the out-of-sample forecasting 

performance of the various candidate linear and 

non-linear GARCH models, the regression test yields the 

conclusion that lagged values of either market volume or 

open interest data play a critical role in improving the 

out-of-sample forecasting performance of volatility 

models for all three sets, TX, TE, and TF, of the futures 

returns. Moreover, the non-linear GARCH models whose 

variance equations are augmented with lagged market 

volume and open interest values for all contracts perform 

better at out-of-sample forecasting than the equivalent 

linear GARCH models.   

 In summary, when the futures return series exhibit 

significant volatility asymmetries, non-linear GARCH 

models can better explain the volatility of the time series. 

In addition, the inclusion of lagged total volume and open 

interest can further improve their forecasting ability for 

the volatility of the Taiwan futures markets. 

Endnotes 

1 The TSEC maintains a total of 27 stock price indexes, to allow 

investors to grab both overall market movement and different 

industrial sectors' performances conveniently. The TSEC 

Capitalization Weighted Stock Index (TAIEX) is the most 

widely quoted of all TSEC indexes. The base year value as of 

1966 was set at 100. 

2 TAIEX covers all of the listed stocks excluding preferred 

stocks, full-delivery stocks and newly listed stocks, which are 

listed for less than one calendar month. Up to December 2001, 

557 issues were selected as component stocks from the 584 

listed companies on the Exchange. 

3 See Jorion (1995). We know: 
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and 0][1 ≈− tt rE , so ][ 2
1

2
tt rE −=σ . 

4 Following Akigray (1991), we also use LR test to find the 

fitted p and q of the variance equations when adding the lagged 

market volume and open interest to the right-hand side of the 

variance equations of the forecasting models  
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