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Abstract 

To gain competitive advantage, firms rely on decision 
and information technologies to enable more responsive 
and efficient e-business operations.  Among others, 
optimization-based available-to-promise (ATP) models 
are capable of effectively allocating and reallocating 
critical resources among multiple customer orders or 
channels within an execution horizon.  However, due to 
relatively short execution horizon, optimization-based 
ATP models may experience lower profitability when 
repeatedly implemented over a longer rolling horizon.  It 
is therefore important to take into account demand 
uncertainty among different demand classes.  We model a 
dynamic resource reservation policy into a stochastic 
programming model.  Our numerical experiments show 
that the model can obtain the optimal reservation level that 
gives reasonable protection to more profitable customer 
demand classes. 
 
1. Introduction  

Advanced information technology and expanded 
logistics infrastructure are reshaping the global business 
environment.  These developments present new 
opportunities as well as new threats to companies all over 
the world.  Buyers and sellers can now collaboratively 
make business decisions in real time, and products can be 
moved from place to place globally within a matter of 
days or even hours.  As a result, the standard of doing 
business has been elevated to the highest level ever.  In 
order to gain competitive advantage in the new business 
environment, firms are redefining their business models 
not only to improve front-end customer satisfaction but 
also to enhance back-end logistics efficiency.  Available to 
Promise (ATP) is such a system that directly links 
customer orders with enterprise resources and 
simultaneously takes into consideration the tradeoffs 
between front-end and back-end performance. 

An ATP system performs two fundamental order 
management functions: 1) order promising and 2) order 
fulfillment, under a resource-limited short-term 
operational environment.  In a customer order cycle, a 
company has to make an order promise on delivery time, 
quantity, and even product configuration to each of its 
customers as soon as an order is processes.  However, the 
actual order fulfillment may involve complicated, 
time-consuming production and distribution operations.  
With uncertainty in future customer orders and fulfillment 

operations, it is really challenging to make order 
promising and fulfillment decisions that balance front-end 
customer satisfaction and back-end logistics efficiency.  
Motivated by this difficulty, ATP systems are developed to 
support companies in making responsive, reliable, and 
profitable promises based on the company’s actual 
fulfillment ability. 

Among many advanced execution mechanisms, the 
order promising and order fulfillment functions are 
particularly important.  These two functions are like nerve 
and muscle systems that aim to synchronize supply chain 
activities across firms.  Any discrepancy between an order 
promising signal and the corresponding order fulfillment 
action could result in imbalance and instability for the 
entire supply chain system.  Especially in an e-business 
arena, customers not only demand quick order promising 
but also expect reliable order fulfillment.  Firms need ATP 
systems to enhance customer satisfaction as well as to 
sustain profitability.  More and more practitioner articles 
state the needs of ATP systems (see [2], [6] and [13]).  ATP 
has also gained a high interest within the research 
community (see [1], [5], [7], [8], [9], [10], [11] and [12]). 
 
2. Problem Statement 

Among many ATP research streams (see [1]), this 
paper focuses on optimizing the reservation level of a 
critical resource by using a stochastic programming model.  
In an MTO or ATO production environment, order 
promising decisions need to be made before a company 
realizes what kinds of customer orders it will see in the 
future.  In general, customer orders are realized over time 
with a mix of a spectrum of profitability and resource 
requirement.  By using mixed integer programming 
models, Chen, Zhao and Ball (see [3] and [4]) report an 
increasing trend of profitability when a company can 
postpone order promising decisions and process customer 
order requests periodically in a batch mode.  However, 
this strategy may not be feasible or desirable in e-business 
operations, in which a shorter order promising cycle is a 
key to success. 

Suppose that we can classify potential customer orders 
that require the critical resource into four demand classes 
according to their profitability and arriving time stage, as 
shown in Table 1.  Note that Class I includes customer 
orders that are more profitable and arrive in the current 
stage, and that Class II consists of customer orders that are 
also more profitable but arrive in the future stage.  
Similarly, Classes III and IV include relatively less 



 

profitable customer orders that arrive in current stage and 
in future stage, respectively.  Due to the fact that Class II 
customer orders arrive after Class III customer orders, we 
need to reserve enough resources for these Class II orders 
in order to improve overall profitability.  Otherwise, Class 
III customer orders may consume too much, which would 
lead to lower overall profitability because of severe lost 
sales among Class II customer orders.  While this 
reservation implies possible denial of a certain portion or 
even all of Class III customer orders, it make a perfect 
sense to satisfy as many Class I customer orders as 
possible with available resources because the uncertain 
Class II customer orders in the future have similar 
profitability as those in Class I.  We call this revenue 
management approach a dynamic resource reservation 
policy for the multi-class available-to-promise problems. 

Table 1.  Demand Class Definition 
 

Time Stage  
Profitability Current Future 

High Class I Class II 
Low Class III Class IV 

 
3. Stochastic Programming Formulation 

The following notation is used in describing stochastic 
programming models for the resource reservation problem 
mentioned above. 
 
I  = set of demand scenarios for current high profitable 

customer orders (i.e., for Class I) 
J  = set of demand scenarios for current low profitable 

customer orders (i.e., for Class III) 
K  = set of demand scenarios for future high profitable 

customer orders (i.e., for Class II) 
L  = set of demand scenarios for future low profitable 

customer orders (i.e., for Class IV) 
N  = set of demand scenarios , where ( lkjin ,,,= )

Ii∈ , Jj∈ ,  and  Kk ∈ Ll∈
M  = set of demand classes = { }4,3,2,1  
 
a  = availability of the critical resource 

n
md  = demand in Class m  under scenarios n  
np  = probability of demand scenarios n  

mv  = profit margin in Class  m

mu  = lost sales penalty in Class m  

mh  = inventory holding cost in Class  m
 
α  = penalty of short-fall inventory (with respect to the 

resource reservation level R ) after sales in Class I 
β  = penalty of excess inventory (with respect to the 

resource reservation level R ) after sales in Class I 
γ  = penalty of excess inventory (with respect to the 

resource reservation level R ) after sales in Class III 

 
The main decision variables include: 

 
R  = resource reservation level 

n
mS  = sales in Class m  under scenarios n  
n

mT  = lost sales in Class m  under scenarios n  
n
mI  = inventory after sales in Class  under scenarios  m n
nE  = the short-fall inventory (with respect to the resource 

reservation level R ) after sales in Class I under 
scenarios n  

nF  = the excess inventory (with respect to the resource 
reservation level R ) after sales in Class I under 
scenarios n  

nG  = the excess inventory (with respect to the resource 
reservation level R ) after sales in Class III under 
scenarios n  

 
We can then formulate this resource reservation 

optimization problem into the following stochastic 
programming model. 
 
Maximize 
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The objective function (1) basically maximizes the 

expect total net profit, which takes into account profit 
margin, lost sales penalty, and inventory holding cost for 

 



 

customer orders in each demand class.  The additional 
three terms are needed to assure accurate short-fall and 
excess inventory counting.  The reason for including these 
additional objective function terms will be explained later 
when we discuss constraints (9)-(11). 

We let unfulfilled demand become lost sales in 
constraint (2).  Constraints (3)-(6) keep track of inventory 
(i.e., remaining availability) over time.  Note that the order 
of sales depends on the time stage of each demand class.  
In each time stage, we also allow the more profitable 
demand class to consume any remaining availability first.  
In short, the sequence of sales is Classes I, III, II and IV in 
our model.  In constraint (7), we compare the remaining 
availability after sales in Class I ( ) with reservation 
level (

nI1

R ) under each demand scenario n .  In order to 
maximize profit, it makes sense for Class I to bring the 
remaining availability below the reservation level 
whenever necessary due to its higher profitability.  Any 
shortfall amount is recorded in variable  nE  and any 
excess amount is stored in variable nF .  On the other 
hand, Class III should not decrease remaining availability 
any further, if the inventory is below the reservation level 
already.  That is the reason that constraint (8) only accepts 
the same shortfall amount nE  after sales in Class III.  
Similarly, we store any excess amount in variable .  It 
is not hard to see that we actually adopt standard goal 
programming techniques here.  In order to assure that 
these shortfall and excess decision variables behave as 
expected, we need to assign small penalties 

nG

α , β  and 
γ  in the objective function.  Otherwise, the excess 
variables may contain some amount that we would like to 
reverse for more profitable customer orders in Class II.  In 
other words, the resulting reservation level in the 
optimized solution may not truly reflect the total amount 
needed to protect more profitable customer orders in Class 
II without these penalties.  Constraints (9) and (10) 
enforce the consistency of decisions that have been made 
in current time stage across different demand scenarios.  
Although we deal with shortfall and excess variables 
directly, these constraints imply same Class I and Class III 
sales for the common current demand scenarios regardless 
corresponding future demand scenarios.  Finally, 
constraint (12) states that all decision variables hold 
non-negative values. 
 
4. Numerical Experiment  

We conducted a small numerical experiment and found 
that the model was able to obtain the optimal reservation 
level for a hypothetical problem within a very short time.  
Table 2 shows three demand scenarios (i.e., low, medium, 
and high) along with their associated probabilities for 
each demand class.  Assuming independent demands 
across all four demand classes, we ended up with 81 
combinations of demand scenarios in this example 
problem.  The probability of a particular (combination of) 
demand scenario could then be calculated by multiplying 

four corresponding probabilities together.  For example, a 
low-low-low-low (or 25-25-25-25) demand scenario has a 
probability of (0.3)4 = 0.0081. 

Table 2.  Demand Scenarios 
 

Demand Class I Class II Class III Class IV 
Low 25 (0.3) 25 (0.3) 25 (0.3) 25 (0.3) 

Medium 50 (0.4) 50 (0.4) 50 (0.4) 50 (0.4) 
High 75 (0.3) 75 (0.3) 75 (0.3) 75 (0.3) 

 
Furthermore, Table 3 presents the profit margin, lost 

sales penalty and inventory holding cost for each demand 
class.  The discounts on profit margins and on lost sales 
penalty attempted to reflect the risk associated with larger 
uncertainty in future time stage.  Inventory holding costs 
are charged based on ending inventory in each time stage.  
We therefore neglected the inventory holding costs for 
Classes I and II. 

Table 3.  Profit and Cost Parameters 
 

Parameter Class I Class II Class III Class IV 
Profit 100 80 60 50 

Lost Sales 110 90 70 60 
Holding 0 0 10 50 

 
Given an initial availability of 200 units, the model 

obtained the optimal reservation level as 75 units.  The 
experimental results showed that, with the optimal 
reservation level, all customer orders are protected (i.e., 
no lost sales) in Classes I and II under all demand 
scenarios.  The reservation level works so that all more 
profitable customer orders in Class II were properly 
protected.  Most of the lost sales happened in Class IV 
with one exception.  When we have high demands (i.e., 75 
and 75 units) in Classes I and III, the optimal reservation 
level forces a lost sales of 25 units in Class III.  The sales 
of 75 units in Class I bring the remaining availability 
down to 125 units.  Because Class III are not allowed to 
consume any unit below the reservation level of 75 units, 
we only have 50 units available for customer orders in 
Class III under this high-high scenarios.  Therefore, we 
need to deny 25 units in Class III in order to provide 
reasonable protection to more profitable customer orders 
in Class II. 

Overall, the stochastic model was able to obtain the 
optimal reservation level for this small sample problem 
within a couple of seconds.  However, the computation 
time is expected to increase exponentially with the 
number of demand scenarios due to the complex of 
problem structure.  For example, if we consider nine 
demand scenarios in each demand class, the number of 
combinations of demand scenarios would quickly grow to 
94 = 6561.  We actually tried one sample problem of this 
size, but the personal computer ran out of its 256MB 
memory.  It seems that the ideal solution for resolving the 
memory problem is to pursue the commonly used L-shape 
decomposition technique for solving stochastic linear 
programming problems. 

 



 

Another computation issue is regarding how to 
properly assign the values for penalty parameters α , β  
and γ .  Because of the interaction between expected net 
profit terms and these goal-programming penalty terms in 
the objective function, some combinations of these 
penalty parameters may not lead to the actual optimal 
reservation level employed in a model.  This phenomenon 
results from unexpected behavior among corresponding 
penalty variables nE ,  nF  and .  However, it is very 
easy to check whether the corresponding penalty variables 
are well-behaved or not.  Recall that the purpose of these 
penalty variables is to calculate the differences between 
left-hand-side and right-hand-side values in constraints (7) 
and (8) and to compute the short-fall or excess values.  
Therefore, between short-fall amount and excess amount, 
at least one of them should equal zero.  Only under this 
situation, the optimal reservation level is reliable.  If we 
find both positive values from a pair of short-fall and 
excess amount of a certain constraint, the optimal 
reservation level is not reliable.  Some adjustment on 
penalty parameters is necessary to correct the problem.  
The specific penalty parameters used in the numerical 
experiment were 10, 5 and 5 for 

nG

α , β  and γ , 
respectively. 

Finally, we find there is a good match between 
stochastic ATP problems and stochastic programming 
models.  It is a very promising future research direction to 
use stochastic programming models to model and solve 
ATP problems. 
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