
An Interface Specification method For E-Business Applications

Seung C. Lee
Department of Finance and MIS

Labovitz School of Business and Economics
University of Minnesota at Duluth

412 Library Drive
Duluth, MN 55812, USA

slee@d.umn.edu

Jinsoo Park
School of Business
Korea University

1, 5-ka, Anam-dong Sungbuk-ku
Seoul 136-701, South Korea

jinsoo.park@acm.org

Abstract

 Specifying interface for e-business application is
becoming complex because of its demanding
functionality, a rapid advance in Web technology, and an
increasing need of integration with legacy applications.
All the recent developments call for a more methodical
approach to e-business application interface. In this paper,
we propose an interface specification method founded on
the concepts of meta-information structure and
information structure, as well as taking account of
various page, link, and component types. They are
rigorously utilized in the activities of the meta-
information structure analysis and information structure
analysis to arrive at a well-formed interface specification
for e-business application.
Keywords: e-business application, meta-information,
interface, systems development methodology

1. Introduction
 Specifying the interface for Web applications are more
complex than ever due to the three key developments in
their design. First, these applications are now required to
perform more and more functions than before because the
Web as a business computing platform is gaining ground
as companies race to transform their businesses into e-
businesses [10]. A business function on the Web can be
implemented by either writing code in a page or calling
an existing software component. This implies that we
should define what, where, and how functions should be
performed. The answers to the question can be found by
considering: (1) the information that must be delivered to
the user regardless of the underlying functions; (2) the
delivery process of the information that often involves
many pages intertwined with each other; and (3) the
enabling technology and available software components
to implement a certain function.
 Second, Web technology is rapidly advancing to meet
the computing need that demands more interactive and
dynamic delivery of information [2]. Although some
Web pages are still static in nature, many of them are
generated on the fly in response to a certain event. This
means that a Web page can take shape of one or more of

the following: browsable (visible to the user, e.g., a privacy
page) or non-browsable (invisible but working behind the
scenes to render the browsable, e.g., a page generating an
order summary); base (a simple markup page, e.g., a pure
HTML document or an application document, e.g., a
spreadsheet) or derived (a document generated dynamically,
e.g., an order summary); and interactive (containing an
interactive element, e.g., a page with a form) or non-
interactive. Third, Web-based applications often are
integrated with existing non-Web applications [9, 10].
Companies should be able to leverage and extend critical
existing business systems directly to customers, employees,
suppliers, and distributors via the Web to improve time to
market and reduce cost of development and deployment.
This implies that we should take account of existing
applications during the course of a Web application interface
design.
 According to Halasz and Schwartz (1994), a Web-based
application consists of three layers: presentation, structure,
and storage. The presentation layer deals with the user
interface, which is essentially the reflection of the structure
layer that defines the relationships among various building
blocks such as pages, links, and software components. The
user interface can be understood in terms of perceptive and
cognitive aspects. The former is related to the use of colors,
fonts, and other perceptive cues, while the latter is concerned
with the flow of links, consistency in links, and other
cognitive cues. Although an appropriate mix of the two can
deliver higher usability of an application, the latter appears to
be more important than the former in the case of e-business
applications because the users are the general public rather
than computer professionals. The cognitive aspect of the
presentation layer first requires the identification of
necessary links that are accessible by the user. This implies
that some links are not accessible by the user. Then, the
question is “Which links are accessible and which are not?”
The answer to the question can be sought via an exploration
of the structure layer because the presentation layer mirrors it.
In other words, the identification of the cognitive aspect of
the presentation layer inevitably involves a structural
exploration of a Web-based application. This paper proposes
an architectural design method for the cognitive aspect of the
presentation layer by which we can define the structure layer
and then identify necessary links and their organization.

Like other Web-based applications, an e-business
application is a careful organization of meta-information
and its elements, which often involves a variety of Web
technologies to deliver unstructured as well as structured
information to the user through an interface [6]. The
interface of an e-business, therefore, involves both static
and dynamic aspects of user interaction, which are basically
enabled by means of hyperlinks that connect semantically
related information chunks—generally called anchor
pages—in a systematic way. The basic idea, however,
behind virtually all interfaces specifically, and Web-based
user interaction schemes in general, is simple: identify
meta-information for all e-business domains (consisting of
transaction units), work out in detail via an elaboration of
the meta-information (possibly through such page types as
visible and invisible), and then organize them into
structures using hyperlinks (representing various semantics)
in a way that makes it easier to manage the site later on.
For example, suppose that an enterprise’s e-business
application for selling computers needs to include a user
guide. The guide is a domain that might have several
layers of meta-information. At the top layer are guides to
the application, hardware, and operating systems. The next
layer may include guides to individual applications,
individual hardware for each platform, and various
operation systems. These layers represent meta-
information for the proposed domain. For each piece of the
meta-information, we can then identify information
elements in the form of pages. Some pages are static in the
sense that they do not provide any interactive mechanism.
Once a user clicks a link to a static page, the Web server
searches only for the requested page and, if found, returns
it to a user agent so that the requester can view the page.
By contrast, some pages may contain dynamic elements
such as a form. This requires the server system to process
the request and to generate a certain page on the fly,
occasionally with the help of software components. The
whole scenario implies that we need to classify pages and
hyperlinks into several categories to make the process of
interface specification development systematic. It also
requires that we take into account various software
components including executable files, applets, Java class
files, static libraries, and DLLs. Based on the building
blocks, we can derive an orderly and methodical structure
for the given collection of meta-information for each e-
business domain.
 Our method employs several new concepts under the
notion that the basic unit of information delivery of an e-
business application is a page, which may be the result of a
simple interpretation of a pure markup document or a
dynamically generated page through various underlying
pages that embed functions and components. Regardless of
the page delivery mechanism, the resulting page, if it needs
to be accessible by the user, should be incorporated into a
link page. Due to the vast amount of information a non-

trivial e-business application delivers, it is not feasible to
show all the anchor pages on a single link page. This
implies that we need to break the body of information to be
delivered to the user into a hierarchy of pages that contain
various links to relevant anchor pages. Furthermore, as
mentioned earlier, some pages are generated on the fly.
This means that we also need to examine what page should
be automatically generated in response to a certain event.
The automatic generation of a page in turn makes it
necessary to consider various underlying implementations
that are used to create the page. This leads us to introduce
meta-information structure and information structure along
with various page, link, and component types.
 There is some related work on the identification of
meta-information, link types, and derivation of navigation
structures (e.g., [3, 4, 12, 15]). They are based on several
data models such as Entity Relationship and Unified
Modeling Language and are indeed useful in developing
Web-based applications. However, they lack the detailed
process of developing an interface specification. The goal
of the work presented in this paper is to ameliorate the
above-mentioned limitation of interface specification by
introducing the notions of meta-information structure and
information structure. These notions incorporate two basic
page types (visible and invisible pages), six link types
(anchor, form, coordinate, trigger, redirect, and build),
three software component types (client-side, server-side,
and application components), and a structural view of the e-
business application in which an e-business domain is
stratified by its meta-information structure and information
structure. The meta-information structure analysis is
comprised of identifying three scopes: main scope,
common scope, and aggregate scope. Those scopes are
essential in representing the meta-level information of an e-
business application. The information structure analysis is
in essence an operationalization process of the meta-
information identified in the meta-information structure
analysis in which the comprising pieces of information are
defined as a structure.
 The reminder of the paper is organized as follows: a
discussion of related work, followed by the description of
the underpinning concepts used in this paper. The
specification method for interface is presented in the
subsequent section, and the last section presents
conclusions.

2. Related Work
 The explosive popularity of the Web has created a new
interest in Web-based applications, including intranet,
extranet, and various applications such as e-business and e-
engineering. One of the problems, however, in developing
an e-business application is an insufficiency of design
methodologies [3, 4], not in terms of numbers but in terms
of the richness that covers an important aspect of an e-

business design: the user interface. Much work has been
published in the area of Web-based application
development (e.g., [1, 3, 4, 5, 12, 15]. That work, in
general, lacks a detailed procedure for the user interface
specification.
 Most of the design literature on Web-based applications
has focused on the underlying data models, including the
Dexter Model [13], ER [15], and UML [3, 4]. Although
the data model is an important concern, user interface is an
equally important matter that must be articulated and
addressed. It is concerned with the visual presentation of
content to users. Sometimes, the user interface has been
the last issue to be considered. It is, however, at the
presentation layer that the information in the underlying
data model actually finds its way from abstract machine
space into the user’s perception [16]. In designing the user
interface, the following should be considered: (1) global
structure and controls such as spatial division and
visualization of content; (2) local structure and controls
such as text column and media stage, marking links, link
tips, media stage and media browser, story header, and
story footer; (3) the interface appearance of each
navigational object seen by the user; and (4) other interface
objects that activate navigation such as go-to buttons [14,
16, 18].
 A Web-based application is not only a network of pages
and links: it is a structured object [17]. If a Web
application is ill-structured, the users will eventually suffer
“cognitive overhead” [20]. Closely related to the structural
problem is presentation of the structure to the users. A
good structure does not guarantee a good presentation of
the information contained in a Web-based application.
Unlike conventional information systems, Web-based
applications provide user interface objects by textual and
graphical links with their contents. This means that, based
on a good structure, there should be a mechanism to
systematically reveal the structure to the users through
systematic structure-revelation mechanisms. If not, the
users will suffer “user disorientation” [20].

3. Underlying Concepts
 In order to understand the interface specification
described in the paper, it is first necessary to understand the
underlying concepts. Accordingly, in this section, we
provide a detailed description for them. The first part of
this section explains page types which are fundamental
units of Web applications, followed by details of software
component types. The third part explains link semantics
from which the six link types are derived.

3.1 Page Types

 We believe that our approach is significantly different
from, and more descriptive than, current interface design

specification methods available in the literature. In
particular, our approach divides application pages into two
categories based on whether or not they are visible to the
user. A visible page is a page that is browsable by the user,
while an invisible page (such as a server pages) is non-
browsable. The latter works behind the scenes to render a
visible page. This classification plays an important role in
the information structure analysis. As we will see shortly,
the information structure analysis is performed solely based
on visible pages.
 A visible page can be either a base page or a derived
page, both of which in turn are classified as either an
interactive or a non-interactive page depending on whether
the page contains an interactive element other than plain
content. In other words, a visible page, either base or
derived, may be comprised of any combination of its non-
link content, one or more links to other pages, and one or
more interactive elements. The non-link content could be
very simple such as a message, a prompt, a confirmation,
and/or a heading, which works like status cues in a
conventional program. For example, one case might be a
table of contents containing links to other pages and a
simple heading. This means, of course, that the content of
a visible page includes not only its description but also
links and other elements.
 Like visible pages, invisible ones are divided into three
categories: server page, client-side control page, and
server-side control page. A server page is a page that
contains a server-side script that is processed by its engine
before a storage system (i.e., Web server) returns its
processing result to the client. A server page may contain
logic in the form of a statement, a function, or a subroutine
for a desired output. A component or an existing business
application may be involved in the course of executing a
server page. A client-side control page such as an external
cascading style sheet (CSS) has several characteristics.
First of all, it is hidden from the user of an e-business
application (i.e., not directly browsable). Second, it
controls the way the user agent displays a refined and
consistent content. Third, it is executed or triggered by the
client with no intervention other than the “response” of the
server. Fourth, it may not require explicit user intervention
such as clicking a link. Once a user requests a page that is
associated in some way with a client-side control page, the
target page automatically sends another request for the
client-side control page to get a designated control. A
server-side control page such as an include file has several
characteristics that are similar to those of a client-side
control page. First, it is also hidden from the user. Second,
it controls the way the server performs a certain function
and renders a desired output to the user. Third, it is
triggered by the server, not by an intervention of the client
other than the “request” of the user agent. Fourth, it does
usually not require explicit user intervention such as
clicking a link. Just like on the client side, once a user

requests a page that is associated with a server-side control
page, it automatically includes or triggers the server-side
control page for a designated control. Unlike visible pages,
however, invisible pages are not divided into base or
derived pages. Figure 1 portrays such a page classification.

3.3 Link Semantics

 A link is an associative connection defined between

Figure 1. Page types

3.2 Component Types

 A component here means a software component
including executable files, applets, Java class files, static
libraries, and DLLs. They are usually embedded in pages
via a certain type of link. Core business processes residing
in existing business applications can also be considered
components which can be integrated into an e-business
application through some published interfaces. Regardless
of the form of a component, in the context of an e-business
application, it plays an important role in delivering visible
pages, supporting invisible pages, and/or performing
necessary functions. In this paper, components are broken
down into three categories: client-side component, server-
side component, and application component. The client-
side component could be divided into two types: host-
dependent components, such as a client-side script function,
and client system components, such as an autonomous
media player. In a strict sense, an internal client-side script
function—such as calculating lease payment, providing a
calendar, or validating a form—may not be a component.
But for a design purpose, we consider it a component,
although it is not a separate entity from the “hosting” page.
A client-side component can be triggered either implicitly
(e.g., by a file extension) or explicitly (e.g., embedding a
specific media player using a tag). In a similar sense, the
server-side components are any components that provide a
functional support to a server page (e.g., file uploading
component or database access component). The
application components are core business processes of
existing business applications wrapped as components to
expose interfaces to a Web application. For the sake of
simplicity, we might treat whole core business processes as
a component. This kind of component is especially useful
when legacy or existing systems are integrated into an e-
business application.

information elements. Links are established between
information elements within a page as well as across pages.
On the other hand, an anchor identifies the precise endpoint
of a link. The endpoint can be a page or a bookmark within
a page. A page that contains a link is called the link page,
and a page for which a link is destined is called the anchor
page. A link can appear to have multiple endpoints
especially when a link is conditional. For example, a link
can point to a different page depending on a conditional
situation (e.g., rotating ad banners). From the user’s point
of view, however, a link with any number of endpoints
appears to be one.
 A link may have a meaning depending on the link
reference. For example, if a link refers to a base page, it
simply requests the Web server to retrieve and send the
requested page back to the client. This is different from a
link that triggers a certain component or that executes logic
contained in a page. This implies that, based on the
semantics of a link, we may classify the link into many
types as does the World Wide Web Consortium
(http://www.w3.org/DesignIssues/LinkTypes.html), which
defines 15 link types. Additional link types are possible if
we further elaborate the semantics (e.g., [4, 15]). Various
links types can be useful in representing detailed semantics
of the link and, hence, the precise context. They might,
however, introduce complexity to the design of an e-
business application because the designer should identify
semantics of every occurrence of a link in depth and also
keep track of all the link types employed. In any case, link
types would be more meaningful if they were used to show
global and local structures, and to enhance global and local
coherence of a Web-based application, and, thus, to reduce
the cognitive overhead of the user. The proposed method
collapses possible link types into six context link types,
including anchor (<a>), coordinate (<c>), form (<f>),
redirect (<r>), trigger (<t>), and build ().

 The anchor link type is created by an anchor tag and
used to represent a connection between elements of an e-
business application. It may simply cause a server to
retrieve a page or fire other link types. A bookmark within
the same page is a different form of the anchor link type,
while a bookmark to a different page can be considered
simply an anchor link type. The coordinate link type
connects a page to a client-side control page or a server-
side control page to make the two pages work effectively as
a whole for a well-controlled rendering. In other words,
two or more pages act together to bring in content in a
smooth, concerted way. The trigger link type is necessary
to accommodate components. As Web-supportable
functions expand, more and more components are
intertwined with pages through links. Clicking on such a
link passes data to and triggers a component to be executed
(e.g., playing an audio clip). The trigger link type is used
to represent such link semantics, which are implemented as
either hyperlinks or instantiations. The build link type fits
into a situation where a requested page generates another
page on the fly responding to an event. In today’s dynamic
and interactive Web application environment, many e-
business application pages are built in the runtime to take
into account certain conditions. A good example is
creating a billing statement or a personalized page based on
personal preferences. Unlike the build link type, the
redirect link type brings up another page without
intervention by the user. Finally, the form link type is
created by a form tag and represents cases where a link
page contains a form with a submit button that is associated
with an anchor page.

4. Interface Specification Method

 In addition to the underlying concepts described above,
we should introduce a couple of new concepts: meta-
information structure and information structure. The meta-
information structure is used to organize meta-information
regarding an e-business application, while the information
application), we would have a corresponding number of
meta-information structures, but the number of information
structures for each meta-information structure depends on
the number of leaf elements of the aggregate as well as of
main scope in some cases (the meaning of scope will be
explained later). A meta-information structure represents a
global interface structure, while an information structure
defines the local interface structure of each leaf element of
an aggregate. To show the entire process of interface
specification development, we use an imaginary user-guide
domain of an e-business application.
 According to Simon [1962], hierarchical structure is a
major facilitating factor enabling us to understand, to
describe, and even to see complex objects and their parts.
The notion of structure (usually a tree-like network) has
been a part of most hypertext systems since the time of the

Non-Linear Systems [7]. In line with the well-understood
tree-like network, we also follow the common practice for
interface specification. In meta-information structure
analysis, we use the three access scopes: main scope,
common scope, and aggregate scope. To understand the
three access scopes, we begin the meta-information
structure analysis with information decomposition.

4.1 Step 1: Meta-information Structure Analysis

— Information Decomposition

 There are three activities at this step: (1) breakdown of
the target domain into top-level meta-information, (2)
decomposition of the top-level meta-information into lower
levels, and (3) stratification of the decomposed elements.
To illustrate these activities, let us consider a simple e-
business application design. Figure 2 portrays an
information decomposition of the “User Guide” domain
that is placed in the domain layer along with other domains.
As we can see, it is not a full-blown decomposition.
However, it should be enough to understand the process of
information decomposition.

Figure 2. Information Decomposition

 First of all, we identify the top-level meta-information
of a given domain “User Guide” from the domain layer.
When we decompose a target domain, we may think of two
separate groups of meta-information: descriptive
(factual/definitional) and prescriptive (process/procedural)
meta-information. The former fits into the hyperdocument
[8] that already exists as a knowledge product such as a
written manual. By contrast, the latter requires the user to
follow given steps for more refined results—and often
some user input as well. For example, since the meta-
element of “Service request” requires explicit user inputs
rather than simple clicks, it can be considered prescriptive
meta-information. For the second part of this step, we
decompose all the top-layer meta-information further down
into their lower-levels and arrange them into hierarchies.
Note that some meta-elements may be dependent on a
different meta-element, an event, or appear repeatedly. For
example, the “Service request” may appear more than once
because it is reusable meta-element. It may appear under
the “hardware” user guide, “application” user guide, and

“operating system” user guide. The exact location should
be determined by the implementation of the user interface.
 We continue to refine the identified meta-elements for a
given domain until further refinements are impractical.
Once we stop refinement, the next step is to define access
scopes followed by information structure analyses for each
leaf meta-element of all the aggregate scopes (see the
following subsection for details). The final shapes of
hierarchies would vary depending on the two factors. The
overall depth and breadth depend on the level of
complexity and the size of the proposed e-business
application, both of which could be measured by the depth
and breadth of the top layer. For example, the number of
clicks required to get to a particular meta-information could
affect the depth of a hierarchy. In addition, as Fingar (2000)
points out, the degree of changeability of content and
structure also determines the breadth and depth. In fact,
they have a trade-off relationship: a deeper (shallower)
structure would require a narrower (wider) breadth and vice
versa. To enhance the degree of changeability, we should
achieve loosely coupled meta-information both at the top
layer and the subsequent layers. We suggest that a
developer may start with fine-grained hierarchies and then
modify depending on the implementation strategy in terms
of the breadth and the depth of a proposed e-business
application. Note that hierarchies don’t have to be
balanced.

4.2 Step 2: Meta-information Structure Analysis —
Defining Access Scopes

 When the meta-information structure is implemented,
each meta-element, in general, will be detailed by its
overview (e.g., overall purpose of the User Guide domain),
one or more links to its supporting pages (e.g., especially
for the leaf meta-information elements of the aggregate
scope), and some links to other meta-elements (e.g., as in
Figure 2, links to the four meta-elements in the top layer
from the User Guide in the domain layer). This means that
the name of each meta-element actually represents an
abstract for semantically related content and may become a
link text—that is, each meta-element in the hierarchies
would be operationalized as a link together with its
overview, links to supporting pages, and links to other
meta-elements. Then, how can we determine which meta-
elements should appear on the default page, what should be
included in every page, and what should have links to
supporting pages? To answer these questions, we need to
define three access scopes in the context of meta-elements,
not of supporting pages and links. The three access scopes
include main scope, common scope, and aggregate
scope. They are special kinds of meta-information.
 The main scope is necessary to accommodate the
default page. It works as a gateway to other meta-elements.

It may include the elements in all layers of the hierarchy if
an e-business application is relatively small or some of the
layers in the hierarchy if it deals with a large number of
elements. The common scope defines a common set of
meta-elements that would appear as hyperlinks on every
page including the default page. It contains a subset of
them of the main scope. For a small e-business application,
the meta-elements included in the main scope might be the
same as those in the common scope. The aggregate scope
also defines a collection of meta-elements but in a different
context. The aggregate scope determines the total number
of links that can be clickable within a link page. It may not
be practical to represent a higher-level meta-element as a
very deep structure (i.e., deeply stratified structure for a
meta-element). For example, the aggregate scope of “OS2”
could contain only the meta-elements in the second layer or
those in the entire lower-layers if we had more layers. This
implies that a big meta-element may have many lower-level
aggregate scopes in addition to a top-level aggregate scope.
For instance, suppose that a user reached a page that
contains a link to “OS2.” Depending on the aggregate
scope, the only choices he/she may have are “Installing,”
“Network service,” and “Troubleshooting” or, in addition
to those choices, he/she could have choices of, say,
“Configuration problem,” “Network problem,” and
“Miscellaneous problem” available under the
“Troubleshooting” meta-element in Figure 2. Note that the
number of aggregate scopes also depends on the main
scope, common scope, and implementation strategy.
 Figure 3 partially portrays an example of a main, a
common, and an aggregate scope, respectively, and their
relationships derived from Figure 2.

Main
s c ope

P roduc t
Cata log
Us er Guide

Order

HW guide

S W guide

OS guide

S erv ic e reques t

Common
s c ope

P roduc t Catalog

Us er Guide

Order

Aggregate
s c ope for
OS guide

OS1

OS2

OS3

Ins ta lling
Network
s erv ic eTroubles hootin

g

Configuration
problem

Network
problem
Miscellaneous
problem

Figure 3. A Main, a Common, and an Aggregate Access
Scope

 Note that the “Service request” could be located in
every scope or only in the main scope, depending on the
implementation plan. The italicized meta-elements mean
that they can be included in the “Aggregate scope for OS

help” or in a lower-level aggregate scope if elected. In the
latter case, the lower-level scope would be called
“Aggregate scope for troubleshooting.” In fact, the number
of levels in each scope has been arbitrarily determined for
description purpose. The exact number of levels should be
dependent upon the implementation strategy (e.g., depth
and breadth). Although not shown, we might need more
aggregate scopes for other leaf meta-elements in the main
scope as well as in the aggregate scopes if necessary,
depending on the meta-information structure. In most cases,
the leaf meta-elements in a main scope would be expanded
via aggregate scopes. It is, however, quite possible for a
leaf meta-element in a main scope not to expand through an
aggregate scope. In that case, we should take it into
account when we perform the information structure
analysis. For example, the leaf meta-element “Service
request” in Figure 3 may not need any further breakdown,
which means we may not need an aggregate scope for the
element. The meta-elements in the main scope will be
shown as hyperlinks on the default page, while those in the
common scope will be shown on every page.

4.2 Step 3: information Structure Analysis

 After deriving a meta-information structure with
information decomposition and defining the three access
scopes, our next activity moves on to the information
structure analysis. The overall purpose of the meta-
information structure analysis performed earlier is to
identify information chunks that would appear as menu-like
links on the default page and other pages. We are not
concerned much about the supporting pages of the leaf
meta-elements and links to those pages. In fact, any meta-
elements should have links to others based on the
hierarchical meta-information structure. Any leaf meta-
elements in the aggregate scopes and, occasionally, in the
main scope should also have links to supporting pages. In
the information structure analysis, we take account of the
pages types, link types, and component types that were
discussed earlier. Before embarking on our information
structure analysis, we provide a reference to the notation
used throughout this section. Figure 4 contains this
information.
 When performing the information structure analysis, we
consider only the visible page. We pay attention only to
the visible page because when we develop an interface
specification, we only take care of what users can actually
view or browse. However, at this phase, we do not have to
worry about the detailed visible page rendering process,
how invisible pages are intertwined with each other to
deliver visible pages, or how components are used by the
invisible page to render the visible page or perform certain
functions. We take two pieces of meta-information from
Figure 3 to illustrate the overall process of the information
structure analysis: “Network problem” and “Service

request” as examples of definitional/factual meta-
information and process/procedural meta-information,
respectively. Figure 5 illustrates the output of the
information structure analysis on the two meta-information
elements.

Figure 4. Notation for the Information Structure
Analysis

Although we do not need layers other than “leaf meta-
information” and “visible” layers, in Figure 5 we show all
the layers with appropriate page types, link types, and
component types to provide an overall context for the “leaf
meta-information” elements and “visible” layers. The left
side of Figure 5 depicts a factual/definitional meta-
information element.

Figure 5. Outputs of the Information Structure
Analysis on Two Meta-Information Elements

We assume it does not require a data storage layer but uses
a style sheet file (i.e., network.css) and a client-side
component (i.e., media player). They are all invisible pages
but require links to “host” pages. The right side of Figure 5
is more complex than the left side because it shows the
output of an information structure analysis on a
process/procedural meta-information element (i.e., “Service
request”). We assume that, when a user submits a service

request, the server page “Process request” is designed to
generate a hot patch to reduce the workload of the User
Guide Department. Thus, it redirects the request to the
“Generate hot patch.” The service requester will first
attempt to fix his/her problem based on the hot patch
solution. If he still cannot fix the problem with the hot
patch, then he should resubmit the service request using the
“Hot patch” page. Upon receiving the resubmission, the
“Process request” page processes the request and generates
a confirmation page. The details of all the service requests
will be recorded in the data storage, which is accessed by
the data access component. Before we mention the
implementation and testing aspects of the interface
specifications based on the meta-information structure and
information structure analyses, we should answer the
following question: What is the link type that connects
meta-information elements with each other? It can be the
“anchor” link type or the “build” link type. If an e-business
application should generate all the pages, except for the
default page, dynamically we are going to connect them
using the “build” link type.

5. Implementation and Testing

 The interface design specifications can be implemented
in a straightforward manner by mapping the scopes and
creating links to supporting pages identified in the
information structure analysis phase. We admit that this
interface specification method lacks the details of content
of each page. The actual items and their layout are largely
dependent on the developer and on the implementation
strategy. Note that some scripting efforts should be made if
pages have dynamic contents and are dynamically
generated. The developer may create a prototype based on
the specification and let the user evaluate and give
feedback on the preliminary system as a testing procedure.
Needless to say, testing a system before deployment is very
important. In the case of an intranet, the target organization
may employ the same user agent, and hence the testing
might be easier. A prototype system is currently under
development. The system will allow Web application
designers to perform meta-information structure and
information structure analyses as well as generate the site
topology and application page templates, based on our
proposed methodology.

6. Concluding Remarks

 Currently, many advanced technologies (e.g., scripting,
software components, general programming languages, and
constantly evolving markup languages) are incorporated
into the e-business application and other types of Web-
based applications. To incorporate such rapid
technological advances in the area of Web-based

application development, we propose an interface design
methodology for e-business applications. Developing a
Web-based application such as an e-business application is
simply beyond converting a document into a markup
document. It involves more and more Web-related
technologies and often requires integration with other
technologies. It frequently implements fairly complex logic
either through components or within pages or both.
Moreover, due to an inherent characteristic of the Web, the
size of an application can grow infinitely. The developers
of any Web-based application seem to be pressured to
deliver high-coherence and low cognitive-overhead
applications along with “sustainable” contents. As a
consequence, developing a Web application is becoming
complex and time-consuming [10]. This paper is the result
of a contemplative effort whose primary goal is to provide
a sustainable method for the interface design of the e-
business application.
 This paper makes three key contributions. First, as the
Web-based applications become complex in terms of
structure and interface [11], it becomes important to
employ an effective technique for reducing complexity both
at a higher level and a lower level. Viewing an e-business
application at a higher level using the meta-information
structure concept provides a framework for the application,
and refining the higher-level framework into lower-level
details using an information structure facilitates
completeness and consistency of the interface
implementation. We can achieve a high-level architecture
for the interface of a proposed e-business application
through the main, common, and aggregate scopes that give
insights into what an overall structure and a high-level
presentation of the application should look like.
 Second, refining the three scopes derived from the
meta-information structure analysis using the information
structure analysis enhances modifiability and
maintainability because deliverables of the analysis enable
us later on to connect the pages to each other based on
semantic links. Maintaining separate scopes makes it easier
to change their content as well as add a new information
structure as an application evolves over time. The
modularity obtained by applying the concepts of meta-
information structure and information structure can insulate
us from the “ripple effect.” The consistent global and local
views of an application defined by the three access scopes
can also enhance global and local coherence [20], while a
complete context and its semantic associations with other
contexts can reduce the cognitive overhead.
 Third, classifying Web application pages into the visible
and the invisible and treating components as separate
entities enables us to distinguish “what” from “how,”
which plays an important role in meta-information structure
and information structure analyses. The users of an e-
business application do not care about what is working
behind the scenes, but they really do care about what they

actually see. The granulation of pages and components
make it possible to accelerate the idea. It enables us to
identify “what” by considering only the visible pages and
then move to “how” through the incorporation of the
invisible pages and various components.
 Nevertheless, we might not be able to conclude without
some caveats that eventually suggest future research
directions. First, we intentionally omitted some details in
the course of the meta-information structure and
information structure analyses. Specifically, we missed
incorporating external pages and/or meta-information
elements into an e-business application. Nowadays, the
majority of Web-based applications have links to external
resources. Handling external links with proper security, for
example, might not be an easy task. We, however,
purposely glossed over this item under the assumption that
there are few external resources for the e-business
application. We also did not deal with the explicit
embodiment of the underlying data model. We did not
adopt a specific data model in the course of the method
development. The method, however, is implicitly based on
the procedural data model of data flow diagramming.
 Second, we did not consider how to find and compose
appropriate components and integrate them into the e-
business application because we have focused on the
interface specification. We believe that subsequent
research on the development method should address the
issues. Finally, this paper lacks detailed navigation design
steps. It is a partial methodology, not a full-blown one,
since our proposed methodology also lacks elaborated
implementation and testing guidelines. In most cases,
however, implementing the interface design specifications
resulted from the application of this method would be a
straightforward mapping process. If we had details on the
implementation and testing specifications, the methodology
would not be a partial one. Despite these factors, we
believe that the interface specification method that has been
developed by rigorously applying a number of new
concepts should provide consistent and manageable
interface specification design for the e-business application
development.

References

[1] Bajaj, A. and R. Krishnan (1999) “CMU-WEB: A Conceptual

Model for Designing Usable Web Applications,” Journal of
Database Management, 10(4), pp. 33-43.

[2] Britton, K. H., Li, Y., Case, R., Seekamp, C., Citron, A.,
Topol, B., Floyd, R., and Tracy, K. (2001). Transcoding:
Extending e-business to new environments. IBM Systems
Journal, 40(1), pp. 153-178.

[3] Conallen, J. (2000) Building Web Applications with UML,
Reading, MA: Addison-Wesley.

[4] Conallen, J. (1999) “Modeling Web Application Architectures
with UML,” Communications of the ACM, 42(10), pp. 63-70.

[5] De Troyer, O. (1998) “Designing Well-Structured Websites:

Lessons to be Learned from Database Schema
Methodology,” Proceedings of the 17th International
Conference on Conceptual Modeling (ER ’98), T. W. Ling, S.
Ram, and M.-L. Lee (eds.), Singapore, November 16-19, pp.
51-64.

[6] Dias, C. (2001) “Corporate Portals: A Literature Review of a
New Concept in Information Management,” International
Journal of Information Management, 21(4), pp. 269-287.

[7] Engelbart, D.C. (1968) “Authorship Provisions in Augment,”
Proceedings of Fall Joint Computer Conference, San
Francisco, CA, December 1968, Vol. 33, pp. 395-410.

[8] Engelbart, D.C. (1995) “Toward Augmenting the Human
Intellect and Boosting Our Collective IQ,” Communications
of the ACM, 38(8), pp. 30-33.

[9] Fingar, P. (2000) “Component-based Frameworks for E-
Commerce,” Communications of the ACM, 43(10), pp. 61-66.

[10] Flurry, G. and W. Vicknair (2001) “The IBM Application
Framework for E- Business,” IBM Systems Journal, 40(1),
pp. 8-24.

[11] Fraternali, P. (1999) “Tools and Approaches for Developing
Data-intensive Web Applications: A Survey,” ACM
Computing Surveys, 31(3), pp. 227-263.

[12] Garzotto, F., P. Paolini, and D. Schwabe (1993) “HDM - A
Model-based Approach to Hypertext Application Design,”
ACM Transactions on Information Systems, 11(1), pp. 1-
26.

[13] Halasz, F. and M. Schwartz (1994) “The Dexter Hypertext
Reference Model,” Communications of the ACM. 37(2), pp.
30-39.

[14] Hardman, L. and B. Sharrat (1990) “User-centered
Hypertext Design: The Applications of HCI Design
Principles and Guidelines,” in R. Mcaleese and C. Green
(eds.), Hypertext State of the Art, Bristol, England:
Intellect, pp. 252-259.

[15] Isakowitz, T. E. A. Stohr, and P. Balasubramanian (1995)
“RMM: A Methodology for Structured Hypermedia
Design,” Communications of the ACM, 38(8), pp. 34-44.

[16] Kahn, P. (1995) “Visual Cues for Local and Global
Coherence in the WWW,” Communications of the ACM,
38(8), pp. 67-69.

[17] Nanard, J. and M. Nanard (1995) “Hypertext Design
Environment and the Hypertext Design Process,”
Communications of the ACM, 38(8), pp. 49-56.

[18] Rossi, G., D. Schwabe, C. J. P. Lucena, and D. D. Cowan
(1995) “An Object-Oriented Model for Designing the
Human-Computer Interface of Hypermedia Applications,”
Proceedings of the International Workshop on
Hypermedia Design(IWHD ’95), Montepellier, France,
June 1-2, pp. 123-143.

[19] Simon, H. (1962) “The Architecture of Complexity,”
Proceedings of the American Philosophical Society.
106(6), pp. 467-482.

[20] Thuring, M., J. Hannemann, and J. M. Haake (1995)
“Hypermedia and Cognition: Designing for
Comprehension,” Communications of the ACM, 38(8), pp.
57-66.

	
	Seung C. Lee

