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Abstract 
 

In this paper, alternative regression estimators in a 
class of weighted least squares estimators were proposed. 
Follow the idea of Windham (1995) in robustifying 
model fitting, two types of weight function are 
considered: One applied to every value of residuals, the 
other applied partially. Under the assumptions that the 
error terms are i.i.d. normal with zero mean and constant 
variance, it is found that these alternative estimators are 
more resistant or robust than the ordinary least squares 
estimator in the situation of outliers. Many numerical 
examples of various situations concerning outliers exhibit 
that the two alternative estimators are more preferable 
than the least squares estimator by means of R2 and MSE. 
 
Keywords:  robustifying model fitting, weighted least       
squares 
 
1. Introduction 

 
One of the main problems in analyzing a data is 

outliers. Many robust statistical methods have been 
developed to cope various types of effect and problems 
caused by outliers. One of those was proposed by 
Windham [8], such method was called ‘Robustifying 
Model Fitting’. Unknown parameters are estimated from 
transformed data that is weighted by 
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where ( ){ }g x;θ is assumed to be a parametric unimodal 
family of densities with unknown parameter θ  and c is a 
positive constant. Windham has studied for continuous 
univariate families, especially in exponential family and 
found that a weighted distribution is measured invariance 
with decreasing variance.  

For a sample of size n, each observation xi is weighted 
by  
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where K is such that iw 1=∑ , c is a pre-assigned value 
and g is a density of a chosen distribution.  

Robustifying is a data transformation method, so that 
the effect of outliers is negligible after some numbers of 
iteration. We have found that if X is a random variable 

from ( )2N  ,  µ σ , then the weighted random variable 

w(x)X, say wX  is distributed as 
2
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Followed Windham papers, Basu et al. [1], [2]  and 
Choi et al. [3] proposed the estimators which procedures 
connected to approach suggested by Windham (1995). 
These estimators are presented in forms of functional. 

In our study, we considered a linear regression model:  
y Xβ ε= +  with some influential observations and 

( )2NID 0 ,  Vε σ∼  where V is a diagonal matrix. 
Windham’s robustifying method is applied on the 
residual i i iˆr y y ,   i 1, 2,..., n= − =  where iŷ 's  are obtained 
by least squares (LS) method. 
 
2. Robust Regression Weighting 
 

In regression analysis, one basic way to overcome the 
problem of outliers is the robust regression in which the 
effect of outliers is reduced. The first robust estimator 
might be the least absolute deviation regression estimator 
proposed by Edgeworth (1887). This estimator is 
obtained by minimizing sum of absolute residuals and 
hence it can detect the outlier only in y-direction.  

Our interest is focused on weight-type estimators. 
Huber [5] extended the idea of M-estimator to the M-
regression which is optimal if the error is assumed to be 
normally distribution contaminated by small fraction of 
other distribution. His criterion is minimization of the 
maximum possible variance for infinitely large samples. 
Huber suggested to minimize the objective function of 
residuals compromised between r2 and r . In other words, 
Huber introduced the weight function  
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where k is a tuning positive constant. 
One of the well-known robust regressions is the least 

median of squares estimator (LMS) which is obtained by 
minimizing the medians of squared residuals, 2

iˆ i
min med r
β

 

proposed by Rousseeuw [7] based on the idea of Hample 
[6]. It turns out that this estimator is very robust with 
respect to outliers in y as well as in x. Unfortunately, the 
LMS performs poorly in the sense of asymptotic 
efficiency. Later, Rousseeuw suggested the WLSE in 



which the objective function is 2
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where *σ̂ is Rousseeuw’s estimator of standard deviation 
of residual. 

Recently, based on the idea of Rousseeuw (1987), 
Daniel and Yohai [4] introduced the robust and fully 
efficient regression estimator (REWLS). The objective 
function of the REWLS is 2

ˆ
min wr
β
∑  where w w(u)=  

is a  non-increasing function and is defined as 
1          if  u 0,

w(u) g(u)     if  0 u 1,

0          if  u 1,

 =


= < ≤
 >

                  (2.3) 

where g(u) > 0 , and u is defined to be proportional to r .  
 
3. Alternative Weighted Least Squares  
     Estimators 
  

In this paper we concentrate on a linear regression 
model y Xβ ε= + , where outliers occur one way or 
another. A method called “Robustifying” proposed by 
Windham (1995) is applied on an estimated residual 
vector ˆr y y = −  where ˆŷ X  β= , and β̂ is an estimator 

of β . In particular β̂  is the LS estimator. Since i 'sε  are 
assumed to be i.i.d. normal, hence the “robustifying 
weight” according to Windham, is  

 
c

j
R j n

c
j

j 1

nf (r )
w (r )

f (r )
=

=

∑
                (3.1) 

where j j jˆr y y= −  and ( )jf r  is a density function of 

normal distribution. Note that ( )
n

R j
j 1

w r n
=

=∑ . Therefore 

the robustifying weighted least squares estimator or 
RWLS1 in short, can be computed from the following 
formula. 
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where ( ) ( ) ( )( )R R 1 R 2 R nW diag w r , w r ,..., w r= . 

According to [7] and [4], the partial weighted least 
squares estimator is introduced. For instant, let k be a 
positive constant depending on fraction α of influential 
outliers, i.e., jP[ R k]µ σ α− > =  where j j j

ˆR Y Y= −  is 

an estimator of residual, ( )jE Rµ =  and ( )2
jVar Rσ =  

for j 1, 2,..., n= . Thus, the partial robustifying weight is  
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 where ( )P Pw w r= . Hence the partial 

robustifying weighted least square estimator or RWLS2 
can be obtained as follow:   
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where ( ) ( ) ( )( )P P 1 P 2 P nW diag w r , w r ,..., w r= . 
 

4. Computation of the Alternative Estimators 
 

Alternative estimators are obtained by weighted least 
squares method as can be seen in equation (3.2) and (3.4). 
The weights are computed as follow: 

Consider a fraction of data size ( )1 nα−  that has no 
outlier (α is a proportion of outliers and n is a size of 
sample). That means outliers must be identified and 
deleted from the original data. (There are many methods 
of identifying outliers such as using Cook’s distance, etc.) 
Suppose 0β̂  is a vector of the LS estimator of regression 
coefficients applied on a sub-sample without outliers. 
Calculate all n residuals: j j j j j 0

ˆˆr y y  y x β′= − = − , 
j 1, 2,..., n= . 

 Apply Windham’s robustifying model fitting on 
1 2 nr , r ,..., r  by means of normal distribution with initial 

parameters estimated by the maximum likelihood 
estimators (MLE), that are 
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For normal distribution Windham suggested that 

c 0.5= . After weighting the residuals new estimators of 
parameter µ and 2σ are obtained. At the kth iteration we 
may have 
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and the process is terminated at the thk  iteration if 
k k 1ˆ ˆµ µ −−  less than some pre-assigned value. At the last 

iteration, thk  iteration the weighted estimators of the 
residuals are w kˆ ˆµ µ=   and 2 2

w kˆσ σ= , and the fitted 
density is  
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Substitute (4.3) in equation (3.1) and (3.3) , the proposed 
weight functions, we then obtain two estimators RWLS1 
and RWLS2 as appear in equation (3.2) and (3.4) 
respectively. 
 
5. Numerical Examples 
 

Eight examples are selected from ‘Robust Regression 
and Outlier Detection’ by Rousseeuw, P.J. and Leroy, 
A.M. (1987). These data sets consist of outliers in various 
situations, some have no influence data points, some have 
outliers in y-direction and/or x-direction. In each data set, 
the LS and the LMS estimators are already given. The 
rest is to compute alternative estimators and then 
compare with the LS and the LMS estimators. 

In the first example, the data set was restored from 
Daniel and Wood (1971). The response is the titration 
determined by the acid content, and the explanatory is the 
extraction and weighting determined by the organic acid 
content. We can see in Figure 1 that there is no outlier in 
this data set. 
 

Pilot-Plant Data 
Source: Daniel and Wood (1971)
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Sample Data Set 1
RWLS1: y  = 35.6730+0.3187x
RWLS2: y  = 35.6062+0.3194x
LMS: y  = 36.519+0.311x
LS: y  = 35.4583+0.3216x

 
Figure 1 Observations and regression lines for data set 1: 

Pilot-Plant Data [7, p.22] 
 

The second data set is in the field of astronomy, it is 
the Hertzsprung-Russell diagram of the star cluster CYG 
OB1 which contains 47 stars in the direction of Cygnus. 
The response is the logarithm of light intensity (L/L0) and 
the explanatory is the logarithm of the effective 
temperature at the surface of the star (Tc). The data were 
given to Rousseeuw and Leroy by Doom who extracted 
the raw data from Humphreys (1978) and performed the 
calibration according to Vansina and De Greve (1982). 
The result of this study is shown as follows. 
 

Data for the Hertzsprung-Russell Diagram of  the Star 
Cluster CYG OB1 

Source: Humphreys (1978)
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Sample Data Set 2
RWLS1: y  = -7.7894+2.8893x
RWLS2: y  = -7.8429+2.9012x
LMS: y  = -12.298+3.898x
LS: y  = 6.7935-0.4133x

 
Figure 2 Observations and regression lines for data set 2: 

Data for the Hertzsprung - Russell Diagram of the Star 
Cluster CYG OB1 [7, p.27] 

 
The third data set is the total number (in tens of 

millions) of international phone calls from Belgium in the 
years 1950-1973, provided by the Belgian Statistical 
Survey. Unusual data points occurred in the year 1964-
1969 (see Figure 3). 
 

Number of  International Phone Calls from Belgium 
in the Years 1950-1973 

Source: Belgian Statistical Survey (Rousseeuw 1987)
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Sample Data Set 3
RWLS1: y  = -5.5356+0.1146x
RWLS2: y  = -5.4875+0.1138x
LMS: y  = -5.610+0.115x
LS:y  = -26.0059+0.5041x

 
Figure 3 Observations and regression lines for data set 3: 

      Number of International Calls from Belgium 
(in tens of millions) [7, p.26] 

 
The fourth data is the set of annual rates of growth of 

the average prices in the main cities of Free China from 
1940 to1948 (Simkin 1978). The data contains one outlier 
in y-direction (1948) that caused by hyperinflation (a 
result of government spending large amount, the budget 
deficit, and the war) as shown in Figure 4. 



Annual Rates of  Growth of  Average Prices in 
the Main Cities of   Free China from 1940 to1948 

Source: Simkin (1978)
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Sample Data Set 4
RWLS1: y  = -2.7394+0.1086x
RWLS2: y  = -2.7863+0.1097x
LMS: y  = -2.468+0.102x
LS: y  = -1049.4678+24.8450x

 
Figure 4 Observations and regression lines for data set 4: 

Annual Rates of Growth of Average Prices in the main 
Cities of Free China, 1940-1948[7, p.51] 

 
The fifth data set consists of the brain weight (in 

grams) and the body weight (in kilograms) of 28 animals 
taken from larger data sets of Weisberg 1980 and Jerison 
1973. It was investigated that transforming of data in 
logarithm of base 10 was more appropriate (see figure 5). 
Hence the transformed data will be considered in this 
case. 
 

Brain and Weight Data
 Source: Weisberg (1980) and Jerison (1973)
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Sample Data Set 5
RWLS1: logy=0.8258+0.7576logx
RWLS2: logy=0.8325+0.7537logx
LMS: logy =0.8691+0.7509logx
LS: logy =1.1096+0.4960logx

 
Figure 5 Observations and regression lines for data set 5: 

Body and Brain Weight of 28 Animals [7, p.57] 
 
Data set 6 is the same data points as in Data set 1, 

except that the sixth observation has been registered as 
370 instead of 37. This was done by Rousseeuw and 
Leroy so that this data set consists of single outlier (see 
Figure 6). 

 

Pilot-Plant Data Set  with  One Outlier in X-direction
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Sample Data Set 6
RWLS1: y  = 35.3596+0.3214x
RWLS2: y  = 35.3174+0.3226x 
LMS: y  = 36.343+0.314x
LS: y  = 58.9388+0.0807x

 
Figure 6 Observations and regression lines for data set 6: 

Pilot-Plant Data Set with One Outlier [7, p.24] 

The seventh data set is of Mickey et al. (1967). The 
response is the Gesell adaptive score corresponding to the 
explanatory, age (in month) of 21 children when they 
uttered their first word. This is a contaminated data 
sample which outliers appear in both of x and y 
directions.  
 

First Word-Gesell Adaptive Score Data 
 Source: Mickey et al. (1967)
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Sample Data Set 7
RWLS1: y  = 101.4279-1.2132x
RWLS2: y  = 109.3622-1.1866x
LMS: y  = 109.3047-1.1933x
LS: y  = 109.8738-1.1270x

 
Figure 7 Observations and regression lines for data set 7: 

First Word-Gesell  Adaptive Score Data [7, p.47] 
 
The last example is Siegel’s data set (1982), a 

counterexample for the resistant line estimator devised by 
Siegel, A. Rousseeuw and Leroy got this data set from 
Emerson and Hoaglin (1983) who suggested that the line 
with zero slope would be reasonable summary. In this 
data set, six out of nine points lie on the line with zero 
slope and zero intercept (see Figure 8). 
 

Siegel's Data Set
Source: Emerson and Hoaglin (1983)
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Sample Data Set 8
RWLS1: y  = 0.1217+0.0676x
RWLS2: y  =  0.1176+0.0667x
LMS: y  = 0
LS: y  = 0.0319+0.0891x

 
Figure 8 Observations and regression lines for data set 8: 

Siegel’s Data Set [7, p.61] 
 
After fitting the model, the coefficient of 

determinations (R2) and the mean squared errors (MSE) 
for each of the estimation methods are computed. The 
four methods of estimation that will be compared are 
least squares method (LS), least median of squares 
method (LMS), and the two alternative methods: RWLS1 
and RWLS2. For the last two estimators, the weighted 
error is adjusted so that the sum is zero and the 
corresponding MSE are computed and called the adjusted 
MSE (Adj.MSE). The R2’s, MSE’s, and Adj.MSE’s for 
all eight examples are exhibited in Table 1-3.  

When there is no outlier, it is known that the LS 
estimator is very satisfied for it is BLUE under some 
classical assumptions. Data set 1 is an example of this 



case. It can be seen in Figure 1 that the regression lines 
obtained from four different methods presented here are 
almost the same. However the R2 for RWLS1 and 
RWLS2 are slightly higher than that of the LS and the 
LMS and the MSE as well as Adj.MSE of the alternative 
methods are little lower.  
 
Table 1 The R-squares (Coefficient of Determinations) 
corresponding to various estimators for each of Data Set 
1-8. 
 

R-square 

Data Set LS LMS RWLS1 RWLS2 
1. Normal 0.9947 0.9936 0.9960 0.9956 
2. Outliers in Y 0.0443 0.0080 0.5803 0.5382 
3. Outliers in Y 0.2959 0.7932 0.9938 0.9916 
4. Outliers in Y 0.3205 0.1462 0.9521 0.9378 
5. Outliers in X 0.6076 0.9637 0.9800 0.9747 
6. Outliers in X 0.1410 0.9941 0.9954 0.9942 
7. Outliers in X-Y 0.4100 0.5716 0.6086 0.5516 
8. Outliers in X-Y 0.0282 0.0000 0.9205 0.9039 

 
 
Table 2  The Mean Square Errors (MSEs) corresponding 
to various estimators for each of Data Set 1-8. 
 

MSE 

Data Set LS LMS RWLS1 RWLS2 
1. Normal 1.5128 1.8206 1.1686 1.1425 
2. Outliers in Y 0.3188 0.2579 0.1025 0.1022 
3. Outliers in Y 31.6107 0.2449 0.0038 0.0029 
4. Outliers in Y 11218.7639 0.1234 0.0028 0.0020 
5. Outliers in X 0.4424 0.0477 0.0274 0.0258 
6. Outliers in X 243.3163 1.6817 1.2913 1.4862 
7. Outliers in X-Y 121.5045 74.4458 66.4371 75.6834 
8. Outliers in X-Y 7.0648 8.3333 0.0134 0.0117 

 
 
Table 3 The Adjusted MSEs corresponding to various 
estimators for each of Data Set 1-8. 
 

Adjusted MSE 

Data Set RWLS1 RWLS2 
1. Normal 1.1689 1.2736 
2. Outliers in Y 0.1027 0.1024 
3. Outliers in Y 0.0068 0.0047 
4. Outliers in Y 0.0267 0.0152 
5. Outliers in X 0.0384 0.0342 
6. Outliers in X 1.2998 1.4943 
7. Outliers in X-Y 66.6943 75.9296 
8. Outliers in X-Y 0.0135 0.0118 

 
For the cases that outliers exist, the alternative 

methods (RWLS1 and RWLS2) yield obviously better 
than the other two methods (LS and LMS), both in R2 and 
MSE/Adj.MSE. Data set 2-4 are examples that outliers 
are appeared in y-direction as indicated by Rousseeuw 
and Leroy. The R2 obtained by the LS method are 4.43%, 
29.59% and 32.05% respectively. These even worst for 
the LMS method for data set 2 and 4   (the R2 are 0.8% 

and 14.62%, respectively). For Data set 2 the R2 
corresponding to RWLS1 and RWLS2, though not too 
high, are more than 50%, and, for Data set 3-4, they are 
greater than 90%.  

In comparing the MSE of those four methods of 
estimation, it is found also that the proposed methods 
yield very small value of MSE/Adj.MSE while that of the 
LS method are very high especially for Data set 3-4. 

The results of outliers in x-direction case are presented 
in two examples, Data set 5-6 and of outliers in x-y 
direction case are presented in Data set 7-8. All cases are 
in the same manner as above. That is, R2 obtained by the 
proposed estimators are higher than 90% in all Data set 
except in Data set 7 and MSE/Adj.MSE are relatively low 
compared with that of the LS and the LMS. 

Comparing between RWLS1 and RWLS2, the 
differences are slightly: the R2 obtained from RWLS1 for 
all cases are higher and the MSE corresponding to 
RWLS2 are smaller for almost every cases. In addition, 
both of alternative estimators perform better than the 
LMS in R2 and MSE/Adj.MSE in all cases except for 
Data set 7 particularly for RWLS2. In such case, the LMS 
has larger R2 and smaller MSE than those of RWLS2 but 
the differences seem not to be significant. 

 
 
6. Conclusion 
  

Though only eight examples are selected to present 
some performance of the proposed estimators (RWLS1 
and RWLS2) compare to the LS and the LMS, all support 
in the same manner. That is, whenever outliers appear in 
data the proposed methods are preferable than the LS and 
probably, LMS as well. Simulation for more various 
situations will be done in the future. 
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