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Abstract 

 
This paper discusses the determination of reorder point and safety stock when the period demands are 

not independent, but exhibits a serially correlated demand process which can be represented as an 
autoregressive-moving average – ARMA (p.d.q)-model for both deterministic and discrete stochastic lead 
time.  An Excel based methodology for finding the reorder point and the safety stock level is also presented 
at the end of the paper.  

 
1. Introduction 

 
 Generally when the determination of the optimal policy of an inventory model with a stochastic demand 
includes the calculation of the reorder point and the order size, one has to deal with mean rate of demand, standard 
deviation, safety factor, and lead-time. Mostly, the calculation of the re-order point is based on the assumption that 
the mean rate demand is deterministic as a function of time. The deterministic assumption on the mean rate of 
demand is by far remote from the reality.  Therefore, it will be more appropriate to use appropriate probability 
distributions to represent the lead-time and the units demanded to account for the increasing uncertainty in the 
market environment. Based on the assumption that there is no correlation between two period demands, Hadley and 
Whitten [6] have developed two types of backorder inventory models, approximate and exact ones, for both Poisson 
and Normal distributed lead-time demands. In many practical situations, however, the period demands are not 
independent, but exhibit a serially correlated process (see, e.g. An, Fotopolo, and Wang [1]; Charles, Marmorsten, 
and Zinn [3]).   
 
 Taking into consideration (1) the rate of demand, (2) the length of lead-time, (3) the variability of demand and 
lead-time, and (4) the degree of acceptable stock-out risk, Eppen and Martin [5] suggested that the correct and 
consistent procedure to set reorder points with assumed data is to: (1) clearly distinguish between demand variation 
and the variation in forecast error, (2) show how to calculate the variance of forecast error over lead time without 
assuming forecast errors are normally distributed, (3) use the variance of forecast error over lead time to set the 
safety stock, and (4) show the calculation of safety stock can be simplified if normality of cumulative forecast error 
is justified as in the case when the process generating demand is from the Box and Jenkins time series data. 
 
 In this research paper, we look into the analysis that incorporates the calculations of reorder point and safety 
stock when the units demanded are generated by a serially correlated process and can be represented by Box-
Jenkins’ ARMA time series model [2]. The distribution of forecast errors from the calculation process in Box-
Jenkins’ ARMA analysis will be used as the measurement of the accuracy with which the reorder point and safety 
stock are determined.  In the first part of this research paper, the determination of the model’s reorder point is based 
on the assumption that the procurement lead-time is a random variable generated by an ARMA process with 
constant lead-time.  In the second part, we would investigate the case of stochastic lead time. 
 
2. Two Different Types of Lead-Time Demand Distributions 
  
 In order to compute the reorder point with safety stock that will meet a specific service level, one has to know 
the probability density of the lead time demand. Two kinds of joint probability density functions can be used to 
represent the lead time demand.  
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where  ][ kttk ZZCov −−=γ  is the autocovariance at lag K.  
 

2.2. ),...,,,...,( 11,...,1 ntttjttj zzzzzp −−++   

 ),...,,,...,( 11,...,1 ntttjttj zzzzzp −−++  is the conditional probability distribution for the period demand 

during the lead time.  If we define the lead time demand as the future value as  
 jtttt ZZZjL +++ ++= .......)( 21  (4) 

given that we have observed the past values nttt ZZZ −− ,...,, 1 which occurred prior to the period time t, then we will 
have the expected value and variance involved in the reorder point calculation as 

 )(ˆ...)2(ˆ)1(ˆ],...,,)([ 1 jZZZZZZjLE jtttntttt −−− ++=  (5) 

where )(ˆ jZ t  is the forecast value, and 

 }2{)]([
1

,
1

,
2 ∑ ∑∑

= >=

+=
j

i

j

ik
ki

j

i
iiat ggjLVar σ  (6) 

where 
kjjaik

j

i
iatt gkjLjLCov ++

−

=
==+ ∑ ,

2
1

0

2)](),([ σψψσ  , and  (7) 

kjjg +,  is the autocorrelation of the forecast errors between the period J, and J + K.  

 
 If the demand is believed to be essentially represented by the Box and Jenkins time series process, then the 
demand forecast error for period t + j based on data through period  t  is 

)(ˆ)( jZZje tjtt −= +
 (8) 

where )(ˆ jZt
 is the minimum mean squared error forecast selected from one of the Box and   Jenkins’ models for j  

periods from the origin .t  
 
 We can see the difference between the first and second moments of the two kinds of distributions. Eppen and 
Martin [5] have shown that using the first and second moments from the first kind of probability distribution led to 
the inconsistent result of the reorder point value. As pointed out by Chopra, Gilles and Maqbool [4], managers have 
been under increasing pressure to reduce inventories to streamline the supply chain. Their goal is to reduce 
inventories without hurting the level of service provided to customers. Safety stock, however, is a function of the 
cycle service level, the demand uncertainty, the replenishment lead time, and the lead time uncertainty.  In this 
paper, we demonstrate how to compute the reorder point and the safety stock level when the lead time demand can 
be appropriately represented by a Box-Jenkins Time Series Model. 
 
3. Deterministic Lead Time Of J Periods 
 
 The analysis in this section proceeds as suggested by Eppen and Martin [5], i.e., first specify the service level 
(α ) given a j-period lead time. Then choose a reorder point R such that the probability of stocking out during the 
lead time does not exceed .α  That is, select the smallest R such that 
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 The first step in selecting R is to forecast the demand during the lead time. That means that at the time t, 
forecasts are required for periods t = j for j = 1, 2, . . ., then use the forecast error probability during the lead time to 
select the reorder point, i.e.,  
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)()( , the total forecast error during the j-period lead time immediately following period t, 

then  according to the definition of  forecast error defined in the Box and Jenkins’ time series process, it follows that 
)( jUt
 is normally distributed with 
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is the covariance  between the t-origin forecasts at lead times h and h + b, the value of aσ is obtained from an 

estimate of the process residual standard deviation using time series data.  ,..., 21 ψψ  are called the error learning 

coefficients calculated directly by equating coefficients of B from the following equation. 
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where
jϕ  is the parameter  of the autoregressive term jtZ − , and jθ  is the parameter of the moving average term 

jta − . 

 Using the definition of the normal inverse function, the reorder point level for a given  α  service level is 
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 Another approach to determine reorder point is requiring the percentage of orders filled on time be greater than 
or equal to β which is defined as the fill rate of the system 
 
             QjEBt /)(1−=β  (18) 
 
where Q is the order quantity, and )( jEBt is the expected shortage per cycle.  Its formula is 
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4. Stochastic Lead Time 
 
 If we assume that the lead time random variable takes on the values j (j = 1, 2, 3, …) with probability Pj.  If  fj 
(.) is the density function for Uj then the density of demand during the lead time, is given by 
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 To insure that the probability of no more than α  percent of stocking out during the lead time, R is selected to 
be the smallest number such that  
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 If we define the standard deviation of the )( jUt  to be )( jtΩ , then the Excel formula for the service level 
is 
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The formula for the fill rate with a stochastic lead time is 
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where )( jEBt  is defined in (19). 
 
 For a backorder model, the expected total annual inventory system cost consist of the sum of ordering cost and 
holding cost (see Hadley and Whittin [6], and Silver and Peterson [7]). If the annual demand is W, and the cost per 
order is A, then the annual ordering costs are (W/Q)A. If the annual holding costs per unit is IC, and the expected 

mean lead time is ∑∑
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is the average inventory, and r-d is the average level of safety stock.  If β  is the fill rate, then the planner is 
interested in meeting a predetermined fraction of units (β ) off the shelf. Then the planner can use the solution of 
the following model to find the optimal policy. 
 
 Minimize ICdrQAQWMinrQTC )2/()/(),( −++=  (26) 
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5. Illustration Of The Computations Of The Forecast )(ˆ jZ t And )]([ jUVar t  

 This section illustrated the computations of )(ˆ jZt and )]([ jUVar t
.  To obtain the forecast )(ˆ jZt , one 

writes the model in difference form, and use the following rules: 



1. Use the available data to compute the known random shocks sa' , the one-step ahead forecast errors 

from  ).1(ˆ
ttt ZZa −=  Note that ta which is related to the unavailable 

tZ data will be assigned a value 
of zero. 

2. Leave ,...)2,1( =− jZ jt  unchanged because they already happened at origin t . 

3. Replace ,...)2,1(ˆ =+ jZ jt  with their forecasts )(ˆ jZt
 at origin t because they have not happened. 

4. Let ,...)2,1( =+ ja jt  be zero because they have not yet happened. 
 
 For expository purpose, the following time series model and data are used in Figure 1 to illustrate the 
computations using our designed Excel Templates.  Suppose that the lead-time demand can be represented by an 
ARIMA(2,2) model as   

2121 42.082.062.06.1 −−−− +−=+− tttttt aaaZZZ , with the data for 50494847 ,,, ZZZZ , 

and .78.5=
a

σ  

 

 
 

Figure 1  Excel Template for Computing siZt )'( Values and lψ ’s Weights 
 
5.1. Computation of the Forecast values sjZt )'(  

(1) Enter the following available data 123,9.122,2.121,1.122 50494847 ==== ZZZZ  in cells 
C14:C17. 

(2) Use the equation 
2121 42.083.062.062.1

−−−−
−++−= tttttt aaZZZa  

to compute 49a . Since there were no data available to compute 47a  and 48a , we equated them to 

zeroes, their expected values. The cell formula for 49a  in cell D16 is = C16 – 1.62*C15 + 0.62*C14 + 

0.83*D15 – 0.42*D14 = 2.258.  It was extended to cell D17 to find 50a .  Since the forecast origin is at 

=t  50, ta  for =t  51, 52, 53, … in cells  D18, …, D27 are the future values of ta ’s which have 
not occurred and thus are given the values of zeroes. 

(3)  Generate the forecast values )10(),...,2(),1( 505050 ZZZ using  

2121 42.083.062.062.1 −−−− +−++= tttttt aaaZZZ .  The formula in C18 to compute )1(50Z  is = 

1.62*C17 – 0.62*C16 + D17 – 0.83*D16 + 0.42*D15.  The values for )10(),...,2( 5050 ZZ can be 
obtained by extending the formula. 



5.2. Computation of )]([ jUVar t  
 

We have developed the Excel formulae to compute the learning error weights for the ARIMA model.   
(1) Before using our Excel formulae, the time series model has to be expressed in the form of Equation (15), 

then use 
 = SUMPRODUCT(OFFSET(THI,0,p-j,1,j),OFFSET(PSI,0,0,1,j)) 
to compute 

jψ  for j = 1, 2, …, p. and use 
=  SUMPRODUCT(OFFSET(THI,0,0,1,p +1),OFFSET(PSI,0,j - p,1,p)  
to compuite 

jψ for j = p+1, ……………N,  where THI, THETA, and PSI are defined as the names for  

the row vectors  ( 1,,...,, 11 ϕϕϕ −pp ),  ( qθθ ,...,,1 1 ), and 

( sψψ ,...,,1 1 ), respectively.   
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employed Data/Table to generate the values of ),( bhhgt +  using b  = 1, 2, .., h-1 for the row, h = 1, 

2, …, L for the column, and = SUMPRODUCT(OFFSET(PSI, 0, 0, 1, l), OFFSET(PSI, 0, b , 1, l)) as 
the function for the Table.  Notice that custom number format code ‘;;;’ is used in cell H15 to hide its 
value. 

 
Figure 2 a is the Table of cumulative values of G. Cumulative of gi,i’s are listed in the range F26:F35. 
The cumulative gh,h+b’s are listed along the rows in the range G26:O34.  We name Figure II-a (E26:O35) 
as “Cumulative_Table,” then create the G-Value Table to list the cumulative values of gi,i’s and gh,h+b’s  
by using the Data/Table command with  
=IF(D42>D41, VLOOKUP(D42-D41, Cumulative_Table,D41+2,0),0) in cell F40, and G38 and G39 as 
row input cell and column input cell, respectively.  The values of gi,i’s and gh,h+b’s  are then used to find 
the variances for different lead time values.  Given  78.5=

a
σ , we entered 

=(G41+2*SUM(H41:N41))*5.78^2 in cell O41 to compute )]([ jUVar t
 for h =1.  The variances for lead 

time values ranging from 2 to 8 can be obtained by extending the formula. 
 

 
 

Figure 2   a. Cumulative – G Table, b. G-Values Table and Variance )]([ jUVar t  



 
6. Conclusion 
 
 In this paper, we employee the Box-Jenkins forecasting technique to deal with the cases when the period 
demands are not independent, but exhibits a serially correlated demand process which can be represented as an 
autoregressive-moving average – ARMA (p.d.q)-model for both deterministic and discrete stochastic lead time. We 
also present an Excel based methodology for finding the reorder point and the safety stock level.  This approach is 
flexible and capable of handling the realistic scenario when both the demand and lead time are randomly 
distributed.  Developing an Excel template does not require high-level programming knowledge and skills.  In 
addition, the build-in probability density functions, distribution functions, and the Data Table command 
tremendously simplify the iterative computations by eliminating the need to look for values from the statistical 
tables. Moreover, the updating equations of Box-Jenkins together with the what-if analysis capability of Excel make 
it possible to update the reorder point and safety stock periodically.  The user friendliness and built-in capabilities of 
Excel makes a spreadsheet inventory-control application a low-cost tool and model simulator which is easy for 
whatever modification necessary to better adapt to needs and  environments of the market.   
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