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Abstract  

 

 The global diffusion of the Just-in-Time philosophy of production in industry has prompted scheduling 

researchers to pay attention to the minimization of job earliness in addition to job tardiness. Much work has been done 

thus far. The research objective mostly is to minimize the sum of the earliness and tardiness penalties. However, work 

has also been done toward minimizing the maximum of these penalties (which is more relevant in certain situations). It 

has been shown that, even for a single machine and a common due-date for all jobs, the problem is very difficult to 

solve if the unit penalties are job-specific. In this paper, we revisit the problem and focus on the single machine, 

common due-date version. We present both an exact (yet practical) solution for a special case (which is also difficult) 

and an efficient heuristic solution for the general case. We make some observations on the extensibility of our work. 

 

1. Introduction 

 

 Suppose that there is a single machine available at time 0, which can process jobs continuously and 

indefinitely, but only one at a time. There is also a set of n independent jobs, numbered 1 through n, that are ready at 

this time and must be processed on this machine without interruption. Let job j have a processing time pj, a unit 

earliness penalty  αj and a unit tardiness penalty βj. Finally, let d be the common due-date for all the n jobs, and cj(σ) be 

the completion time of job j in some schedule σ. Now, define ej(σ) = max{0, d – cj(σ)} and tj(σ) = max{0, cj(σ) – d} to 

be, respectively, the earliness and the tardiness of job j in schedule σ. The objective is to find a schedule which has the 

minimum value, among all schedules, for the maximum of the weighted earliness or the weighted tardiness (taken over 

all the jobs). That is, if we let  z(σ) = maxj{αj ej(σ) + βj tj(σ)}, the objective is to find σ* such that z(σ*) = minσ{z(σ)}. 

Notice that, in this situation, there is no advantage to having inserted idle time between jobs. If d is sufficiently large, 

there may be an advantage in having inserted idle time before the first job. Without losing much, we assume that this is 

not the case. (Restricting the due-date not to be very large, as we do, is not a serious limitation and may actually lead to 

a more difficult problem.) Thus, a potentially optimal schedule starts at time 0 and has the completion time of every job 

equal the start time of its immediate successor. This implies that a schedule can be completely characterized by the 

associated job sequence (which is simply an ordered set of the job indices). Before moving on, we assume that all job 

parameters (pj, αj, βj and d) are integers and further that αj = βj (earliness and tardiness penalties are symmetric). 

 

 That segment of the machine scheduling literature which involves earliness and tardiness penalties, while 

relatively new, is rather vast. It is not our intention to review that literature thoroughly. We choose instead to focus only 

on those works that are most closely related to ours. An interested reader may refer to the surveys by Baker and Scudder 

[1] and Gordon et al. [4] for the missing details. Turning to the problem at hand, it receives full treatment for the first 

time at the hands of  Li and Cheng [5], who show that the problem is NP-hard [3] for a single machine (and strongly 

NP-hard [3] for an arbitrary number of identical parallel machines) and go on to provide an approximate solution with a 

performance guarantee. Cheng et al. [2]  handle the multiple machine version of the problem and give a genetic-

algorithm for its approximate solution. Mosheiov and his associates work extensively on the special case where pj = 1 

(the jobs are unit execution time or UET jobs). Mosheiov and Shadmon [7] treat both the single and  multiple machine 

versions of the problem under the UET assumption and provide polynomial-time (formally efficient) algorithms in most 

cases; when such an algorithm is not given, they give an approximate solution with a performance guarantee. Mosheiov 

[6] extends the UET work to the case of a flowshop and again gives a polynomial time solution algorithm. Most 

recently, Mosheiov and Yovel [8] frame the problem in a due-date assignment context and obtain similar results. 

 

 As noted, the single machine problem that is of interest to us here is in general hard. But it is not clear how 

hard it really is. It does not have a pseudo-polynomial time [3] solution yet. Thus, while we know that it is NP-hard, we 

do not know if it is so in the ordinary sense or in the strong sense. In this paper, we first consider a special case of the 

problem (which in fact subsumes the UET problem as a sub-case) and show that this case (which remains NP-hard) 

admits a pseudo-polynomial-time (practically efficient) solution (which also solves the UET sub-case in polynomial 

time).  We then hint how this algorithm can be made to yield a fully polynomial time approximation scheme and extend 

to the multiple machine case. We next turn to the general problem and present a heuristic algorithm, which extends 
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easily to the asymmetric weight (αj ≠ βj) case as well. The heuristic, which is greedy and polynomial time, remains to 

be tested empirically before claims can be made about its performance. 

 

2. Pseudo-Polynomial Time Solvable Special Case  

 

Recall that our primary concern is a single machine scheduling problem with a MINMAX objective, 

symmetric, job-specific earliness and tardiness penalties, and a common due-date that is not too large. Extending 

standard notation, the problem can be denoted by 1/dj=d,αj=βj/maxj{αjej + βjtj}. We assume that d is small (small 

enough for there to be an optimal schedule with a start time of 0), just for the simplicity of exposition; a large d can 

easily be handled through a minor modification of our solution algorithm. Also for convenience, we assume that the 

jobs are numbered such that α1 ≥ α2 ≥ … ≥ αn. (In case αi = αj, we make i < j if αi/pi ≥ αj/pj.) Note that our choosing to 

work with αj (rather than βj) is purely idiosyncratic. 

 

2.1 Problem and Solution Characteristics 

 

 We now state a few observations that hold for the general case and extend to the special case as well. 

 

Observation 1:  The general problem is NP-hard. 

 

The proof appears in [5]. We will briefly outline it later. 

 

Observation 2:  In an optimal schedule for the general problem, if two jobs i and j appear next to each other: 

(a) when both are early, i follows j if αi ≥ αj and αi/pi ≥ αj/pj, and 

(b) when both are tardy and start after d, i precedes j if αi ≥ αj. 

 

The proof is easily accomplished via an interchange argument. 

 

The special case that we consider here assumes that i < j ⇒ αi ≥ αj and αi/pi ≥ αj/pj for all i and j, that is, the 

jobs can be numbered such that both conditions in Observation 2 are satisfied. (Notice that UET is a sub-case.) The 

upshot is that the early jobs in an optimal schedule are scheduled in decreasing order of their indices, whereas the tardy 

jobs (with the possible exception of the job that straddles d) are scheduled in increasing order of their indices. This is 

what makes it possible for us to develop a pseudo-polynomial time dynamic program to solve the special case.  

 

It may be worthwhile at this point to note that our special case is NP-hard as well. The fact that we are able to 

solve it in pseudo-polynomial time (as shown later) establishes that it is ordinary NP-hard. The NP-hardness proof is 

very similar to that in [5]. Take n+1 jobs with: α1 = A, α2 = α3 = … = αn = αn+1 = 1; pj for j = 1,…, n are as usual and 

add up to 2B, but pn+1 = C; and d = B + C. Here, A and C are appropriately large numbers. The question is: is there a 

schedule σ with z(σ) ≤ B? Note first that the problem instance just created satisfies the special case criteria. Note next 

that, for the question posed above to have an affirmative answer: job 1 must complete at d, job n+1 must start at 0 and 

jobs 1 through n must have a partition such that the processing times of the jobs on each side of the partition add up to 

B. This essentially provides a reduction from the well-known NP-hard problem called Partition [3]. 

 

2.2. Pseudo-Polynomial Time Dynamic Program 

 

 We have noted that an optimal schedule for the special case has a particular structure. Jobs finishing before d 

appear in decreasing order of their indices and those starting after d in increasing order. But the identity of the job that 

straddles d (call it the pivot job) remains unclear; so we try all n jobs, one at a time. Say q is the pivot job in one such 

try. We build partial schedules outside in by considering the remaining n-1 jobs in decreasing order of their indices and 

by placing them, when their turn comes, on the inside left or the inside right of the schedule. When all jobs but job q has 

been scheduled, we fill the void left by placing q there. 

 

 Suppose that, when working with a particular pivot job q, the remaining n-1 jobs have been re-indexed from 1 

to n-1 (retaining their original order) and job q has been re-indexed 0. At stage k of the dynamic program when job n-k 

has just been scheduled, let fq,k(x) be the minimum of the maximum earliness-tardiness penalty of all k-job partial 

schedules whose early set completes processing at time x. Clearly, the partial schedule that yields this minimum 

dominates others for the given x and is retained for further expansion. Let δq,k(x) take on the value 1 if the retained 
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partial schedule (for the given x) has job n-k in the early set and 0 otherwise. Finally, let P be the total processing time 

of all the n jobs and Pk the total processing time of the k higher indexed jobs considered up to stage k in this run of the 

dynamic program corresponding to the chosen pivot job q.  

 

The dynamic programming recursions can be stated now. 

 

  For k = 0: 

   fq,0(x)  = 0 for x = 0, and 

    = ∞ otherwise. 

 

  For k = 1 to n-1: 

   fq,k(x) = min {max{fq,k-1(x-pn-k), αn-k (d-x)}, max{ fq,k-1(x), αn-k (P-Pk-1+x-d)}} 

         for max{0, d-P+Pk} ≤ x ≤ d, and 

    = ∞ otherwise. 

 

δq,k(x) is computed along with fq,k(x) so that an optimal schedule can be constructed through backtracking at the very 

end. That happens when job q is finally factored in and the optimal solution value corresponding to q as the pivot job is 

calculated as follows: fq* = minx{max{fq,n-1(x), α0 (x+p0-d)}}.   

 

 Once we have run the dynamic program n times (once for each possible value for q), we have n solutions. We 

pick the best as: f* = minq{fq*}. This solves the special case. The dynamic program implicitly considers all partial 

schedules that can lead to optimality and retains only the non-dominated ones. It is thus correct. As for the computation: 

at the end of each stage of the dynamic program, at most d partial schedules are retained; there are n stages in a given 

run of the dynamic program; and, there are n runs. This indicates that the dynamic program takes O(n
2
d) time. 

 

 Note that, if we apply our method to the UET sub-case, we get an O(n
2
) time solution (pj being 1, there is no 

need to consider the n possibilities for the pivot job). If we let pj equal p for all j (in a somewhat generalized version of 

UET), we get an O(n
3
) time solution. A bottleneck assignment problem formulation in the latter case yields a solution of 

the same time order. However, Mosheiov and Shadman [7] provide a much better O(nlogn) time solution for the former. 

 

2.3. Possible Extensions 

 

 We have said at the outset that we will restrict ourselves to a due-date that is not large and enforce a 0 start 

time on the schedule. From a technical point of view, this is not really necessary. (We do this only to make our 

exposition easy to follow.) The dynamic programming solution given above can easily accommodate a non-zero start 

time. We simply have to let d be arbitrary and modify the initialization step (stage 0) so that fq,0(x) = 0 for 0 ≤ x ≤ d. 

 

 We have also said that it is possible to develop, for the special case, a fully polynomial time approximation 

scheme (FPTAS) based on the dynamic program. The details are rather technical and we omit them here. We only note 

that an FPTAS, in our case, will deliver a solution whose value is within (1+ε) times, ε > 0, the optimal solution value 

and will run in time that is polynomial in n, log(αj), log(pj), log(d) and (1/ε) for all j. It does this by retaining a subset of 

the fq,k(x) values at stage k, for example, by keeping only the minimum fq,k(x) value for all the x values belonging to a 

given interval of width ∆. The challenge essentially is in the choice of an appropriate ∆. We can report that such a ∆ 

exists in this instance. 

 

 While we have said that our methods extend to the multiple machine case, the modifications required are not 

trivial. In this case, one needs to develop a dynamic program such that the partial schedules are built inside out around 

the pivot job. This approach handles the non-zero start times more naturally and can be used to solve the single machine 

problem as well. Its difficulty basically lies in the fact that it is not easy to describe. Finally, we should note that the 

multiple machine version of the special case is NP-hard as well; in fact, it is strongly NP-hard for an arbitrary number 

of machines m. The time complexity of the dynamic program that we propose grows exponentially with m. 

 

3. Heuristic Solution for the General Problem 

 

 Our heuristic is greedy and polynomial time; in fact, it runs in O(n
2
) time. It applies to both the symmetric and 

asymmetric penalty versions of the problem, even though we describe it here for the former. It works with fixed 
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schedule start and finish times and does not extend naturally to the multiple machine version. We also have to assume 

that d is not large or trivial, viz., that maxj{pj} < d < P. 

 

At any stage during schedule construction, let S and U be, respectively, the set of jobs that have already been 

scheduled and that remain to be scheduled. Similarly, let L and R be, respectively, the set of jobs that have been 

scheduled leftmost and rightmost in S; thus, S = {LR}. Suppose that the jobs in L start at time 0 and complete at time 

x; likewise, suppose that the jobs in R complete at time P and start at time y. It is easy to see at this juncture that there is 

a hole in the schedule between times x and y, where the jobs in U will have be scheduled. For convenience, let us define 

the following terms: zj
L
 = earliness penalty of job j if it is scheduled last in L; zj

R
 =tardiness penalty of job j if it is 

scheduled first in R; zj = minimum of zj
L
 and zj

R
; δj = indicator of whether zj equals zj

L
 or zj

R
; and, z* = the maximum 

earliness-tardiness penalty of the jobs in S. 

 

The algorithmic details can now be given as follows. 

 

  Step 0: Let: x = 0, y = P, z* = 0, L = ∅, R = ∅, S = ∅ and U = {1, 2, …, n}. 

 

  Step 1: Do until U is empty: 

 

a. For each j ∈ U, do: 

If x + pj > d: zj
L
 = ∞; else, zj

L
 = αj (d - x - pj). 

If y ≤ d: zj
R
 = ∞; else zj

R
 = αj (y - d). 

If zj
L
 < zj

R
: zj = zj

L
  and δj = 1; else, zj = zj

R
  and δj = 0. 

 

b. Find j* such that zj* = minj∈U{zj}. 

If δj* = 1: L = {Lj*} and x = x + pj*; else, R = {j*R} and y = y - pj*. 

S = {LR}, U = {U – j*} and z* = max{z*, zj*}. 

 

  Step 2: Deliver S as the heuristic schedule with minmax penalty equal to z*. 

 

Notice that the loop in step 1 executes n times and that at each execution O(n) computations are involved. The overall 

time complexity of the heuristic is thus O(n
2
). 

 

4. Conclusions 

 

 In this paper, we have addressed a single machine scheduling problem whose objective is to minimize the 

maximum of the earliness and tardiness penalties about a common due-date. We have focused on the version where the 

earliness and tardiness penalties are the same for the same job but different for different jobs. This problem is known to 

be computationally hard.  

 

For an important special case which remains hard, we have exploited certain structural properties of an optimal 

schedule to develop a pseudo-polynomial time dynamic programming algorithm. We have shown how this algorithm 

can be made to accommodate non-zero start times (which arise when the due-date is sufficiently large). We have also 

discussed, albeit briefly, how this algorithm can be used to develop a fully polynomial time approximation algorithm. 

Furthermore, we have indicated, again briefly, how the multiple machine version of the special case can be solved 

exactly using a dynamic program similar to ours. 

 

For the general problem, we have proposed a polynomial time greedy heuristic. While this heuristic is 

intuitively appealing, its performance is yet to be tested. The good thing about the heuristic is that it applies, with little 

modification, to the generalization where the earliness and tardiness penalties are allowed to be asymmetric (different 

even for the same job). Its weakness is its reliance on the schedule starting at time 0. 

 

In terms of future work, the performance (quality-wise) of the heuristic needs to be tested. It will also be nice 

to see if a performance guarantee can be established for it. 
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