
AN IMPROVED DYNAMIC DICTIONARY MATCHING USING INVERTED
LISTS

 Chouvalit Khancome and Veera Boonjing
Software Systems Engineering Laboratory

Department of Mathematics and Computer Science
Faculty of Science

King Monkut’s Institute of Technology at Ladkrabang(KMITL)
Ladkrabang,Bankok 10520,THAILAND

E-mail: chouvalit@hotmail.com , kbveera@kmitl.ac.th

ABSTRACT

This paper proposes to improve a dynamic dictionary matching using inverted lists which employs inverted lists

as data structures accommodating string patterns. The new solution takes (1) O(|P|) times for preprocessing, where |P| is a
sum of the length of all patterns in set of pattern P; (2) O(|p|) times for insertion or deletion, where |p| is the length of
pattern to be inserted or deleted, (3) O(m+σ) times in average search, and (4) O(|t|) times in worst case, where m is the
length of the longest pattern in P, σ is the number of occurrences of matching that lead to mismatched and included the
mismatched times, and |t| is the length of input text.

KEY WORDS
Dictionary matching, inverted index, inverted list, trie, pattern

1. Introduction

The problem of dynamic dictionary matching is to efficiently locate a set of patterns occurring in an input text.
In this problem, the set of patterns can change over time because of insertion and deletion of individual patterns. It calls
for a data structure accommodating this set, which (1) allows quick insertions of patterns into the dictionary as well as
deletions of patterns from the dictionary and (2) supports efficient searching for pattern strings in the input text. A trie,
used by fast dictionary matching solutions such as [1], [9], [12], is an example of data structure supporting such an
efficient searching. Unfortunately, insertions and deletions of patterns require reconstruction of the trie [2], [3], [4], [5],
[6], [7], [8]. Solutions to these problems are the modifications of trie such as a suffix tree [2], [3], [11], 14] and a
combination of a compact Trie and a fat tree [16].

The new ideas [17], [18], [19], [24] used inverted lists as new data structure which derived from an inverted
index used in information retrieval field [10], [13], [15], instead of using a trie or a trie-based data structure. Furthermore,
it well supports dynamic patterns. Especially, the inverted list in [17], [24] are very simple and highly efficient in
preprocessing phase, insertion and deletion patterns. However, the searching phase has more time complexity. In this
paper, we propose to improve searching and modify other parts of that algorithm.

The rest of paper is organized as follows. Section 2 gives preliminaries of inverted lists dictionary. Section 3
describes the inverted list dictionary its update algorithms as well as their proofs of time complexity. Section 4 shows a
new efficient search algorithm and conclusion is in section 5.

2. Preliminaries

 This section has shown the basic definition, the examples and the efficient in [17], [24].

 Let P={p1,p2,…,pr} where pi is a string from c1c2,…,cm under ∑ and ∑ is the set of the character in P.

2.1 Basic Definitions

Definition 1 A keyword ω i of pattern pi contains … ; where or is c

iaw
,0,1 ibw

,0,2 icw
,0,3 im

w
,1,... iknw

,0, iknw
,1, k

and k = 1, 2, …, m; 1 indicates a status of last character in pi and 0 otherwise. Therefore,
ω i = … (1)

iaw
,0,1 ibw

,0,2 icw
,0,3 im

w
,1,...

 Example 1 Suppose P={aab, aabc, aade}. We have ω 1=aab, ω 2=aabc and ω 3=aade. Therefore,

1=a1,0,1a2,0,1b3,1,1,ω

mailto:kbveera@kmitl.ac.th

ω 2=a1,0,2a2,0,2b3,0,2c4,1,2, and

ω 3=a a d e1,0,3 2,0,3 3,0,3 4,1,3,

Definition 2 An inverted list L of ω i

 , denoted by , is defined as iL
ω

iL
ω

= , , >< iwa :0:1: >< iwb :0:2: >< iwc :0:3: ,…, >< imw :1::... (2)

Example 2 From example 1, we have

 = a:<1:0:1>, a:<2:0:1>, b:<3:1:1>, 1ω
L

2ω
L = a:<1:0:2>, a:<2:0:2>, b:<3:0:2>, c:<4:1:2>, and

3ω
L = a:<1:0:3>, a:<2:0:3>, d:<3:0:3>, e:<4:1:3>.

 Definition 3 An index of invert list is λw >< ,...},{:0: jiε or >< }{:1: iε . Therefore,

 : λw >< ,...},{:0: jiε or >< }{:1: iε (3)

Example 3 From example 2, we have

 a : <1:0:{1,2,3}>, <2:0:{1,2,3}>,
 b: <3:1:{1}>, <3:0:{2}>,
 c: <4:1:{2}>,
 d: <3:0:{3}>, and
 e: <4:1:{3}>.

Definition 4 Let and be

0,ελ
I

1,ελ
I >< ,...},{:0: jiε and >< }{:1: iε , respectively. Therefore,

λw : or : . (4)
0,ελ

I λw
1,ελ

I

Definition 5 An inverted list table τ is a hash table with 2 columns: and / ; where contains

, and / contains , , ,…. (5)

λw
0,ελ

I
1,ελ

I λw

aw
0,ελ

I
1,ελ

I
0,1aI

0,2aI
1,5aI

Example 4 The table τ constructed from example 3 is as shown in table1.

Table 1 the table of pattern P={aab,aabc,aade}
 λw

0,ελ
I /

1,ελ
I

a <1:0:{1,2,3}><2:0:{1,2,3}>
b <3:1:{1}><3:0:{2}>
c <4:1:{2}>
d <3:0:{3}>
e <4:1:{3}>

 Theorem 1 The access to or in the table

0,ελ
I

1,ελ
I τ take O(1) time.

 Proof Let f(x) be a hash function let be the key for access and be the key for access .
0,ελ

w
0,ελ

I
1,ελ

w
1,ελ

I
 Let the table τ implemented by the hash table as [20], [21], [22], [23] that takes O(1), therefore the access to

 with f() or access with f() takes O(1) time ■
0,ελ

I
0,ελ

w
1,ελ

I
1,ελ

w

The solution of [17] and [24] take (1) O(|P|) times for preprocessing, where |P| is a sum of the length of all

patterns in set of pattern P; (2) O(|p|) times for insertion or deletion, where |p| is the length of pattern to be inserted or
deleted; and (3) a search O(|t|+locc) times, where |t| is the length of input text and locc is the number of occurrences of
matching between a character in the input text and in the inverted list. However, this solution takes O(|t||P|) in worst cases
of searching phase. So, this paper proposes to improve this searching as follows.

3. Inverted List Dictionary
 This section explained new algorithms which consisted preprocessing phase for creating dictionary, insertion
and deletion patterns from dictionary.

3.1 Preprocessing phase

 Let be a set of all characters in P and char() be a character ‘j’ of the pattern ‘i’. Let |P| be a total

length of all patterns in P. Before adding all character from

∑ i
jp

∑ to a character column, we must create the inverted list
table and dedicate min_length to maximum of integer. Afterwards, this algorithm reads a character one by one from each
pattern and adds into the inverted list column. Before the addition, there is a process to check the inverted list char()

at the same position. If it already exists the inverted list of the char() at the same position then we add only the
number pattern to the invert list table. Otherwise, we must create a new inverted list and add it into the table. After all
patterns are inserted, we must set m to min_length if m less than current min_length. Figure 1 gives details of the
algorithm.

i
jp

i
jp

Inverted-List Table(P={p1,p2,…,pr})
Step A Create table for alpha from ∑ and min_length = maximum of integer number

Step B for ri :1:
Step C for mj :1:
Step D if not exist inverted list of i

jp

Step D1 Generate a new invert list and add to table at alphabet char() i
jp

 else
Step D2 Add a number i to the set of the represent part of the invert list at alphabet i

jp
Step E

 set m to min_length if min_length > m
Fig. 1 Algorithm for creating inverted list table

Theorem 2 The time complexity of preprocessing phase algorithm is O(|P|) .
Proof Given P={p1,p2,p3,…pr} and the length of each of pi is mi such m1+m2+m3+…+mr = |P|.
 Step A create table for storing the inverted list takes O(1) time.
 Step B repeat each of pi takes r rounded. Each round must loop in Step C mj times. Therefore, the inverted list
 takes m1+m2+m3+…+mr = O(|P|) times.
 Step D, Step D1 and Step D2 use for checking in table that takes O(1) by theorem 1.
 Step E take O(r), but r is the total pattern and it less than O(|P|).
 Therefore, the time complexity of this algorithm is O(|P|). ■

3.2 Pattern insertion

 Let pi be a new pattern for insertion where i is a number refer to unique symbol. The insertion must check the
non-existence of pi in the table. Afterwards, reading and inserting a character from pattern into table which is similar to
the preprocessing phase. Importantly, we must set minimum of pattern length as preprocessing phase. This algorithm is
illustrated by the figure 2.

 InsertPattern(pi)
 Step A if not Exist(pi)
 Step B for j:1:m
 if not exist of char() i

jp

 Step B1 Generate a new invert list and add to table at alphabet char() i
jp

 else
 Step B2 Add a number i to the set of the represent part of inverted list at alphabet i

jp
 Step C set m to min_length if min_length>m

Fig. 2 Algorithm for pattern insertion

Theorem 3 Time complexity of the algorithm for pattern insertion is O(|p|).
Proof Let pi be a new pattern for insertion where pi contains a string pi = c1c2c3…cm such that the length m

represented by |p|.
Step A Repeating from c1 to cm , use m time that is |p| or take O(|p|) times. The access to the inverted list

table takes O(1) followed by theorem 1.
 Step B Repeating for adding pattern one by one from c1 to cm that use |p|, therefore that takes O(|p|) times.
 Step B1 or B2 access to table taking constant time by theorem 1. That all of Step B takes O(|p|) times.
 Step C takes O(1) because it takes only one time in each of pattern p.

Therefore, the insertion algorithm takes O(|p|) times. ■

3.3 Pattern deletion

 Let p be a pattern for deletion and ‘Numberpattern’ be a number of pattern. ExistDel(p) is a function to detect

the existence of pattern for deletion. The deletion must search for pattern p using ExistDel(p) function and the result is
the pattern number for deletion. It then searches one by one for deletion until finish. The importance of deletion is that we
need to check the inverted list in the same position of a number pattern that we want to delete. If it has only one, we can
delete that inverted list immediately. Otherwise, we must delete an inverted list only ‘Numberpattern’. After deleted each
of patterns, we set min_length as preprocessing. The algorithm is illustrated by figure 3.

DeletePattern(p)
Step A Numberpattern = ExistDel(p)
 if Numberpattern != θ
Step B for i:1:m
 Search inverted list of ernNumberpatt

ip
 if number of the items in represent pattern >1 ernNumberpatt

ip
Step B1 Delete items in represent part = numberpattern
 else
Step B2 Delete inverted list of ernNumberpatt

ip
Step C set min_length to the less than prior if m is the minimum pattern length

Fig. 3 Algorithm for pattern deletion

Theorem 4 The deletion algorithm takes O(|p|) times.
 Proof Let pi be a pattern for deletion where pi contains a string pi = c1c2c3…cm with length m = |p|.
 Step A repeat to read from c1 to cm takes O(|p|) times. Each time we access an inverted list use O(1) by
 theorem 1. Therefore, this step takes O(|p|) times.
 Step B repeat for read a character one by one from c1 to cm takes O(|p|) times.
 Step B1 or B2 accesses the inverted list with constant time from theorem 1. It takes O(|p|) time.
 Step C take only once, hence, it take O(1) after deleted the request pattern.
 Therefore, the deletion algorithm takes O(|p|) time. ■

4. Searching phase

The searching phase employs the navigator variable N as the current comparison position; SHIFT as the shift
window; and SET1, SET2, and SETE as the temporary variables used in matching.

The first character of each search window is compared with the last character in the text followed by taking
the inverted list to SETE for reference. If SETE is not empty and matches with the last character, we scan to compare the
text from the first to the last character, or if SETE does not contain the last character, we consider the farthest character
matching the SETE and scan from suitable position which matched character in that windows. Every comparison takes
the inverted list to the temporary variable SET1 or SET2, meanwhile taking the inverted list to these variables. We must
also operate SET1 and SET2. The purpose of the operation is to search for the sequence of pattern and check the
matching. We illustrate the algorithm in figure 4.

 Lemma 1 Let SET be the sub table with keys and for accessing and , respectively.

The access to and in SET using f() or f() function takes O(1) times.
0,ελ

w
1,ελ

w
0,ελ

I
1,ελ

I

0,ελ
I

1,ελ
I

0,ελ
w

1,ελ
w

 Proof Let SET be the hashing a table with keys and .
0,ελ

w
1,ελ

w

 Therefore, accessing to and using f() and f() takes O(1) times by theorem 1. ■
0,ελ

I
1,ελ

I
0,ελ

w
1,ελ

w

Inverted-List Mutiple-Pattern Search (P={p1,p2,p3,…,pr},T=t1t2…tn)
Preprocessing Phase :
 Create Inverted-List Table(P={p1,p2,p3,…,pr})
Searching Phase

Step A N=min_length ,SHIFT=2x(min_length), SET1={},SET2={},SETE={}
Step B While N<n and SHIFT<=n
Step C SETE inverted lists of text[N] and N=the farthest position from set SETE
Step D SET1 inverted lists of text[N]
Step E While SET1 !=Empty
Step E1 SET2 inverted lists of text[N] if text[N] is not position of SETE
Step E2 SET1 SET1 operate SET2/or SET1 SET1 operate SETE if position of text[N] is
 SETE position meanwhile operation must be check matching if terminate status = 1
 and remove that list from SET1 and Update SHIFT if its position beyond current
 window search
Step E3 If SET1 != Empty set value N N+1
Step F N=SHIFT, SHIFT SHIFT+min_length,

Fig. 4 Algorithm for searching

 Lemma 2 To take the inverted list from τ matching text[N] into SET takes O(1) times.
 Proof Let text[N] be a character from string T with keys and . The access to and

 in table
0,pos

wλ 1,pos
wλ 0,pos

Iλ

1,pos
Iλ τ takes O(1) times.

 Therefore, to take and into SET takes O(1) times by lemma 1. ■
0,pos

Iλ 1,pos
Iλ

 Definition 6 An operation for continuity from position 1ε to 2ε of and/or in SET1 and

 and/or in SET2 is a set of pattern numbers that the character described by SET2 follows the character

described by SET1. (6)

0,1ελqI
1,1ελqI

0,2ελbI
1,2ελbI

 Definition 7 An inverted list or >< ,...},{:0:1 ji >< ,...},{:1:1 ji of SET2 always continues from
SET1. (7)

 Example 5 Suppose SET1 ={<1:0:{1,2}>} and SET2={<2:0:{1,3}>,<1:0:{5}>}. The operation for continuity
from position 1 to 2 of SET1 and SET1 is {1}. Therefore, the character described by SET2 follows the character
described by SET1 in pattern number 1 and moreover, the inverted list <1:0:{5}> also continues from SET1 by definition
7.

 Lemma 3 The operation between SET1 and SET2 takes O(1) times.
 Proof Let SET1 be a set of and/or , and SET2 be a set of and /or .

0,1ελ
I

1,1ελ
I

0,2ελ
I

1,2ελ
I

 The access to , , and for operation takes O(1) times by lemma 1.■
0,1ελ

I
1,1ελ

I
0,2ελ

I
1,2ελ

I

 Theorem 5 The search algorithm takes O(m+σ) times.
 Proof

 Average case: Let |t| be the sum of length of T=t1t2t3…tn , σ be the number of occurrences of matching that
leads to mismatched and included the mismatched times, and m is the longest pattern in P={p1,p2,p3,…,pr}.

Step A initializes variables take O(1) times. The inner of time complexity happens from step E which is the each
of windows search and steps within step E covers step E1 to step E3 takes O(m) time in the matched case or take O(σ)
in the mismatched case, meanwhile in each operation of them to take text[N] uses O(1) by lemma 2. Whole operations of
SET according to definition 6 and definition 7 take O(1) by lemma 1. Step B is the external loop. Step C, D and F depend
on step E in the case of 1) matched all windows search take O(m)+O(m)+O(m) +….O(m), 2) mismatched all windows
search take O(σ)+O(σ)+O(σ)+O(σ)+…, and 3) mismatched in some windows search take O(m)+O(σ)+O(σ)+
O(m)+…. Therefore, the maximum of time complexity of searching phase is O(m+σ).■

Worst case: The happening of worst case of this algorithm, if the first window scan the text in the case of
SET1 could not empty if only once. It works in step C one by one character from the beginning to the end of text and it
takes completely O(|t|). ■

5. Conclusion

This paper presents an improved solution to the dynamic dictionary matching using inverted lists. We show that
this solution takes (1) O(|P|) times for preprocessing, where |P| is a sum of the length of all patterns in set of pattern P;
(2) O(|p|) times for insertion or deletion, where |p| is the length of pattern to be inserted or deleted; and (3) average
search takes O(m+σ) times, and (4) worst case search takes O(|t|) times, where m is the length of the longest pattern in
P, σ is the number of occurrences of matching that lead to mismatched and included the mismatched times, and |t| is the
length of input text.

References

[1] A. V. Aho and M. J. Corasick. “Efficient string matching. An aid to bibliographic search”. Comm. ACM, 1975.

333-340.
[2] A. Amir and M. Farach. “Adaptive dictionary matching”. Proc. of the 32nd IEEE Annual Symp. On Foundation of

Computer Science, 1991. 760-766.
[3] A. Amir, M. Farach, R.M. Idury, J.A. La Poutr'e, and A.A. Schaffer. “Improved Dynamic Dictionary-Matching”. In

Proc. 4nd ACM-SIAM Symp. on Discrete Algorithms. 1993, 392-401.
[4] A. Amir, M. Farach, R. M. Idury, J. A. La Poutré , and A. A. Schäffex. “Improve dynamic dictionary matching”.

Information and Computation, 199(2). 1995, 258-282.
[5] A, Amir, M. Farach, and Y. Matias. “Efficient randomized dictionary matching algorithms”. In CPM: 3rd

Symposium on Combinatorial Pattern Matching, 1992.
[6] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. “Dynamic dictionary matching”. Manuscript. 1991.
[7] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. “Dynamic dictionary matching”. Journal of Computer and

System Sciences. 1993.
[8] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. “Dynamic dictionary matching”. Journal of Computer and

System Science, 49(2). 1994, 208-222.
[9] B. Commentz-Walter. “A string matching algorithm fast on the average”. In Proceedings of the Sixth

International Collogium on Automata Languagees and Programming. 1979, 118-132.
[10] C. Monz and M. de Rijke. (2002) Inverted Index Construction. [Online]. Available : http://staff.science.uva.nl/

~christof/courses/ir/transparencies/clean-w-05.pdf .
[11] D. D. Sleator and R. E. Tarjan. “A data structure for dynamic trees”. Journal of Computer and System Sciences

26(3). 1983, 362-391.
[12] G. Navarro and M. Raffinot. “Flexible Pattern Matching in Strings”. The press Syndicate of The University of

Cambridge. 2002.
[13] O. R. Zaïane. “CMPUT 391: Inverted Index for Information Retrieval”. University of Alberta. 2001.
[14] P. F. Dietz and D. D. Sleator. “Two algorithm for maintaining order in a list”. In Proceeding of the Nineteenth

Annual ACM Symposium on Theory of Computing. 1997, 365-372.
[15] R. B. Yates and B. R. Neto. “Mordern Information Retrieval”. The ACM press.A Division of the Association for

Computing Machinery,Inc. 1999, 191-227.
[16] S. Sahinalp and U. Vishkin. “Efficient approximate and dynamic matching of patterns using a labeling paradigm

(extended abstract)”. In 37th Annual Symposium on Foundations of Computer Science. 1996, 320-328.
[17] C. Khancome and V. Boonjing. Inverted-List Multiple String-Pattern Matching. Aplied Statistics Conference 2006,
 NIDA, 2006, 287-296.
[18] C. Khancome and V. Boonjing. String Matching Using Inverted List. XIX International Conference on Computer,

Information and Systems Science and Engineering (CISE 2007). Enformatika Transcations on Engineering,
Computer and Technology Quarterly volumn 19, January, 2007, 108-112.

[19] C. Khancome and V. Boonjing. String Matching Using Inverted List. The 1st Conference on Graduate Research,
SRRU. Surin Rajabhat University, February, 2007, 104-115.

[20] wikipedia, (2006, 11, 15), Hash table. Available: http: http://en.wikipedia.org/wiki/Hash_table.
[21] K. Loudon, (2006, 11, 24), Hash Tables. Available: www.oreilly.com/catalog/masteralgoc/chapter/ch08.pdf.
[22] V. H. DINH, (2006, 11, 24), Hash Table. Available: http://libetpan.sourceforge.net/doc/API/API/x161.html.
[23] M. Escardo, (2006, 10,15), Complexity considerations for hash tables Avialable :
 http://www.cs.bham.ac.uk/ ~mhe/foundations2/node92.html.
[24] C. Khancome and V. Boonjing. Dynamic Dictionary Matching Using Inverted Lists. Proceeding of the Third

IASTED International Conference ADVANCEDS IN COMPUTER SCIENCE AND TECHNOLOGY (ACST2007).
April 2-4, 2007, Phuket,Thailand. 397-401.

http://staff.science.uva.nl/ ~christof/courses/ir/transparencies/clean-w-05.pdf
http://staff.science.uva.nl/ ~christof/courses/ir/transparencies/clean-w-05.pdf
http://libetpan.sourceforge.net/doc/API/API/x161.html
http://www.cs.bham.ac.uk/ ~mhe/foundations2/node92.html

	ABSTRACT
	1. Introduction

