
1 1

International DSI / Asia and Pacific DSI 2007 Full Paper (July, 2007)

A comprehensive model for IS development:
information processing perspective

Shih-Wei Chou1) , Chales Chen, Pi-Yi Chen, Mong-Young He

1) National Kaohsiung First University of Science of Technology, Department of
Information Management (swchou@ccms.nkfust.edu.tw)

Abstract

In order to develop IS (information systems) effectively, this study proposed a comprehensive model
that delineates the relationships among contingency configurations of design variables, risk management,
and software development success. Specifically, this paper examined the fit between coordination strategy
and task interdependence, and their impact on risk resolution (such as reorienting initiative and modifying
strategy) and IS success (such as productivity and process satisfaction). Drawing on information
processing theory, we developed a research model. Experimental design was conducted to test the model.
Projects with low task interdependence exhibited greater risk resolution achievement, productivity, and
process satisfaction than projects with high task interdependence. Also, organic coordination strategy
demonstrated better risk resolution achievement, productivity, and process satisfaction than those with
mechanic coordination strategy. Finally, surprisingly, our findings regarding the interaction effect between
task interdependence and coordination strategy only partially supported our hypotheses.

1. Introduction

How to develop a software project successfully remains a theoretical as well as a managerial challenge. Using
inappropriate software development strategy not only entails high cost and risk, but usually results in low quality
software project. To address this, two different streams of approach were proposed. The first one emphasized technical
innovations such as development of new and enhanced methods and tools, from which a software team may enhance the
software development performance [5] [8]. The second one argued that the success of a software design is contingent on
the fit between project management practices and software development process. This perspective focuses on a variety
of context variables such as task-context variable (task difficulty, task interdependence, task nonroutineness, task variety,
work group coordination) [1] [10], and psychosocial-context variable (goal conflict, cognitive fit) [1] [18] [21]. This
study uses the second approach as an analysis lens. More specifically, we examine the fit between two variables—task
interdependence and coordination strategy, which in turn influence the success of software development.

In addition to the above context variables, achieving risk management may influence the success of software
implementation [9]. The concepts of risk management have been applied successfully to software development over the
last decades. The purpose of software risk management is to identify the possible barriers that may lead to system
failure. Lyytinen et al. [15] confirmed this by defining software risk as a particular aspect of a development task,
process, environment, which if ignored, will increase the likelihood of project failure. In other words, risk management
helps software practitioners focus on many aspects of a problematic situation. For example, it underlines potential
causes of failure, and it helps link potential threats to possible actions and risk resolution approaches.

Software development is a highly social task that usually entails interactive process and a variety of
information-intensive activities such as identifying and analyzing user requirements. A variety of factors have been
identified that may exert an influence on the success of IS (information systems) development and implementation, for
example management’s control over scare resources [19], user participation and involvement [2], resource
interdependence [14], environmental uncertainty and task uncertainty [1] [10], and so on. However, there is relatively
few study addressing IS development success from both the fit for effectively processing information exchange and risk
management approaches. To fill this gap, this study has two research objectives. The first one is to develop a contingent
model that deals with the match or fit between a project’s task interdependence and the coordination strategy [1] [10].

2 2

The second objective is to investigate the role of risk management in mediating the relationships between the above
contingent model and IS success.

2. Theoretical background and Hypotheses Development

2.1 Risk management of IS development

To facilitate the creation of high quality software (high quality and IS development process satisfaction), previous
studies [1] [4] [14] [20] have identified two critical issues—fostering information exchange and eliminating IS
development risk. To address the former, this paper proposes a contingent model that focuses on the information
exchange and interactions among stakeholders in a most effective way. Success of a IS development relies on the “fit”
between contextual variables such as task interdependence and coordination strategy [1] [4] [20].

Although the critical role of risk management in affecting IS development success has been recognized by previous
research, what is the context that fosters the implementing of risk resolution remains to be specified. To deal with this,
this study proposes a model by specifying two contextual variables in IS design—task interdependence and coordination
strategy, and identifies their influence on the risk management within software development. As noted by prior studies
[1] [10], a project’s task characteristics (task interdependence) might dictate the application of the most appropriate
coordination strategy. This also indicates that the match or fit between these two variables may provide the extent of
required message exchange and information integration. According to information processing theory, in a IS
development environment, the uncertainty is associated with an absence of information. In addition, the uncertainty may
result in inappropriate risk resolution strategy [9]. Thus, given that effective information processing, such as the fit
between task interdependence and coordination strategy, IS development team may reduce the uncertainty to the
maximum extent, which implies that the team may conduct a more feasible and effective risk resolution strategy. On the
other hand, since using an appropriate risk management strategy may help IS development team examine software
requirements and goal in a more comprehensive way, better task performance and team member satisfaction may be
expected. Based on the above arguments, we developed a research framework as shown in Figure 1.

Fig. 1 Research framework

H 1: The implementation of risk resolution strategy will have a positive effect on software development success.
H 2: Risk management strategy will mediate the effects of goal conflict on software success, and coordination
strategy on software development success.

2.2 Task interdependence
Task interdependence refers to the extent to which a task requires organizational units to engage in workflow exchanges
of product, information, skills, or resources. Task interdependence also implies that actions taken in one unit influence
the processes and products of other units [1] [12] [19]. Under conditions of low task interdependence, the contributions
of individuals and work units are additive. High task interdependence implies that when a work unit or team member
needs to integrate his/her effort with others and the output of another is needed as the input to do his/her tasks.

In an IS development context, low task interdependence stands for minimal real-time data exchange or system state

Task
interdependence

Coordination
Strategy

Software development
success

Risk
resolution

3 3

dependence (such as running, shutdown, or database updated) generated among modules. The design and coding of
OLTP systems are typical examples of low task interdependence. In contrast, for high interdependence tasks such as
OLAP systems, the design and coding of software requires collaboration across multiple cross-functional teams or
among a diversity of IS staffs or stakeholders, such as executive users, programming language specialists, database
administrators, network administrators, system and security engineers, third party vendors, and subcontrators [1] [13].

According to information processing theory [10] [16], information processing must meet the dual needs of reducing
both ambiguity and uncertainty. Ambiguity is due to lack of understanding, and the existence of multiple and conflicting
interpretations about an organizational situation. Uncertainty is associated with an absence of information. In terms of
risk resolution strategy, in order to analyze risks and propose appropriate risk resolution strategy, software development
team requires a wide scope of information processing and sharing to reduce the uncertainty and ambiguity. This is
because risk resolution usually needs information that is timely, has broad scope, has various forms of aggregation, and
is integrated [9] [10]. Regarding the high interdependence, it entails higher uncertainty and more information exchange
than those of low interdependence task, this implies that the risk management is more difficult to achieve successfully
for high interdependence task. In addition, the performance of IS development for high interdependence task is
diminished owing to more integration and exchange of information. The above analysis leads to the following
hypotheses:

H3: The effect of task interdependence will have a positive impact on risk management
H4: The effect of task interdependence will have a positive impact on software success
H5: Risk resolution strategies characterized by low task interdependence conditions will be more successful than
those characterized by high task interdependence conditions.
H6: Software design and coding activities characterized by low task interdependence conditions will be more
successful than those characterized by high task interdependence conditions.

2.3 Coordination strategy
Coordination refers to the mode of linking together different parts of an organization to accomplish a set of collective
tasks [22]. According to coordination theory, in order to collaborate and make decision effectively, it is important that
organizational members with allocated tasks use the communication and control mechanisms that facilitate information
exchanges and decisional autonomy.

In an IS development context, as IS developers are usually confronted with a diversity of task requirements, which may
be unexpected, constantly changing, difficult to analyze, and interdependent, they need an effective coordination
strategy to reduce the uncertainty and ambiguity. One of such strategy is using informal horizontal communications
channels that enable the timely sharing of problem-solving expertise and clarification of one’s task outputs, which must
ultimately be integrated with the work of others.

To reduce the uncertainty and ambiguity due to the execution of both software development and risk resolution strategy,
it is essential to provide a coordination strategy that exchanges information for the timely sequencing, scheduling, and
synchronization of activities between team members. Consequently, IS developers may adjust risk resolution mission
and strategy easily owing to the available information that is timely, has broad scope, has various forms of aggregation,
and is integrated [10] [13] [17]. Thus, we have hypothesis 7 to 10.

H7: The effect of coordination strategy will have a positive effect on risk management.
H8: The effect of coordination strategy will have a positive impact on software success.
H9: Risk resolution strategies managed via an organic coordination strategy will be more successful than those
managed via a mechanistic coordination strategy.
H10: Software design and coding activities managed via an organic coordination strategy will be more successful
than those managed via a mechanistic coordination strategy.

2.4 Fit between task interdependence and coordination strategy
Increasing task interdependence usually implies the requirement for higher frequency and volume of data exchange as
well as decision-making between work units [1] [10]. If a mechanism coordination mode were used with high task
interdependency, information-processing capacity would be insufficient. On the other hand, an organic coordination

4 4

strategy provides a greater capacity to clarify ambiguity, define problems, and reach agreement due to exchange and
process information in a timely manner, as well as employ rich media—e.g. fact-to-face and direct contact. However,
organic coordination under conditions of low task interdependence can overload the decision-making structure because
unnecessary interactions and information exchange may disturb ongoing, already effective tasks, consuming both time
and effort and frustrating workers. In contrast, well-established rules, procedures, and formal work plans regarding tasks
that minimize the unnecessary information exchange and peer involvement (i.e. mechanistic coordination strategy)
demonstrate to be more appropriate for low task interdependence. The above arguments suggest the following
hypotheses:

H11: As software design and coding tasks become more task interdependence, the greater the effect of an organic
coordination strategy on the performance of risk management.
H12: As software design and coding tasks become move task interdependence, the greater the effect of an organic
coordination strategy on IS success.

3. The study’s research design

Laboratory experiments were conducted that use a 2*2 factorial design. The contingency factors employed in this study
are task interdependence and coordination strategy. While task-process satisfaction and team productivity were adopted
to measure the success of software development (i.e. dependent variables), reorganize task and modify strategy were
used to measure risk resolution strategy. The model is shown in Figure 1.

3.1 Subjects and sub-team composition
Ninety-six subjects were derived from a population of graduate students enrolled in evening sections of a software
engineering course that was offered by MIS (management of information systems) department at a public university.
The students who participate in this experiment have full-time job in the daytime, and have experience of achieving
software project or implementing IS as system analysts or application developers in a variety of industries such as
construction, food, retail, computer, wholesale, financial, and so on. The students were randomly assigned to the
software development groups. Subjects were asked to complete a short software project, which required them to use
software development skills such as systems analysis and design, risk management, and implementation (using visual
basic (VB) programming language). It was felt (and validated in a pretest) that the academic and practical experience of
these part-time students was capable of accomplishing the assigned, reasonably complex IS project, including software
analysis, design, risk analysis and resolution, and coding tasks, within a reasonable amount of time. In addition, a
comparison (t-test) of the mean grade point average of the student subjects indicated no significant differences in grade
point average.

3.2 Experimental tasks
The experimental task assigned to each project team contains two software subsystems. The duration of the task for
each team did not exceed a total of twelve hours (two three-hour sessions on two consecutive days). Since the task
assigned to the project team contains only the fundamentals of software development, a pilot study showed that the task
can be accomplished within twelve-hour time period for a three-person team. Task complexity was controlled across
team members by ensuring equality in assigned function points for the modules to be completed by team members.
Function points were evaluated by assigning weights to and summing the count of outputs from the modules,
inputs/outputs of user queries, inputs to the modules, file data items, and data items sent to, shared with, or received
from other modules [6]. The total function point count was 58 across all groups.

4. Experimental manipulations

4.1 Experimental procedures
The experimental groups executed the entire set of experimental tasks in a lab with personal computers that provide the
Visual Basic programming language. The experimental tasks achieved by each IS development team include system and
requirements analysis, design, coding, testing, risk management, and integration. Subjects were instructed to limit their
interactions concerning the experiments. The task executed in the experiment contains three major steps:
preexperimental activities, task execution, and a ten-minute debriefing.

5 5

4.2 Data analysis and results
In order to validate our research framework, this study employed PLS (partial least square) and ANCOVA. PLS allows
latent constructs to be modeled, and it makes minimal demands in terms of sample size to validate a model compared to
alternative structural equation modeling techniques [3].

To validate our measurement model, three types of validity were examined: content validity, convergent validity, and
discriminant validity. The purpose of content validity is to ensure the consistency between the measurement variables
and the extant literature. This was done by interviewing experienced practitioners and pilot-testing the instrument. To
assess convergent validity, we examined composite reliability and average variance extracted (AVE) from the measures
[7]. Table 1 illustrates the results of confirmatory factor analysis. Table 2 shows that values of AVE and composite
reliabiliability by our measures are above the acceptable value. In addition, Figure 2 lists the detailed information
concerning the measures of the paths in our research model in Figure 1, all measures are significant on their path
loadings at the level of 0.05. Finally, as shown in Table 2, we verified the discriminant validity of our instrument by
looking at the square root of the average, which is acceptable.

Table 1. Comfirmatory Factor analysis, Constructs, and Item wording
1 2 3 4 t-value

1. task interdependence 1.00 0.00 0.31 0.43
2. goal conflict 0.00 1.00 0.54 0.55
3. Risk management
3.1 formulate measure goals 0.13 0.23 0.57 0.22 7.92***
3.2 organize the improvement initiative as a project 0.21 0.51 0.83 0.62 10.42***
3.3 coordinate other improvement initiatives 0.25 0.60 0.91 0.61 15.48***
3.4 identify the relationships among plans,
problems, progress, and results

0.36 -0.02 0.57 0.31 8.91***

3.5 conduct reviews at regular intervals 0.32 0.60 0.83 0.59 10.67***
3.6 make the results visible 0.05 0.14 0.54 0.32 8.74***
3.7 emphasize collaboration 0.30 0.46 0.85 0.62 11.54***
3.10 use an incremental improvement strategy 0.23 0.44 0.89 0.65 12.53***
3.11 consider alternative improvement ideas 0.38 0.29 0.66 0.48 9.53***
3.14 identify and solve specific problems -0.13 0.53 0.55 0.38 8.95***
3.15 adapt the strategy to the task 0.26 0.22 0.65 0.31 9.84***
3.16 design effect measures 0.19 0.19 0.56 0.18 9.02***
4. Software development success:Concerning the software development process…
4.1 I am satisfied with the time of conducting the IS
project

0.33 0.43 0.55 0.88 12.01***

4.2 the interaction between members is efficient 0.39 0.28 0.43 0.84 10.52***
4.3 the assigned task is fair 0.25 0.68 0.67 0.87 11.45***
4.4 the available resource is fair 0.42 0.38 0.44 0.82 10.41***
4.5 I am satisfied with the results of the IS 0.37 0.41 0.55 0.80 10.23***
4.6 Team productivity (function point count) 0.40 0.47 0.58 0.74 9.41***
*p<0.1, **p<0.05, ***p<0.01

6 6

Table 2. Correlation of constructs, square root of AVE value, composite reliability,
Cronbach’s Alpha, and AVE

1 2 3 4 CR Cronbach’s
Alpha

AVE

1 Coordination
strategy

1 1 1 1

2 Goal conflict 0 1 1 1 1
3 Risk

management
0.31 0.54 0.71 0.92 0.89 0.51

4 Software
success

0.43 0.55 0.66 0.82 0.93 0.91 0.68

1. The bolded diagonal values are square roots of the AVE (average variance extracted).
2.CR is composite reliability

Fig. 2 Results of PLS analysis (Note: *p<0.05, **p<0.01)

With an adequate measurement model and an acceptable level of multicollinearity, hypothesis 1, 3, 4, 7, and 8 were
tested with PLS. The results of the analysis are shown in Figure 2. These hypotheses are supported as expected. In
addition, the results also show that risk resolution actions have a mediating effect between “software design and coding
activities” and two independent variables(task interdependence and coordination strategy). Thus, the mediating effect
of risk management is supported as hypothesized (H2).

To test the interaction effects, we used ANCOVA. Table 3 illustrates the biserial and Pearson correlations among the
variables. The correlations between productivity and process satisfaction were not significant, and the covariate
(programming ability) was correlated with productivity. According to Table 4-6, the main effects of coordination
strategy and task interdependence on three different variables are significant, risk management (p values for both
coordination strategy and task interdependence are 0.003 in Table 4), process satisfaction (p values for coordination
strategy and task interdependence are 0.001 and 0.004 respectively in Table 5), and productivity (p values for
coordination strategy and task interdependence are 0.004 and 0.015 respectively in Table 6). These findings are
consistent with the results of PLS as indicated in Figure 2.

Software
development
success

Risk resolution

Task
interdependenc

Coordination
Strategy

R square
=0.579

0.315**

0.376*

R square=
0.388

0.350**

0.310**

0.540**

7 7

Table 3. Pearson correlation matrix of variables
Variables 1 2 3 4 5 6
1. Coordination strategy 1
2. Task interdependence 0. 1
3. Risk management 0.49** 0.32* 1
4. Software development
process satisfaction

0.48** 0.41** 0.58** 1

5. Productivity 0.52** 0.49** 0.37* 0.24 1
6. Programming ability 0.215 0.268 0.107 0.19 0.32* 1
Notes: **p<0.01; *p<0.05 (two-tailed tests of significance)

Table 4. ANCOVA results for risk management
Source of variation Degree of

Freedom
Mean
square

F Significance of
F

Power

Coordination strategy 1 172.80 17.79 0.003** 0.94
Task interdependence 1 242.49 24.98 0.003** 0.96
Coordination strategy * Task
interdependence

1 0.18 0.19 0.89 0.06

Programming ability 1 0.70 0.07 0.79 0.05
**p<0.01; *p<0.05, Total degree-of-Freedom= 32, R*R= 0.64

Table 5. ANCOVA results for software development process satisfaction
Source of variation Degree of

Freedom
Mean
square

F Significance of
F

Power

Coordination strategy 1 54.19 15.76 0.001** 0.93
Task interdependence 1 33.42 9.72 0.004** 0.84
Coordination strategy * Task
interdependence

1 1.27 0.37 0.549 0.13

Programming ability 1 4.37 1.27 0.269 0.23
**p<0.01; *p<0.05, Total degree-of-Freedom= 32, R*R= 0.40

Table 6. ANCOVA results for productivity
Source of variation Degree of

Freedom
Mean
square

F Significance of
F

Power

Coordination strategy 1 188.04 9.93 0.004** 0.87
Task interdependence 1 108.87 6.73 0.015** 0.74
Coordination strategy * Task
interdependence

1 82.85 4.82 0.037** 0.54

Programming ability 1 9.55 0.59 0.449 0.17
**p<0.01; *p<0.05, Total degree-of-Freedom= 32, R*R= 0.41

Considering the influence of different task interdependence conditions, as expected, the values of cell means and
adjusted marginal means (AMM) show that the low task interdependence (AMM=3.78) produced more successful risk
management than did the high task interdependence situation (AMM=3.54). Regarding software success, low task
interdependence (AMM=3.76) situations resulted in more process satisfaction than did the high task interdependence
(AMM=3.38) case. Finally, the groups under low task interdependence conditions (AMM=19.98) had greater
productivity than those receiving high task interdependence treatment (AMM=15.31). In sum, these findings support
Hypothesis 5 and 6. Concerning coordination strategy, from the AMMs, hypotheses 9 and 10 are also supported.

As shown in Table 4-6, the results of the interaction effect (between task interdependence and coordination strategy) on
three different variables (i.e. risk management, process satisfaction, and productivity). These results show that among
these three variables, only the interaction effect on productivity is significant—in Table 6, p= 0.037< 0.05. Further, we

8 8

used post hoc pairwise comparisons to evaluate the relative difference between organic versus mechanistic strategy at
each level of task interdependence (high and low). Surprisingly, in terms of productivity, the difference between organic
coordination strategy and mechanistic coordination strategy is not significant (F= 0.419, p=0.529>0.05) under high task
interdependence situation. On the other hand, the above difference under low task interdependence condition is
significant—the teams using organic coordination strategy has better productivity than did the teams using mechanistic
coordination strategy (mean difference = 7.85, p=0.002<0.05). Thus, neither H11 nor H12 is supported.

5. Discussions, implications, and limitations
The interpretations of our findings are three-fold. First, as expected, our data indicates that low task interdependence
creates greater IS success (productivity and satisfaction) than that of high task interdependence. In addition, low task
interdependence also exerts higher influence on risk management strategy than that of high task interdependence. These
findings are consistent with prior work [1] [18]. Under low task interdependence situation, owing to the potential for
greater task focus, it is less likely that members of the IS development team achieve the tasks that do not directly relate
to IS implementation. For example, IS team does not have to perform role clarification, negotiation, and task-integration
among team members [14]. In the light of IS project management, the above findings suggest that modularized software
design should be reinforced. Since it allows project team members to be assigned largely independent design tasks, this
may lead to more successful IS implementation and risk resolution.

Second, as the theory predicted, IS teams using an organic coordination strategy were observed to achieve both IS
implementation and risk management more successfully than those using mechanic coordination strategy. Organic
coordination strategy fosters the open and spontaneous communication and information exchange among team members.
Thus, in the light of information processing theory, organic coordination strategy facilitates knowledge acquisition,
sharing, and integration, from which IS teams may complete their assigned software design and coding more efficiently
and effectively—i.e. greater productivity [1] [10]. For IS teams, lack of immediate access to the information relating to
task or environment (mechanistic coordination) not only retards the process of overall code integration, but hinders the
capability of analyzing risks and modifying strategy [9]. This further confirms organic coordination is a better choice
than mechanistic coordination in terms of risk management.

Finally, surprisingly, the hypothesized task interdependence and coordination strategy interactions were not supported.
As shown in Table 6-8, while the above interaction effects on either risk resolution or process satisfaction was not
significant, such effects exerted significant influence on productivity. However, the above contingent effect is
inconsistent with our hypothesis. Prior work [1] suggested that when IS team was confronted with the task of high
interdependence, employing organic coordination is better than mechanistic coordination in terms of IS implementation
success. This is because high task interdependence entails more intensive information flow among members than does
low task interdependence, but using mechanistic coordination rather than organic coordination impedes the
communication and message exchange to a certain extent.

Three implications may be drawn. First, the overhead associated with high task interdependence was alleviated by
organic coordination, since knowledge integration and exchange was fostered by a powerful communication
mechanism—organic coordination strategy [1] [9]. Second, organic coordination under conditions of low task
interdependence did not necessarily overload the decision-making structure with redundant information. This indicates
that coordination strategy plays a more important role than task interdependence in affecting productivity. Finally, the
interaction effect on either process satisfaction or risk management was not significant. The result indicates that the
advantage of using organic coordination may not compensate for the complaints and displeasure caused by high task
interdependence, such as waiting for team members to complete the required subtask or revising completed code to
achieve code integration. To what extent is the above argument valid, and what are the possible factors that may affect
the interaction effects? Clearly, we need further research to address these issues.

6. Limitations
Although laboratory experimentation enables one to conduct empirical research by isolating treatment influence and
controlling of the confounding variables, it is threatened with external validity. Using students to achieve the assigned
IS projected may restrict the generalizability of results to an organization. This study avoided the above problem to a
certain extent by using the student subjects who had working experience.

9 9

7. Conclusions

The contribution of this study is to specify the influence of design (coordination strategy) and task (interdependence)
factors on three critical issues of IS development--risk management, productivity, and process satisfaction. Consisting
with the information processing theory, our findings imply that IS teams that employed organic coordination achieved
IS development more successful than those used mechanistic coordination. On the other hand, the teams that were
confronted with the task of low interdependence have better IS development performance than did those with high task
interdependence. Surprisingly, our results only partially supported the contingent influence of task interdependence and
coordination strategy on the results of project management. Classical software project management has often relied on
the use of predefined methodologies, scheduled periodic design meetings, and formal documentation of system design
and change activities. In contrast, our study indicates that, as the functional complexity of information systems increases
such as globally interconnected online analytical processing systems, it is important for project manager to adapt
traditional software development approach. Under such situation, IS project manager should not only deal with the fit
between theoretically prescribed designs (such as organic versus mechanistic coordination) and their task context (such
as task interdependence, task variety, task uncertainty) [1] [9], but emphasize the risk resolution strategy such as
reorganizing initiative and modifying strategy. Future research may explore other types of contingent relationship and
its influence on IS success, for example task analyzable and cognitive ability.

References

[1] Andres, H. P., and Zmud, R.,“A Contingency Approach to Software Project Coordination,”JMIS, (18:3), 2002,pp.
41-70.

[2] Barki, H., Rivard, S., and Talbot, J., “Toward an Assessment of Software Development Risk,”Journal of MIS,
(10:2), 1993, pp. 203-225.

[3] Chin, W. W., Marcolin, B. L., and Newsted, P. R., “A Partial Lease Squares Latent Variable Modeling Approach
for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-mail
Emotion/Adoption Study,”Information Systems Research, (14:2), 2003, pp. 189-217.

[4] Crowston, K., “A Coordination Theory Approach to Organizational Process,”Organization Science, (8:2), 1997,
pp. 157-175.

[5] Fichman, R. G., and Kemerer, C. F., “Adoption of Software Engineering Software Innovations: The Case of
Object Orientation,”Sloan Management Review, (34:2), 1993, pp. 7-22.

[6] Freger, J. B., Function Point Analysis. Englewood Cliffs, NJ: Prentice Hall, 1989.
[7] Hair, J. F., Anderson, R. E., and Tatham, R. L., and Black, W. C., Multivariate Data Analysis (5th ed.), Prentice

Hall, Englewood Cliffs, NJ., 1998.
[8] Henderson, J. C., and Cooprider, J. G., “Dimensions of IS Planning and Design Aids: A Functional Model of

CASE Technology,”Information Systems Research, (1:3), 1990, pp. 227-254.
[9] Iversen, J. H., Mathiassen, L., and Nielsen, P. A., “Managing Risk in Software Process Improvement: An Action

Research Approach,”(28:3), 2004, pp. 395-433.
[10] Karimi, J., Somers, T. M., and Gupta, Y. P., “Impact of Environmental Uncertainty and Task Characteristics on

User Satisfaction with Data,”Information Systems Research, (15:2), 2004, pp. 175-193.
[11] Keil, M.,“Pulling the Plug: Software Project Management and The Problem of Escalation,”MIS Quarterly, (19:4),

1995, pp. 421-447.
[12] Kim, K. K. and Umanath, N. S., “Structure and Perceived Effectiveness of Software Development Subunits: A

Task Contingency Analysis,”Journal of MIS, (9:3), 1994, pp. 157-181.
[13] Kraut, R. E., and Streeter, L., “Coordination in Software Development,”Communications of the ACM, (38:3),

1995, pp. 69-81.
[14] Larsen, K. T.,“A Taxonomy of Antecedents of Information Systems Success: Variable Analysis Studies,”Journal

of MIS, (20:2), 2003, pp. 169-246.
[15] Lyytinen, K., Mathiassen, L., and Ropponen, J., “Attention Shaping and Software Risk—A Categorical Analysis

of Four Classical Risk Management Approaches,”Information System Research, (9:3), 1998, pp. 233-255.
[16] Malhotra, A., Gosain, S., and EI Sawy, O. A.,“Absorptive Capacity Configurations in Supply Chains: Gearing for

Partner-enabled Market Knowledge Creation,”MIS Quarterly, (29:1), 2005, pp. 145-187.
[17] Rasch, R. and Tosi, H., “Factors Affecting Software Developers’Performance: An Integrated Approach,”MIS

Quarterly, (16:3), 1992, pp. 395-413.
[18] Shaft, T. M., and Vessey, I.,“The Role of Cognitive Fit in the Relationship Between Software Comprehension and

10 10

Modification,”MIS Quarterly, (30:1), 2006, pp. 29-55.
[19] Sharma, R., and Yetton, P., “The Contingent Effects of Management Support and Task Interdependence on

Successful Information Systems Implementation,”MIS Quarterly, (27:4), 2003,pp. 5333-555.
[20] Shenhar, A. J.,“From Theory to Practice: Toward a Typology of Project Management Styles,”IEEE Transactions

on Engineering Management, (45:1), 1998, pp. 33-48.
[21] Sherif, K., Zmud, R. W., and Browne, G. J., “Managing Peer-to-peer Conflicts in Disruptive Information

Technology Innovations: The Case of Software Reuse,”MIS Quarterly, (30:2), 2006, pp. 339-356.
[22] Van de Ven, A. H., Delbecq, A. L., and Koenig, R.,“Determinants of Coordination Modes Within Organizations,”

American Sociological Review, (41:2), 1976, pp. 322-338.

