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Abstract 
 
 In asset allocation finding the investment proportions that minimize portfolio risk, or 

determine the Minimum Variance Portfolio (MVP), is an important step toward prudent 

portfolio management.  This work finds these optimal proportions introducing a new 

technique that is different from an ordinary constraint optimization method.  Such technique 

computes the optimal investment proportions for each asset and simultaneously calculates the 

numerical value of the minimum variance portfolio without the need to take the first and 

second derivatives and provides solutions without solving systems of linear equations.  

 

Since statistical quantities for each asset are quantified in terms of their expected rate of 

return and variance of returns, using this method along with modern portfolio theory 

portfolio managers can assess the risk-reward tradeoffs and compare-contrast the 

characteristics of different portfolios in asset allocations. 

 

Background 

 The work of Markowitz, Sharpe, Fama, Treynor and Black defined the current modern 

portfolio theory in finance literature.  From a given collection of m risky assets and n 

constraints, the optimal weights can be found by solving a system of m+n linear equations 

for m+n unknowns.  The optimization process uses statistics to examine the market as a 

whole and search for portfolios with desired performance characteristics.  Mathematically, 

this problem is presented in a form of an objective function with m variables and n linear 

constraints.  In addition to m risky assets, we assume there is available a risk-free asset with a 

fixed rate of return, Rf.  Expected returns of assets in the portfolio are determined through the 

use of historical data, and risk is measured through the use of the standard deviation. 

 The model for analyzing risk focuses on probability distributions of some quantifiable 

outcome.  Since an investment’s rate of return is the relevant outcome of an investment, 
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financial risk analysis focuses on the probability distribution of rates of return.  Modern 

portfolio theory uses the mean and variance of the returns as a basis of investment decisions 

in the risk-reward space.  The logic of using only the rate of return may seem simplistic 

compared with more in-depth security analysis techniques that stress ratio analysis of 

financial statements, management interviews, industry forecasts, the economic outlook, and 

financial markets.  In practice, however, there is no contradiction between these two 

approaches.  After the fundamental security analysis is complete, one needs to convert the 

estimates into several possible rates of return and attach probability estimates to each.  The 

security analyst’s consideration of the market demand for the firm’s products, firm’s success 

in research and development, management depth and ability, and macroeconomic conditions 

are all duly reflected in the forecasted rates of return and their probabilities.  Thus, the 

variability of the expected return is a measure of risk grounded in fundamental analysis of the 

firm, its industry, and the economic outlook. 

 

Discussion 

 A central component to the calculation of efficient portfolios is the variance-covariance 

matrix.  Let the variance-covariance matrix for an m-asset portfolio be denoted as: 
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By recognizing that the covariance of one asset to itself is the variance and that the 

covariance between two assets is constant irrespective of the order, the variance-covariance 

matrix is symmetric and can be simplified as following: 
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Also let x denote a vector of portfolio weights for the m assets. 

 

[ ]mxxxxx ⋅⋅= 321  

 

The variance of the portfolio can be computed using the following equation: 

 
T

p xVxr =)(2σ  

 

The equations above hold true for a portfolio without any constraints.  However, in practical 

applications, constraints are a necessity.  In particular, the two constraints of interest are:  the 

sum of portfolio weights equals 1.0 and the computed portfolio return equals to the required 

rate of return.  A Lagrangian function can be defined to incorporate these two constraints: 
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 where λi are Lagrangian multipliers, ki are the average rates of return for the ith asset, 

and Rp is the required rate of return. 

 

Differentiating the Lagrangian function with respect to the portfolio weights and Lagrangian 

multipliers and setting the result equal to zero will produce an equation that leads to portfolio 

weights that minimize the function.  The resulting equation can be written in the form of the 

linear algebraic equation: 

zHy =  (2) 

 where H is a bordered Hessian matrix as denoted below: 
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 y is the vector of portfolio weights and Lagrangian multipliers: 

[ ]21321 λλ −−⋅⋅= xxxyT  

 

 z is defined as follows: 

[ ]p
T Rz 1000 ⋅⋅=  

 

Solving for the vector y produces the portfolio weights that are necessary to achieve the 

desired portfolio rate of return, Rp. 

 

zHy 1−=                                  (3) 

 

Previously, the determination of an efficient portfolio involved graphical techniques.  For 

example, starting with the minimum variance set diagram, one would locate a position on the 

vertical axis equal to the risk-free rate, Rf.  Using this point as a basis, the Capital Market 

Line (CML) is constructed as a tangent to the efficient frontier.  The line itself has the 

property of the greatest possible slope. 

 

The tangent point results in an efficient portfolio standard deviation of which is estimated 

from the slope of the CML and the portfolio rate of return.  This method produces an 

estimated portfolio risk accuracy of which depends on the density of the discrete sample 

points. 

 

In the new approach presented below, the exact value of the risk, i.e. standard deviation, can 

be attained by utilizing subcomponents of the bordered Hessian matrix, the Lagrangian 

multipliers, and the constraint values.  In examining the bordered Hessian matrix, in equation 

(3), it is noted that the upper left terms are consistent with the variance-covariance matrix, V.  

Additionally, due to the symmetric property, the upper right and lower left elements are 

equivalent.  Thus, the bordered Hessian matrix can be sub-divided into four sub-matrices as 

shown: 
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 where V is the m x m variance-covariance matrix and K is a m x n matrix as 

shown below (m is the number of assets and n is the number of constraints): 
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Additionally, the vector y can be divided into two sub-vectors:  the portfolio weights, x, and 

the Lagrangian multipliers, λ.  This is shown below. 
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Finally, the vector z can also be divided into two sub-vectors:  a zero vector and the 

constraint values, C, as shown below. 
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With the above sub-matrices and sub-vectors defined, equation (3) can be rewritten as 

follows: 
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The equation can now be separated into two distinct matrix operations.  The result is the 

following: 
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By noting that the relationship xTK = (KTx)T  holds true, the first set of equations can be used 

to determine the portfolio standard deviation. 
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Thus the portfolio variance and standard deviation are given by the following equations: 

 



 7

λσ

λ

σ

T
p

T

T
p

Cr

C

xVxr

2
1)(

2
1

)(2

−=

−=

=

 

An important application of this method is to find minimum variance portfolio where the sum 

of portfolio weights equal 1.0.  The border Hession matrix simplifies to variance-covariance 

matrix with one border as: zHy =  
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That means the last column of the [H]-1 provides the proportions that ought to be invested in 

each asset and the last number in that column is the numerical value of the minimum 

variance portfolio.  Thus, it generates the results without derivatives or solving the systems of 

linear equations. 

 

Conclusions 

 This work offers a method to make the process of constraint optimization in asset 

allocation easier and more straightforward.  For practitioners, as well as academicians, the 

above method makes the formation of portfolios with different desired rates of return 

possible by using one simple calculation.  In addition, the computation of risk (standard 

deviation) of such portfolios is simple and far more accurate than traditional techniques. 
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