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Abstract 

 

The purpose of this research is to determine the optimal PM actions that minimize the total 

maintenance costs of the new model of PM policy for leased equipment. The new model proposed in this 

research is developed by combining the advantages of both sequential and periodic PM policies. The 

problem is a two-parameter optimization with one and )( 21 kk + -dimensional respectively. The optimal 

solution is obtained by using a two-stage approach where at each stage a one-parameter optimization is 

solved. The optimal solutions obtained by the model are (i) the optimal constant time intervals to carry 

out PM, and (ii) the optimal level of PM actions.  

 

 

1. Introduction 

 

  For the lease of equipment, the lessor is responsible to carry out the maintenance. Usually, the contract of lease 

specifies the penalty  for repairs not being finished within a specified time limit. Through PM actions, the cost 

resulting from failures can be reduced, however, it incurs the cost of PM actions. This implies that optimal PM policy 

minimizes total maintenance cost through a proper trade-off between the PM cost and the cost due to failures.  

 Jaturonnatee et al. (2005) proposed the optimal sequential PM policy for leased equipment which the researchers call 

Policy 1. Under this policy, a unit is preventively maintained at unequal time intervals. Usually, the time intervals 

become shorter and shorter as time passes, considering that most units need more frequent maintenance with increased 

ages. Pongpech and Murthy (2005) proposed the optimal periodic PM policy for leased equipment which the 

researchers call Policy 2.  Unlike the sequential PM policy, in the periodic PM policy, a unit is preventively maintained 

at fixed time intervals of jT , kj ,...,2,1=  over the lease period. This implies that periodic PM policy are more 

convenience in implementation than the sequential PM policy  because the time intervals between successive PM 

actions are constant. However, the expected maintenance cost for Policy 2 is always higher than that for Policy 1. The 

Policy 3 proposed in this paper develops the new model of PM policy for leased equipment by combining the 

advantages of both Policy 1 and Policy 2. In Policy 3, we divide the entire lease period into two sub-period called first 

lease period and second lease period. In each sub-period, we carry out periodic PM  at equal time intervals, but the 

time intervals are different between the first and the second lease period. That is, in the first lease period, the PM actions 

are carried out at periodic times of 1,...,2,1, kjjT =  and in the second lease period, the PM actions are carried out at 

periodic times 2

'
'

,...,2,1,
2

kj
Tj

= . This implies that  in the second lease period, we carry out PM actions more 

frequent than that in the first lease period, correspond with the increasing rate of failure rate increases with higher rate. 

Any intervening failures over the lease period are assumed to be rectified through minimal repairs. The parameters of 



the policy are (i) the constant time intervals to carry out PM actions, and (ii) the level of PM actions.  

 

2. Model formulation 

 We use the following notation 

( )F t      failure distribution function 

( )tf      failure density function associated with ( )F t  

( )tr       failure rate (hazard rate) function associated with ( )F t  

0 ( )tλ      failure intensity function with no PM [ = ( )tr  ] 

( )tλ      failure intensity function with PM actions 

( )t0Λ      cumulative failure intensity function with no PM 







= ∫

t

dxx
0

0 )(λ  

( )tΛ      cumulative failure intensity function with  PM actions 







= ∫

t

dxx
0

)(λ  

( )tN      number of failures over ],0[ t  

Y        time to repair 

( )yG      repair-time distribution function 

( )yg      repair-time density function [ = dyydG /)(  ] 

L        lease period 

T        period of time instant to carry out PM 

1k       number of PM actions over the 1st lease period 

2k       number of PM actions over the 2nd lease period 

jt        time instant for 
thj  PM action over the 1st lease period 

'
j

t       time instant for 
th

j '

 PM action over the 2nd lease period 

jδ       reduction in intensity function due to 
thj  PM action over the 1st lease period 

'
j

δ       reduction in intensity function due to 
th

j '

 PM action over the 2nd lease period 

( )
jpC δ     cost of PM action resulting in a reduction jδ  in intensity function over the  

       1st lease period 

( )'
jpC δ     cost of PM action resulting in a reduction '

j
δ  in intensity function over the  

       2nd lease period 



),( '
jjpTC δδ   total cost of PM actions 

fC      average cost of CM action to rectify failure 

fTC     total cost of CM actions 

τ       repair time limit [parameter of lease contract] 

tC      penalty cost per unit time if repair not completed within τ  

φ       total cost due to penalty 

),( δTJ    total expected cost to the lessor 

 

2.1 Lease contract 

The equipment is leased for a period L  with the penalty associated with failures. The lessor incurs a penalty if the 

time to repair failures exceeds τ . Let Y  denote the time to repair, then there is no penalty if τ≤Y  and a penalty 

tCY )( τ−  if τ>Y . 

   

2.2 Modeling failure and PM actions  

We assume that all failures are rectified through minimal repairs. Under minimal repair, the hazard function 

immediately after repair is the same as that just before failure (Barlow and Hunter, 1960). We further assume that the 

time needed to rectify failed equipment is small in relation to the mean time between failures and such that it can be 

ignored. In this case, equipment failures with no PM actions occur according to a Non-Homogeneous Poinsson Process 

(NHPP) with intensity function )()(0 trt =λ  where )(tr  is the hazard function associated with the distribution 

)(tF  (Murthy, 1991). 

 The lessor carries out periodic PM with a period of T  over the first lease period and 
2

T
 over the second lease period. 

The time instants of PM actions are given by jTt j = , 1,...,2,1 kj =  for the first lease period and 
2

'

1'

Tj
Lt

j
+= , 

2

' ,...,2,1 kj =  for the second lease period. Each PM action results in a reduction in the intensity function. The reductions 

resulting from the 
thj PM for the first lease period and the 

th
j '

PM for the second lease period are given by jδ  and '
j

δ  

respectively. 

 As a result, the failures over the lease period occur according to a NHPP with intensity function given by       

             ( ) ( ) ∑
=

−=
j

i
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0

0 δλλ   for 1+<≤ jj ttt              (1)  

 where 00 =δ  

 over the first lease period 

and 
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 over the second lease period 

 jδ  and '
j

δ  are constrained as follows 
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 where 00 =t  and 00 =δ  

 over the first lease period 

and 
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 where 10 ' Lt =  and ∑
=

=
1

'

1
0

k

j

jδδ  

 over the second lease period 

 Fig. 1 shows a plot of intensity function for failure with and without PM actions. 

  

 

Fig. 1  Plot of failure intensity function 

 

2.3 Cost to the lessor 

 The cost to the lessor is comprised of the following three costs : 

(i) Cost of CM actions 

 Let )(LN  denote the number of failures over the lease period, and let fC  denote the mean cost of repair. Then the cost 

of repairing failures is given by 



              )(LNCTC ff =                      (5) 

(ii) Cost of PM actions 

 The cost of PM action depends on the resulting reduction in the intensity function. We model this through a fixed cost and 

a variable cost and is given by 

              jjp baC δδ +=)( , 1,...,2,1 kj =               (6) 

 for the first lease period 

and 

              '' )(
jjp baC δδ += , 2

' ,...,2,1 kj =              (7) 

 for the second lease period 

 with 0>a  and 0≥b .  

 Hence , the total cost of PM actions is given by 
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 where 1,...,2,1 kj =  and 2

' ,...,2,1 kj =  

(iii) Penalty costs 

 The penalty cost is a function of the repair time Y  (a random variable with a distribution )( yG  called the repair time 

distribution) and τ  

 Let iY  denote the time to rectify the 
th

i  failure, )(1 LNi ≤≤ . Then, the total penalty cost incurred is given by 

              









−= ∑
=

)(

1

,0max[),),((
LN

i

iti YCYLN ττφ            (9) 

 

3. Model analysis 

 

3.1 Expected number of failures 

With no PM actions, failures over the lease period occur according to a NHPP with intensity function 0 ( )tλ . The 

expected number of failures over the lease period is given by 

              ∫=Λ=
L

dttLLNE
0

00 )()()]([ λ                (10) 

 With PM actions, the expected number of failures over the leased period is also given by a NHPP process with intensity 

function given by (1) and (2). As a result, we have 

          ( )[ ] ( ) ( ) ( ) ( )∑ ∑
= =

−−−−Λ=Λ=
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j
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 where 1,...,2,1 kj =  and 2

' ,...,2,1 kj =    

 

3.2 Expected cost 

(i) Expected CM cost 

 From (5) and (11), the total expected cost of CM actions is given by 



              )()( LCTCE ff Λ=                    (12) 

(ii) Expected Penalty cost 

 From (9) and (11), the total expected penalty cost is given by 
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 Using integrating by parts on (13) results in 
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(iii) Total expected cost to the lessor 

 Combining the costs given by (8), (12), and (14) yields the total expected cost to the lessor and is given by 
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 where 1,...,2,1 kj =  and 2

' ,...,2,1 kj =   
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 Then, (15) can be rewritten as 
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 where 1,...,2,1 kj =  and 2

' ,...,2,1 kj =  

 

3.3 Optimization 

The optimal parameters of PM policy are parameter values that yield a minimum for ),( δTJ . We obtain the 

optimal values using a two-stages process. In Stage 1 we apply differential calculus method to obtain )(
*

Tδ . In Stage 

2 we obtain 
*T  by using one-dimensional minimization method with the iterative procedure. 

Stage 1 

 Fix 21 , kk  and obtain ',
jj tt  from jTt j = , 1,...,2,1 kj =  and 

2

'

1'

Tj
Lt

j
+= , 2

' ,...,2,1 kj = . 

 As a result, ),( δTJ  is only a function of δ , and from (3) and (4), the δ  is constrained as follows 
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 where 00 =t  and 00 =δ  

 over the first lease period 

and 
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 over the second lease period 

 Determine the extreme point of ),( δTJ  by determining the first partial derivatives of ),( δTJ  corresponding to δ  

as below 
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then we have the constraints of jt  and '
j

t  as follows 

        '21 1
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 As a result, ),( δTJ  is a linear function of δ  and constrained as indicated in (17)-(19). Therefore, the optimal values 

are the end points of the constraint intervals. This yields 
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1
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jδδ  

 This implies that the optimal PM action at  jTt j = , 1,...,2,1 kj =  or 
2

'

1'

Tj
Lt

j
+= , 2

' ,...,2,1 kj =  is to 

reduce failure intensity by the maximum amount when '
C

b
Lt j −<  or ''

C

b
Lt

j
−<  and not to carry out any PM when 



'
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b
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Stage 2 

 In Stage 2 we obtain 
*T , the optimal T , by minimizing ),(

*δTJ  using )(
*

Tδ  obtained from Stage 1. One can 

obtain 
*T  by using one-dimensional minimization method with the iterative procedure according to the algorithm given 

below. 

 Step 1: 11 =k . 

 Step 2: Evaluate side constraints of T  from 
1

1

1

1

1 k

L
T

k

L
≤<

+ . 

 Step 3: Find T  over the interval 
1

1

1

1

1 k

L
T

k

L
≤<

+  with one dimensional method and step size→0 and then compute 

2k  from 
T

LL

T

L
k

)(22 12
2

−
==  

 Step 4: Compute jt  and '
j

t  from jTt j = , 1,...,2,1 kj =  and 
2

'

1'

Tj
Lt

j
+= , 2

' ,...,2,1 kj = .  

 Step 5: Evaluate 
*

jδ  and 
*

'
j

δ  by placing jt  and '
j

t  in (20) and (21) respectively. 

 Step 6: Evaluate ),(
*δTJ  from (16) 

 Step 7: Set new 111 +← kk , and repeat Step 1 onwards until max11 kk =  where 
a

LC
k

)( 10

'

max1

Λ
= , then go to 

Step 8. 

 Step 8: Search for 
*T  which yields the smallest values for ),(

*δTJ . Using this, the optimal PM actions are given by 

)( ***
Tδδ =  and the minimum expected cost to the lessor given by ))(,( *** TTJ δ . 

 

4. Numerical example 

 According to Pongpech and Murthy (2005), we assume that the failure distribution for the equipment is given by the 

two-parameter Weibull distribution. As a result, 
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 with scale parameter 0>α  and shape parameter 1>β  (implying an increasing failure rate). In the case of the two 

(or three) parameter Weibull  model, the scale parameter α  has no influence to the model (Blishchke and Murthy, 2000), 

therefore, we can assume 1=α .  



 The repair time, Y , is a random variable with distribution function )( yG . We assume that )( yG  is also a 

two-parameter Weibull distribution function given by 
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 with the scale parameter 0<ϕ  and the shape parameter 0<m  (implying a decreasing repair rate). We consider the 

following nominal values for the model parameters 

5=L  (years), 21 =L  (years), $100=fC , $300=tC , $100=a , $50=b , 2=τ  (days), 3=β , 

5.0=m , 5.0=ϕ  

 

 In this paper, there are two special cases to be considered. 

 (i) Special Case 1: [no penalty], and (ii) Special Case 2: [with penalty]. 

 

4.1 Special Case 1: [no penalty] 

In the case of no penalty, we have 0=tC  that yields fCC ='
. As a result, we have 8max1 =k , 

6000.0* =T  years, 3*

1 =k , 8*

2 =k   and the minimum expected maintenance cost, ),(
** δTJ , is $5,531.20. 

The optimal parameters for the PM policy are given in Table 1. 

 

Table 1 The optimal parameter for Special Case 1: [no penalty] 

The 
st1  lease period The 

nd2  lease period 

j  
*

jt  
*

jδ  
'j  

*
'

j
t  

*
'

j
δ  

1 0.6000 1.0800 1 2.3000 6.1500 

2 1.2000 3.2400 2 2.6000 4.4100 

3 1.8000 5.4000 3 2.9000 4.9500 

   4 3.2000 5.4900 

   5 3.5000 6.0300 

   6 3.8000 6.5700 

   7 4.1000 7.1100 

   8 4.4000 7.6500 

 

 Note that jt  and '
j

t  must be satisfied the constraints  

 '21 1
...0

C

b
Lttt k −<<<<<  and '21 2

'' ...0
C

b
Lttt k −<<<<<  

where ''0
C

b
Ltt

jj −<<<  

 This implies that the maximum amount of jt  and '
j

t  must be lower than 50.4
100

50
5 =−  years, as a result 



50.440.4*

8' <=t  years, and not to carry out any further PM actions because the constrains are not satisfied. In this 

policy the time instant to carry out PM actions, jt  and '
j

t , increase with fixed interval as a result of applying the 

periodic PM policy, but the increasing for '
j

t  are shorter than that for jt  as a result of applying the sequential PM 

policy. 

 

4.2 Special Case 2: [with penalty] 

 In the case of with penalty, we have 15max1 =k , 4700.0* =T  years, 4*

1 =k , 11*

2 =k   and the minimum 

expected maintenance cost, ),(
** δTJ , is $7,109.69. The optimal parameters for the PM policy are given in Table 2. 

 

Table 2  The optimal parameter for Special Case 2: [with penalty] 

The 
st1  lease period The 

nd2  lease period 

j  
*

jt  
*

jδ  
'j  

*
'

j
t  

*
'

j
δ  

1 0.4700 0.6627 1 2.2350 4.3825 

2 0.9400 1.9881 2 2.4700 3.3170 

3 1.4100 3.3135 3 2.7050 3.6484 

4 1.8800 4.6389 4 2.9400 3.9797 

   5 3.1750 4.3111 

   6 3.4100 4.6424 

   7 3.6450 4.9738 

   8 3.8800 5.3051 

   9 4.1150 5.6365 

   10 4.3500 5.9678 

   11 4.5850 6.2992 

 

4.3 Comparison between [no penalty] and [with penalty] 

 Table 3 shows the comparison of the optimal solutions between no penalty case and with penalty case.  

 

Table 3  Comparison between [no penalty] and [with penalty] 

Case *

1k  
*

2k  
*

totalk  
*T  

*
J  

No penalty 3 8 11 0.60 $5,531.20 

With penalty 4 11 15 0.47 $7,109.69 

 

 As can be seen, the effect of penalty results in dramatic increasing of the total expected maintenance cost. The 

minimum expected maintenance cost is $5,531.20 in the case of no penalty and being $7,109.69 in the case of with 

penalty. In addition, the optimal number of PM actions also increase from 11 to 15 corresponding to no penalty case and 

with penalty case respectively. When ∞→τ  corresponds to no penalty associated with repair time. In this case 

fCC ='
 so that it reduces to the case of no penalty. 

 

4.4 Comparison between Policies 1, 2, and 3 

 Table 4 shows the comparison between Policy 1 proposed by Jaturonnatee et al. (2005), Policy 2 proposed by Pongpech 

and Murthy (2005) and Policy 3 (the new policy proposed in this paper) for 3=β . 

 



Table 4  Comparison between Policies 1, 2, and 3 [ 3=β ] 

Policy 1 Policy 2 Policy 3 Case 
*

k  
*

J  
*

k  
*

J  
*

Totalk  
*

J  

No penalty 10 $5,437.03 9 $5,750.00 11 $5,531.20 

With 

penalty 

16 $7,009.92 17 $7,312.50 15 $7,109.69 

 

 As can be seen, the expected cost for Policy 3 proposed in this paper is always less than that for Policy 2 (periodic 

PM policy) but higher than that for Policy 1 (sequential PM policy). Therefore, Policy 1 is the lowest cost policy. 

However, because of unequal time intervals, Policy 1 is more complicated and cause inconvenience in implementation. 

In addition, the percentage increase in the expected cost is too small (1.73 % in the case of no penalty, and 1.42 % in the 

case of with penalty). Consequently, Policy 3 is more practical than Policy 1. Beside the lower expected cost than 

Policy 2, Policy 3 is also more practical than Policy 2 in reliability aspect because in Policy 3 the units are maintained 

more frequently with increased ages. 

 

5. Conclusion 

 In this paper we have proposed the new periodic PM policy for leased equipment combining the advantages of both 

sequential and periodic PM policies into the model. Developing the new policy results in reducing expected cost and being 

easier in implementation as well as improving reliability. 

 

 The authors are currently studying the extended topics as indicated below. 

 (1) Special Case 3: [penalty 2] 

 We consider the second type of penalty called Penalty 2. The lessor incurs the Penalty 2 if failures occur during the lease 

period L . In other words, the penalty 2 occurs immediately when failures occur, without considering the times to restore the 

equipment back to working state. In Special case 3, we do not include Penalty 1 (the penalty proposed in this paper) in the 

model. 

 (2) Special Case 4: [penalty 1 & 2] 

 In Special Case 4, We consider both Penalty proposed in this paper (called Penalty 1) and Penalty 2 as we have mentioned. 

This model is the general form of lease contract. 
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