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Abstract 
 
This study aims to propose an alternative estimator of the population mean in sampling on successive 

occasions from a fixed finite population, and to compare this estimator with two other estimators which 
are an unbiased estimator and a conventional estimator.  

The alternative estimator is always consistent, whereas the others are consistent for some weights used 
in the estimation.  The conventional estimator and the alternative estimator are biased if the regression 
coefficient used in the estimation is not a pre-assigned constant, where the absolute value of the bias of 
the alternative estimator is less than that of the other.  The variance of the unbiased estimator is more 
than the variances of the others.  For an interval of weights used in the estimation, the variance of the 
alternative estimator is not less than that of the conventional estimator.  Using improper weights, the 
variance of the unbiased estimator and the mean square error of the conventional estimator may be very 
high, whereas the mean square error of the alternative estimator is slightly different from the minimum.  

 
 

1. Introduction 
 

Sampling on successive occasions is the organized process of eliminating some units from the sample and adding 
new units to the sample as time advances.  It may be used in the surveys which the same population is sampled and the 
same study variable is measured repeatedly on different occasions. 

In this study, we assume that the units in the population remain unchanged in time, but the values of the study 
variable may be changed.  Let N be the population size on every occasion.  For 1, 2,3, ,k t  ; let ks  be the 

sample on the kth occasion, of size kn .  On the first occasion, 1n  units are drawn from the population by simple 

random sampling without replacement.  On the kth occasion, 2,3, 4, ,k t  ; kmn  units are drawn from the 1kn   

units of 1ks   by simple random sampling without replacement, and kun  units are drawn from the remaining 

1kN n   units of the population also by simple random sampling without replacement.  So k km kun n n   for 

2,3, 4, ,k t  . 
Since there exists a relationship between data attached to a unit of the population on two or more successive 

occasions, it is possible to use the data contained in the previous samples to improve the estimate of a population 
parameter on the current occasion.  The first attempt was made by Jessen [2] for two successive occasions.  He 
combined two estimates for estimating the population mean on the second occasion; one is the mean based on the 
unmatched portion of the sample on the second occasion, and the other is a double-sampling regression estimate from 
the matched portion.  The initial results of Jessen [2] have been extended to more than two successive occasions by 
Yates [4], Patterson [3], Cochran [1], and several others.  However, the theory has been almost confined to large 
population. 

In this study, three estimators of the population mean on the current occasion, which can be applied in finite 
population sampling on successive occasions, are presented.  The consistency, biases and variances, as well as mean 
square errors of these estimators are compared. 
 

2. Estimators of the Population Mean 
 

Let t be the current occasion, 2t  .  For 1, 2,3, ,k t  , the y value on the kth occasion of unit i is denoted by kiy , 
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and we let kY  be the population mean on the kth occasion, that is, 
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and ky  be the mean on the kth occasion based on the whole sample, that is, 
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For 2,3, 4, ,k t  , let kmy  be the mean on the kth occasion based on the matched portion of the sample on the kth 

occasion with the sample on the ( 1k  )th occasion, that is, 
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kuy  be the mean on the kth occasion based on the unmatched portion of the sample on the kth occasion, that is, 
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and 1, *k my   be the mean on the ( 1k  )th occasion based on the matched portion of the sample on the kth occasion with 

the sample on the ( 1k  )th occasion, that is, 
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On the first occasion, 1y  is usually used as the estimator of 1Y .  On the tth occasion, 2t  , tY  can be estimated 

by 

                  � (1 )t t tu t tmY W y W y     ,                (6) 

or 

               1 1, *
� (1 ) ( )t t tu t tm t t t mY W y W y b y y        ,            (7) 

where tW   and tW   are nonnegative constant weights,  0 , 1t tW W   , and tb  is a regression coefficient of ty  on 

1ty  . 

An alternative estimator of tY , 2t  , that we propose is 
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where tW  is a nonnegative constant weight, 0 1tW  , and 1,t dy   is the mean on the ( 1t  )th occasion based on 

the 1t tmn n   units in the sample on the ( 1t  )th occasion which are discarded on the tth occasion, that is, 
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We may write �tY  in the form 

         1 1 1 1, *
1

1� ( ) (1 ) ( )t t t tu tm tu tm tm t tu tu t tm t t t m
t tu

Y W n n n y n y W n y n y b y y
n n    


        


.   (10) 



We find that, the expected values of  
� �,t tY Y   and �tY  are 

                    �( )t tE Y Y  ,                  (11) 
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respectively, where *1 1,
( , )t t t m

C b y y 
  is the covariance of tb  and *1 1,t t m

y y 
 . 

When tb  is the population regression coefficient of ty  on 1ty  , we find that the variances of  
� �,t tY Y   and �tY  

are 
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respectively, where 
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and 
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In practice, if tb  is not pre-assigned we may use 
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which is the least squares estimate of the population regression coefficient of ty  on 1ty  .  The variances of  
� �,t tY Y   

and �tY  may be estimated by replacing 2
tS  and t  by 2�

tS  and �t , respectively, where 
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and 
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The minimum variances of  
� �,t tY Y   and �tY  can be obtained by using the proper  ,t tW W   and tW  which minimize 

(14), (15) and (16), respectively.  We find that, the proper  ,t tW W   and tW  are 
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Substituting the proper  ,t tW W   and tW  from (22), (23) and (24) in (14), (15) and (16), respectively, we find that the 

minimum variances of  
� �,t tY Y   and �tY  are 
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respectively. 
 

3. Comparison of the Estimators 
 
3.1 Consistency 

When tn N , we have 

� (1 )t t tu t tmY W y W y     , 

� (1 )t t tu t tmY W y W y     , 

�
t tY Y . 

So �tY  is always a consistent estimator of tY , whereas �tY   and �tY   may be inconsistent if tW   for �tY   and tW   for 

�
tY   are not properly chosen. 

 

3.2 Bias 

From (11), (12) and (13), the biases of  
� �,t tY Y   and �tY  are 
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respectively.  So �tY   is always an unbiased estimator of tY , whereas �tY   and �tY  will be unbiased if tb  is a 

pre-assigned constant or 1tm tn n  . 

When t tW W , it is obvious that   
� �( ) ( )t tB Y B Y  .  When the proper tW   and tW  from (23) and (24) are used, 

the biases of �tY   and �tY  become 
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respectively, where 
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.  Since 0a  ,   
� �( ) ( )t tB Y B Y  . 

 

3.3 Variance 

When  =t t t tW W W    , the variances of  
� �,t tY Y   and �tY  may be written as 
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Since 0b   and 0c  ,   
� �( ) ( )t tV Y V Y   and   

� �( ) ( )t tV Y V Y  .  To compare  
�( )tV Y  with  

�( )tV Y  , we write 
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where 2
1 1(2 )t tm t tu tmd n n n n n    , 

 2
1 1 12 ( )t tu tm t tu tm t t tme n n n n n n n n        and 
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or 1tm tn n   we have   
� �( ) ( )t tV Y V Y   for all t . 

When the proper  ,t tW W   and tW  from (22), (23) and (24) are used, the variances of  
� �,t tY Y   and �tY  may be 

written as 
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Since 1g   and 0h  ,   
� �( ) ( )t tV Y V Y   and   
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�( )tV Y  , we write 

          
2 2

2 1
21 1

(1 )( )1 1�( )
( )( )

t t t tm
t t

t tu t tu

S n n pq pr
V Y S

n n N q q rn n

 

 

     
      

   
,         (40) 

          
2 2

2 1
21 1

(1 )( )1 1�( )
( )( )

t t t tm
t t

t tu t tu

S n n pq qs
V Y S

n n N q q rn n

 

 

     
     

   
,         (41) 

where 1 1( )t t tup n n n   , 

 2 2
1 1(1 )t tm tu t t t tmq n n n n n      , 

 2(1 )tm tm t tur n n n    and 

 2
1 (1 )tm t t tus n n n   . 

Since pr qs ,   
� �( ) ( )t tV Y V Y  .  That is, when the proper weights which minimize the variances of the estimators are 

used we have    
� � �( ) ( ) ( )t t tV Y V Y V Y   . 

 

4. Simulation Results 
 

In order to compare the mean square errors of � �,  t tY Y   and �tY , the Monte Carlo simulation results are carried out.  

The data of the total turnover in each quarter of every enumerable sample establishment which has 1-100 workers from 
the Thailand Quarterly Retail Survey 2005, collected by the National Statistical Office of Thailand, is used as the 
population data. 

From the data, we have 1,096N  , 1 1,582,365.2491 bahtY  , 2 1,661,515.5748 bahtY  , 

3 1,716,284.2573 bahtY  , 4 1,842,827.1661 bahtY  , 2 13 2
1 4.0339 10  bahtS   , 2 13 2

2 4.2046 10  bahtS   , 

2 13 2
3 4.6919 10  bahtS   , 2 13 2

4 6.9422 10  bahtS   , 2 0.9470  , 3 0.9892   and 4 0.9832  . 

We assume that 1 2 3 4n n n n n     and 2 3 4m m m mn n n n   .  mn  is varied, where 100n   and 

25% ,  50% ,  75%mn n n n .  The samples are selected by the simulation with 10,000 runs.  The formula for 

computing the mean square errors of � �,  t tY Y   and �tY , 2,3,4t  , is 
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where tY  denotes � �,  t tY Y   or �tY . 

� �,  t tY Y   and �tY  are considered for all possible weights,   0 , , 1t t tW W W   .  Let t  denote the weights ,  t tW W   

and tW , 2,3,4t  .  Fig. 1 shows the mean square errors of � �,  t tY Y   and �tY  by t , 2,3,4t  .  The unit of the 

mean square errors is 11 210  baht . 
It is certain that the mean square error of each estimator depends on t .  For each t , the mean square error of 

�
tY   is never less than the mean square errors of the others.  The minimum mean square errors of �tY   and �tY  are 

close together, and among all possible t  the range of the mean square errors of �tY  is smaller than that of �tY  .  The 

percentage of the sample units to match affects the mean square errors of �tY   and �tY  , but hardly affects the mean 

square error of �tY .  Using improper t , the mean square errors of �tY   and �tY   may be very high, whereas the mean 

square error of �tY  is slightly different from the minimum. 
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Fig. 1  The mean square errors of � � , t tY Y  and �tY  by t , , ,t  2 3 4  
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5. Conclusions 
 

An alternative estimator in finite population sampling on successive occasions is proposed.  We compare it with an 
unbiased estimator and a conventional estimator.  The alternative estimator is always consistent, whereas the others are 
consistent for some weights used in the estimation.  The conventional estimator and the alternative estimator are 
biased if the regression coefficient used in the estimation is not a pre-assigned constant, where the absolute value of the 
bias of the alternative estimator is less than that of the other.  The variance of the unbiased estimator is more than the 
variances of the others.  For an interval of weights used in the estimation, the variance of the alternative estimator is 
not less than that of the conventional estimator.  Using improper weights, the variance of the unbiased estimator and 
the mean square error of the conventional estimator may be very high, whereas the mean square error of the alternative 
estimator is slightly different from the minimum. 
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