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Abstract 

 

Nowadays, many entrepreneurs face to extreme conditions for instances; costs, quality, sales and 

services. Moreover, technology has always been intertwined with our demands. Then almost 

manufacturers or assembling lines adopt it and come out with more complicated process inevitably. At 

this stage, products and service improvement need to be shifted from competitors with sustainability.  So, 

a simulated process optimization is an alternative way for solving huge and complex problems. Many 

researchers suggested applying the problems with heuristic methods, such as Steepest Ascent, Simulated 

Annealing and Ant Colony Optimization algorithms. The first one is a conventional evolutionary 

operation to improve a process yield. The second is a process of classical statistical mechanics. Finally, 

Ant Colony Optimization imitates the real ant activities for solving any problems which be done by a 

simple communication or pheromone among ants. 

 In this research, tested problems are formulated into mathematical models with and without noises 

which are representing for ideal problems and easily illustrated by Response Surface Methodology. 

Heuristic algorithms have then been developed to solve these problems through a computer simulation 

program. In addition, a proposed algorithm is implemented to an industrial problem in order to find the 

maximal force of a spring model via a parameter adjustment. From experiments, the combined algorithm 

of Simulated Annealing and Ant Colony Optimization seems to work more properly in both cases of 

simulated processes and the spring force system. However, Ant Colony Optimization algorithm can 

search for the better yield with the same number of experimental runs. 

 

 

1. Introduction 

 

Response Surface Methodology (RSM) is a bundle of mathematical and statistical techniques that are helpful for 

modeling and analyzing problems. A response of our interest is influenced by several predictor variables. An objective is 

to optimize this response. For example, suppose that a process engineer wishes to find the levels of temperature (x1) and 

pressure (x2) that maximize the yield (y) of a process. The process yield is a function of levels of temperature and 

pressure. 

 

 y = ƒ(x1, x2) + ε (1) 

 

Where ε represents the level of noise (standard deviation) or error observed in the response y. If we denote the 

expected response by E(y) = ƒ (x1, x2) = η, then the surface represented by 

 

 η = ƒ (x1, x2) (2) 

 

So, it is called a response surface. 

 

We usually represent the response surface graphically, such as in Fig. 1, where η is plotted versus the level of x1 and 

x2. To help visualize the shape of a response surface, we often plot the contours of the response surface as shown in Fig. 

1. In the contour plot, lines of constant response are drawn in the x1-x2 plane. Each contour corresponds to a particular 

height of the response surface. 

 



 

Fig. 1  A three dimensional response surface showing the expected yield  

with a contour plot of a response surface [9]. 
 

A response surface above describes how the yield of a process varies with changes in k independent variables. 

Estimation of such surfaces, and hence identification of near optimal settings for predictor variables is an important 

practical issue with interesting theoretical aspects. Many systematic methods for making an efficient empirical 

investigation of such surfaces have been proposed in the last fifty years. These are generally referred to as evolutionary 

operation (EVOP). RSM is used to improve the current operating conditions until the conditions of optimal yield are 

satisfied. In most RSM problems, a form of the relationship between the response and the independent variables is 

unknown. Thus, the first step in RSM is to find a suitable approximation for the true functional relationship between y 

and the set of its independent variables. Usually, a low-order polynomial in some region of the independent variables is 

employed [2]. If the response is well modeled by a linear function of the independent variables, then the approximating 

function is the first-order model. 

 

 y = β0 + β1x1 + β2x2 + … + βkxk + ε (3) 
 

If there is curvature in the system, then a polynomial of higher degree must be used, such as the second-order model. 
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Almost RSM problems use one or both of these models. Of course, it is unlikely that a polynomial model will be a 

reasonable approximation of the true functional relationship over the entire space of the independent variables, but for a 

relatively small region they usually work quite well. The response surface analysis is then performed using the fitted 

surface. If the fitted surface is an adequate approximation of the true response function, then analysis of the fitted 

surface will be approximately equivalent to analysis of the actual system. The model parameters can be estimated most 

effectively if proper experimental designs are used to collect the data. Designs for fitting response surfaces are called 

response surface designs. RSM is a sequential procedure. Often, when we are at a point on the response surface that is 

remote from the optimum, such as the current operating conditions in Fig. 2, there is little curvature in the system and 

the first-order model will be appropriate.  

An objective of this research is to lead the experimenter rapidly and efficiently along a path of improvement toward 

the general vicinity of the optimum. From Fig. 2, we see that the analysis of a response surface can be thought of 

“climbing a hill,” where the top of the hill represents the point of maximum response. If the true optimum is a point of 

minimum response, then we may think of “descending into a valley”.  A simulation study is based on the function of 

process variables with different levels of noise. Response surface functions include different turning machining and 

spring force models. The objective of using the integrated approach is to find the values of the process variables which 

give the greatest yield, and to find these values with a minimum number of process runs at sub-optimal conditions. 

Conclusions are drawn, and practical recommendations are made. 
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Fig. 2  The sequential nature of RSM [9]. 

 

 

2. Test Problems 

 

In this paper, three algorithms consist of Steepest Ascent (Steepest), Simulated Annealing (SA) and Ant Colony 

Optimization (ACO). They will be used to operate and analyze the results under various types of mathematical functions 

(Table 1). The functions will be used as simulated processes with 2-5 predictor variables.  

 

Table 1  Details of function types and their mathematical models 

Function Variable Formula 

Branin 2 
 

 

Camelback 2 
 

 

Goldstein-Price 2 
 

 

Parabolic k 
 

 

Rastrigin k 
 

 

Rosenbrock k 
 

 

Shekel k 

 

 

 

Styblinski k 
 

 

 

3. Spring Force Problem  [11] 

 

In this section, we propose a spring force model we have used in the performance study. The mathematical model is 

defined to maximize a spring force which reacts to spring conditions or parameters. 
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; where X1 = Edge of paper which faces to shaft (Values from 100-180) 

   X2 = Joint of spring (Values from 35-75) 

   X3 = Strength of spring (Values from 5-15) 

   X4 = Compression distance of spring (Values from 20-50) 

   X5 = Thickness of paper (Values from 0-50) 
 

4. Methods 

 

In this section, we describe how to find the best solution among different methods, i.e. Steepest Ascent, Simulated 

Annealing and Ant Colony Optimization algorithms. 

 

4.1 Steepest Ascent Algorithm 
The variation [5] is a 2

k
 factorial design with an additional reference point at the centre. The data from these design 

points are analysed. If there is evidence of a main effect, at some chosen level of statistical significance, and no 

evidence of curvature, at the same level of significance, another 2
k
 design with an additional reference point at the 

centre is carried out, centred on the point with the highest yield. It is possible, although rather unlikely, that this point is 

the centre of the preceding design. If there is no evidence of a main effect or of curvature the design is replicated. The 

details of the algorithm (Fig. 3) follow. 

 

1. Define an objective for an optimization (Maximization or Minimization) of tested problems; for instance, Branin 

Surfaces, Camelback Surfaces, Goldstein-Price Surfaces, Parabolic Surfaces, Rastrigin Surfaces, Rosenbrock 

Curved Ridge Surfaces, Shekel Multi Peak Surfaces and Styblinski Surfaces. 

2. Random a starting point as center point of a factorial design. 

3. Calculate a response (y) for each point of the factorial design which compose of a center and peripheral point. Then 

formulate a first order model. 

4. Calculate β0, β1, ..., βk by the least square method from the first order model or a linear regression. 

 

 Y = β0 +�β1X1 +�β2X2 (44) 

 

Or calculate response Y from 

 

 Y = (ΣY…)/N + (EFFECT X1 / 2) X1 + (EFFECT X2 / 2) X2 (45) 

 

5. Review the suitable of the first order model by looking at each of linear regression coefficient (βi). If none of linear 

regression coefficient is equal to zero, all factors are significant to the model. 

6. Redo the same procedure; otherwise test a quadratic effect, in case of an unsuitable equation. 

7. 7.1 If model is suitable, move a center coordinate (x1, x2, …, xk) to a new coordinate (x1
N
, x2

N
, ….xk

N
) by calculating 

a step size (∆Xi) which is related to the following equation: 

 

 ∆Xi = βi / (βLargest / ∆XLargest) (46) 

 

 Then calculate a new coordinate from Xi
N
 = Xi + ∆Xi 

7.2 Scale with a multiplication of ‘n’ where n = 1, 2, … until a response (Yn) could not get a better value then 

termination. 

 

 Yn = Origin + n∆ (47) 

 

8. Repeat 4-7 to calculate the responses. 

9. Compare responses of each iteration and keep the best value for a solution. 

10. Terminate when the criteria is met. 

 



 

 

Fig. 3  Flow Chart of Steepest Ascent Algorithm 
 

 

4.2 Simulated Annealing Algorithm  
Kirkpatrick et al. [7] first proposed a detailed analogy of an annealing in solids to the combinatorial 

optimization. They imitated a framework for the optimization problems which are vary large and complex. Statistical 

mechanics generate the general discipline of condensed matters [3].  A fundamental question in statistical mechanics 

then concerns that the atoms remain the fluid or solid matter when the level of temperature approaches the “ground 

state” or the lowest energy state of the system. Ground states are extremely rare at the elevated temperatures, but are 

predominated properties at low temperatures. However, the low temperature is not sufficient to determine the ground 

states [12]. In practice, care must be taken at the stage of an annealing. This would allow the system reaches the ground 

states. The annealing processes are performed by first melting the system at a high temperature, then lowering the 

temperature slowly, finally spending a long time at freezing temperatures. During the annealing process, the time spent 

at each temperature level must be sufficiently long to allow the system to reach a thermal equilibrium or a steady state. 

If care is not taken in adhering to the annealing temperature schedule, undesirable random fluctuations may cause the 

shift of the ground state. The basic idea of statistical mechanics initiates a generalization of the iterative improvements 

or the search for a better solution of the combinatorial optimization. This process is encountered to a ‘Steepest-Descent’ 

algorithm for Minimization problems or a ‘Steepest-Ascent’ algorithm for maximization problems.  



In this paper, Simulated Annealing algorithm (Fig. 4) is programmed with Microsoft Visual Basic for Application. 

When select tested problem and noise, the algorithm calculates the responses (Yi) and variables (Xi) with following 

steps. 

1. Define an objective for an optimization (maximization or minimization) of the tested problems as appeared in the 

details of Steepest Ascent algorithm. 

2. Define parameters of the algorithm; i.e. a starting temperature, a freezing temperature, a reducing rate and iteration. 

3. Random a starting point with ‘k’ variables related to size of the tested problems. Then calculate the responses (Yi) 

by replacing variables (X1, X2, … Xk) with random values as a starting point (s). 

4. Create an anneal schedule from a starting temperature and a reducing rate; i.e. the starting temperature is 2
o
C, the 

reducing rate is 0.9 then the next anneal temperature is equal to 1.8
o
C. 

5. Set a counter for iteration in each anneal temperature. 

6. Calculate the neighbor responses (sn) from the anneal schedule by replacing a variable (Xi) of the tested problem.  

7. Compare the calculated responses in step 3 and 6 then calculate a value of ∆E by sn - s. In case of Maximization, if 

∆E is grater than ‘0’, replacing variables at condition s with sn. 

8. On the other hand, if the calculated value of ∆E is less than ‘0’, random the probability number (q1) to compare 

with Boltzman value (q0) where Boltzman (q0) = exp(-∆E/Kbt) 

9. If the probability number (q0) is greater than Boltzman value (q1), replacing variables at condition s with sn. 

10. Do step 6-9 until an iteration criterion is reached. 

11. Calculate next anneal temperature as describe in step 4. 

12. Do step 5-11 until the anneal temperature is less than the freezing temperature. Then a termination criterion has 

been reached. 

 

 
 

Fig. 4  Flow Chart of Simulated Annealing Algorithm 

 

 



4.3 Ant Colony Optimization Algorithm  

Ant algorithm was first proposed by Dorigo and his colleagues as a multi-agent approach to optimization problems, 

such as a traveling salesman problem (TSP) and a quadratic assignment problem (QAP). There is currently a lot of 

ongoing activity in the scientific community to extend or apply ant-based algorithms to many different discrete 

optimization problems. Recent applications cover problems like a vehicle routing, a plant layout and so on. 

Ant algorithm is inspired by observations of real ant colonies. Ants are social insects and they live in colonies. A 

behavior is direct more to the survival of the colony as a whole than to that of a single individual component of the 

colony [8, 10]. Social insects have captured the attention from many scientists because of a structure of their colonies, 

especially when compared with a relative simplicity of the colony’s individual. An important and interesting behavior of 

ant colonies is their foraging behavior and in particular how ants can find shortest paths between food sources and their 

nest [1]. 

While walking from food sources to the nest and vice versa, ants deposit on the ground a substance called pheromone, 

forming in this way a pheromone trail. Ants can smell pheromone and when choosing their way. They tend to choose, in 

probability paths marked by strong pheromone concentrations. The pheromone trail allows the ant to find their way 

back to the food source (or to the nest). Also, it can be used by other ants to find the location of the food sources found 

by their nest mates [4]. Ant Colony Optimization algorithm (Fig. 5) consists of the iteration steps where each ant makes 

its own solution as follows. 

 

1. Define an objective for an optimization (Maximization or Minimization) of the tested problems as of the tested 

problems as appeared in the details of Steepest Ascent algorithm. 

2. Define parameters for Ant Colony Optimization Algorithm, such as number of ants and moves etc. 

3. Each ant make its own initial states (s), paths and communicate the responses and coordinates where 

• Construct the feasible solution. 

• Evaluate the generated solution. 

• Decide to retrace the path that the ant has followed. 

4. Random ‘k’ variables (X1, X2, … Xk) for initial states (s) of each ant which turn on the ant activities and compare its 

responses and termination criteria. 

5. From Initial state (s), ant activities drive all ants in system and move to its neighborhood state (sr). 

6. While each ant locates at neighborhood states (sr), a system compares the responses and its initial states (s). If any 

response of the same ant is better than its initial states (s), then move to a neighborhood state (sn). 

7. In case of neighborhood states (sn) less than the previous state, the system generates a probability number (q1) and 

compare with a certain number (q0). If q1 is greater than q0, a movement of each ant is going ahead. Otherwise, no 

movement. 

8. In case of no better neighborhood response, set this state as ‘Local Optima’ (Li) and wait for a communication from 

other ants at other ‘Local Optima’ (Lj). 

9. Compare among ‘Local Optima’ (L1, L2,…, Li , Lj , … , Ln) and set a direction of the path to the best Local Optima. 

10. Construct the solution by repeating steps 5-10, until the termination conditions are met. 



 

 

 

Fig. 5  Flow Chart of Ant Colony Optimization Algorithm 

    

    

5. Experimentation 

 

In this section, we run the experiments and arrange all data into 2 categories. Firstly, the experiments are tested with 

tested problems which have 2-5 variables. The second experiments are applied to industrial problems. The optimal 

solution is defined by reviewing results from these performance measures, i.e. a mean or average response, standard 

deviation (SD) and S/N ratio. The S/N ratios depend on an objective of a problem (Table 2). All models were tested with 

the proposed algorithms of 15 replications to check a consistency of results on these three measures. The results are 

presented in the form of tables and figures with optimal conditions and response values. All the results are discussed in 

the next section. The all programs were developed on a PC using VBA (MS-Excel). 



 

Table 2  Optimization methods and S/N ratio formula 
Methods S/N ratio formula Objective 

Larger is better S/N = -10*log(Σ(1/Y
2
)/n) Maximization 

Smaller is better S/N = -10*log(Σ(Y
2
)/n)) Minimization 

 

5.1 Experiments with tested problems 
The comparisons are made for four different levels of measurement noise on the response. There are 15 realizations 

in each experimental level of measurement noise. The noise is taken to be independently and normally distributed with 

mean of zero and standard deviations of 0, 1, 2 and 3. The experimental results are shown in Table 3. 



Table 3  Summary of Mean, Standard Deviation and S/N ratio of tested problems 

Model Algorithm 2 Variables 3 Variables 4 Variables 5 Variables 

  Average 

responses 

SD S/N 

ratio 

Average 

responses 

SD S/N 

ratio 

Average 

responses 

SD S/N 

ratio 

Average 

responses 

SD S/N 

ratio 

Branin Steepest 9.285 2.813 18.936 - - - - - - - - - 

  SA 8.733 2.547 18.432 - - - - - - - - - 

  ACO 10.412 3.360 19.845 - - - - - - - - - 

Camelback Steepest 15.107 1.560 23.487 - - - - - - - - - 

  SA 13.110 1.922 22.201 - - - - - - - - - 

  ACO 42.423 7.763 32.181 - - - - - - - - - 

GoldsteinPrice Steepest 9.627 1.579 19.496 - - - - - - - - - 

  SA 8.130 1.638 17.839 - - - - - - - - - 

  ACO 13.319 3.316 22.198 - - - - - - - - - 

Parabolic Steepest 17.016 3.933 24.378 16.575 3.675 24.171 16.108 3.368 23.948 15.668 3.115 23.725 

  SA 16.667 3.660 24.221 16.213 3.515 23.989 15.779 3.125 23.785 15.333 3.026 23.535 

  ACO 17.027 3.913 24.382 16.648 3.498 24.227 16.578 3.396 24.198 16.575 3.513 24.182 

Rastrigin Steepest 100.434 1.708 40.035 112.994 3.312 41.052 117.996 7.979 41.385 113.096 13.380 40.904 

  SA 96.939 2.438 39.724 98.831 7.677 39.830 86.722 12.226 38.535 69.230 21.196 35.509 

  ACO 104.165 3.399 40.349 122.526 3.676 41.759 139.348 4.427 42.875 156.568 5.202 43.884 

Rosenbrock Steepest 85.149 3.950 38.594 84.277 3.341 38.507 83.562 2.921 38.434 83.015 2.644 38.378 

  SA 84.494 3.477 38.529 83.563 2.908 38.435 82.870 2.758 38.363 81.971 2.297 38.269 

  ACO 84.808 3.662 38.560 84.727 3.624 38.552 84.630 3.590 38.543 84.490 3.471 38.528 

Shekel Steepest 21.541 2.270 26.608 18.347 1.574 25.201 14.700 2.731 23.054 12.238 3.977 21.127 

  SA 20.783 1.848 26.309 16.028 1.905 23.954 11.656 2.528 21.002 8.884 2.717 18.466 

  ACO 23.508 3.459 27.328 22.605 3.422 26.946 20.628 3.025 26.072 17.820 3.409 24.574 

Styblinski Steepest 356.327 2.619 51.037 392.825 1.613 51.884 386.950 4.303 51.752 375.259 6.234 51.484 

  SA 352.354 2.469 50.939 374.117 8.395 51.454 355.716 12.392 51.009 329.166 20.275 50.304 

  ACO 357.920 3.439 51.075 395.961 4.775 51.952 395.175 4.734 51.934 392.570 7.528 51.875 



From results above we can conclude the characteristics, an advantage and a disadvantage in each method (Table 4). 

Most of responses from Ant Colony Optimization algorithm are quite close to the optimal and tolerance to various 

conditions when compared. ACO is then selected to determine the performances of an industrial problem. 

 

Table 4  Advantage and disadvantage of solved methods against tested problems 
Methods Advantage Disadvantage 

Steepest 

Ascent 
• Computation time at low level of 

noise is quite fast. 

• Data distribution is good at no noise 

condition. 

• Responses are quite good at no noise 

condition. 

• It’s suitable for 2-3 variable problems. 

• Computation time related to level of noise 

and complexity of problems. 

• Data distribution is quite spread out, low 

tolerance to noises and complexity 

problems. 

• Responses are fair at different noises and 

variables (over 4 variables). 

Simulated 

Annealing 
• Computation time is fastest and almost 

constant although conditions are 

changed at noises. 

• Data distribution is quite low and 

tolerate to noise. 

• Complexity of algorithm is low 

because of pure random method with 

certain terminate condition. 

• Responses are fair at different noise and 

variables condition. 

Ant Colony 

Optimization 
• Computation time at low level of 

noise is quite low. 

• Data distribution is lowest at any 

conditions. 

• Response is closest to Global point, 

tolerate to noises and variables. 

• Computation time related to noises and 

variables. When increase noises and 

variables in system, computation time is 

taken longer time to solve because of 

complexity of algorithm (ant activities and 

communications) to check ‘Local optima’. 

 

5.2 Experiments with an industrial problem through Ant Colony Optimization algorithm 

This section presents the performance study of the industrial problem (Table 5). A spring test is studied in different 

conditions of independent factors such as a joint, strength and a compression distance to maximize the spring force. Ant 

Colony Optimization algorithm is applied to find the best response for maximizing force from a spring design.  

 

Table 5  Results of a spring force problem through various Algorithms 

Steepest Ascent Simulated Annealing Ant Colony Optimization Performance 

measures Run Time Response Run Time Response Run Time Response 

Average 6766 0:00:13 2567.815 6000 0:00:22 2580.904 1968640 0:11:47 3166.560 

SD 36 0:00:00 145.743 0 0:00:00 180.135 927 0:00:10 125.030 

Max 6827 0:00:14 2806.2 6000 0:00:22 2948.350 1970073 0:12:07 3368.710 

Min 6697 0:00:13 2335.007 6000 0:00:21 2331.012 1967196 0:11:30 2869.090 

S/N ratio - - 68.154 - - 68.183 - - 69.992 

 

5.3 Experiments on an industrial problem through a combined algorithm. 

A combined algorithm of Simulated Annealing and Ant Colony Optimization is proposed to eliminate a disadvantage 

of the computation time. We present the performance study and evaluation of the industrial problem as illustrated in 

previous section. The results are listed in table below. 

 

Table 6  Results of a spring force problem through a Combined Algorithm 

Spring force problem Performance 

measures Run Time Response 

Average 7393 0:00:23 2604.846 

Std. Dev. 470 0:00:00 162.504 

Max 8165 0:00:23 2926.799 

Min 6750 0:00:22 2372.605 

S/N ratio - - 68.281 



5.4  Analysis of Data 

From the results in sections 5.2-5.3, we found that Ant Colony Optimization algorithm contributed the best solution 

for the industrial problem. All operating costs from Ant Colony Optimization are lower than the combined algorithm 

that describe in the figure of box-plots below. 

 

Fig. 6  Box plot analysis of the maximal force of a spring against the different algorithms 
 

Table 7  Advantage and disadvantage of proposed method against a spring force problem 
Proposed 

Methods 
Advantage Disadvantage 

Ant Colony 

Optimization 

Algorithm 

• Computation time for searching the 

best response in constrained 

problems is quite excellent (fastest). 

• Data distribution of response is quite 

excellent. 

• Response from all problems is better 

than the rest. 

• Computation time for searching 

the best response of unconstrained 

problems take a long time. 

Combined 

Algorithm 
• Computation time for searching the 

best response of unconstrained 

problems is quite excellent because 

amount of sampling is reduced from 

combined algorithm. 

• Response is poorer than Ant 

Colony Optimization algorithm. 

 

In conclusion, we notice that the combined method which is developed from Simulated Annealing and Ant Colony 

Optimization algorithms enables to search the optimal response of unconstrained problems faster. That is the strong 

point of Simulated Annealing algorithm. However, it has to trade off searching ability for the optimal response with the 

computation time. The selection of the suitable method based on the types of problems should be considered carefully.  

 

6. Conclusion and Discussion  

 

From the overall results of experiments with tested problems, we found significant characteristics for performace 

measures which consist of an average value of responses, a standard deviation and S/N ratio. We can explain in each 

category below. 

Problem Type (Function) – For a few variables (2-variable functions) and no noise, function types mainly are not 

affected to the methods. The computation time and responses are merely the same.  In case of an industrial problem, the 

combined method works faster but the best solution can be achieved by Ant Colony Optimization algorithm. 

Noise Level – Steepest ascent algorithm seems to be more efficient, in terms of speed of convergence, when the 

standard deviation of the noises is low. When we add noises (noise level from 1 to 3) into function, we noticed that the 

computation time are dramatically increased but the levels of noise do not significantly make different in the 

computation time. However, the response value is higher when noise levels are increased. 

Amount of Variables or Size of Tested Problems – the best solutions from tested problems with 2-5 variables are 

obtained by Ant Colony Optimization algorithm. However, it can be clearly stated when variables are over 4 factors. 

Moreover, the effect of variables to the computation time is also increased significantly except Simulated Annealing 

algorithm. 

The suggestion from the experiments, we observed that the weakest point of Ant Colony Optimization algorithm is 

the computation time for searching the best response. Hence, we tried to combine with Simulated Annealing algorithm 



to eliminate that weakness. However, results in the last experiment indicate that there is only a success in reducing the 

computation time for unconstrained problems. We have to trade off it with the performance measures for the best 

algorithm. From the results of the steepest ascent algorithm, percentage of sequences ended at the optimum or near 

optimum is slightly good at higher levels of error standard deviation although the greater number of runs were required 

to converge to the optimum. As stated earlier, the function of this research was restricted to proposed process variables. 

Consequently, comparisons and conclusions between the algorithms may not be valid for other families of functions. 

Other stochastic approaches could be extended to the steepest ascent algorithm based on conventional factorial designs 

to increase its performance. Finally, the combined algorithm takes longer computation time than its original algorithm 

on constrained problems. The applications on other processes could be determined to confirm the performance [6].  
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