
 
 

1

A Benchmark of Finding the Criteria for Optimal Portfolio Choice              
 

 Lee, Chen-Yu1) , Shu-Hsien Chen2) and Mingshu Hua3) 

 
 1) Department of International Business Studies, National Chi-Nan University, Puli 545, Nantou 

Hsien, Taiwan, R.O.C. (mosterlee@seed.net.tw) 
 

2) Department of International Business Studies Central Taiwan University of Science and 
Technology, Taichung, R.O.C. (susanch@ntit.edu.tw) 

 
3) Department of International Business Studies, National Chi-Nan University, Puli 545, Nantou 

Hsien, Taiwan, R.O.C. (hua@ncnu.edu.tw) 

 

Abstract 

In today’s rapidly changing economic environments, global portfolio investors are invariably confronted with 

dynamic and fluid choice of criteria that enable them to exercise subjective judgment on asset portfolio choice decisions. 

The subjective investment portfolio choice includes the discretion to purchase some assets that do not meet its normal 

investment criteria, when they perceive unusual information which incurs event jumps in the asset return. This paper 

studies on what criterion or criteria should be used when the asset in the investment portfolio is subject to event jumps 

as well as how the criterion or criteria can be found. We use marginal excess return in the value add return function for 

indicating the return decreasing under information impact and finding a critical value related to the growth optimum 

portfolio choice on a risk adjusted basis. We reveal, as a special case, the optimal portfolio is equivalent to the 

benchmark portfolio, if the investor is myopic of constant relative risk aversion.  

 
1. Introduction 
 

Managers of the large multinational firms and investment funds usually seek the highest total portfolio return over 

time that is consistent with emphases on both capital appreciation and investment income/return under a specified risk 

level. They pursue its objective by investing in a diversified portfolio and possess the discretion to purchase some assets 

that do not meet its normal investment criteria, when they perceive an unusual information impact on the investment. As 

investors hold different portfolios, partially reflecting their different information shock, less informed 

investors/managers tend to propose more than the aggregate portfolio in assets about which they are more optimistic 

than the more informed investors. Suffering the information shocks has caused some forms of event jump on the 

investment portfolios. Since the less informed investors/managers do not know the exact structure of the portfolio of 

aggregate risk, the deviation from this portfolio can be interpreted as a form of estimation risk. In the past (e.g., Kandel 

and Stambaugh [1996]), estimation risk has been studied under homogeneous information, in which case it only adds to 

asset return variance.  

Often active portfolio managers/investors aim to beat the performance of a selected target benchmark, whereas 

passive portfolio managers/investors just track the selected benchmark. The most general setting is one in which the 

investment opportunity set depends on a set of unobservable state variables that evolved estimation risk arising from the 

unknown nature of both the parameters and the state variables. Hence the process also involves learning. In the simplest 

setting, Brennan (1998) evaluated the role of learning in the dynamic portfolio allocation decision, with the assumption 
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that the investor is able to trade continuously and the value of the risky asset follows a diffusion process. Brennan 

assumed that the investor learns about the mean return in the simple dynamic portfolio problem grounded in constant 

investment opportunity set but is uncertain about the mean return on the risky asset. The problem of finding an optimal 

estimation risk or mean asset return can be logically separated from the problem of finding the decision rules (see 

Gennotte (1986)). We study how the adjustment of the portfolio achieves a positive premium depends on the growth 

optimal portfolio which can be viewed as a reference portfolio. Under the framework of mean return and its variability, 

we find the implementation of the criteria for adjusting practical investment portfolio choice.   

Thus the necessity for introducing more specialized instruments is driven by an inherent incompleteness of the 

existing markets, which forces investors to seek out new securities. Empirical studies have documented that 

incompleteness may derive from the fact that asset prices have jumps and volatility is stochastic. Such models, for 

example, Platen (2004) and Christensen & Platen (2005), investigate the structure of market prices of risk as markets 

become approximately complete. Their models consider also the limits of traded securities, characterizing explicitly the 

growth optimum portfolio and diversification in such markets.  

In this paper, we extend the work on the role of estimation risk in a single period context of Kandel and Stambaugh 

(1996) and the analysis by Browne (1999) on active portfolio management problems with objectives related to the 

achievement of relative performance goals and shortfalls. Kandel and Stambaugh (1996) consider the effect of 

estimation errors in the return prediction equation on the optimal portfolio strategy in a multi period setting, an 

important aspect of the dynamic problem that is induced by learning. Browne (1999) considered a general problem in an 

incomplete market where the benchmark was only partially correlated with the active investor’s investment 

opportunities. In Brown’s (1999) study, the investment objectives are related to the achievement of investment goals 

and shortfalls relative to the benchmark. We observe that if the proportion associated with an asset class is positive, the 

portfolio rebalancing requires selling an asset when its price rises relative to the other prices, and conversely, buying the 

asset when its price drops relative to the others.  

The application of portfolio theory was originally developed to analyze the problem of an investor who faced a 

single period horizon, and a known investment opportunity set. It was extended by Merton (1971), Breeden (1979) and 

others to allow for a multi-period horizon in which investment opportunities might either be constant, time-dependent, 

or even stochastic. Brennan and Schwartz (1996) have implemented the Merton-Breeden continuous time approach to 

dynamic portfolio planning by specifying state variables that describe the state of the economy and estimated their 

dynamics. These studies are lack of considering the stochastic process parameters whose values can only be estimates. 

We propose an information uncertainty setting, the use of the growth optimum portfolio as numeraire, implying the 

associated martingale measure is the historical measure itself. Hence, particularly for event driven uncertainty, this may 

have an advantage, since default intensities and jump sizes, observed under this measure, are otherwise difficult to 

calibrate. We aim to study the specific objectives that were explicitly solved for multi-objective cost functions: a) 

maximizing the probability that the investor’s wealth achieves a certain performance goal relative to the benchmark 

before falling below it to a predetermined shortfall; b) minimizing the expected time to reach the performance goal; c) 

maximizing the expected reward obtained upon reaching the goal; and d) minimizing the expected penalty paid upon 

falling to the shortfall level. The corresponding optimal policies obtained there are all constant proportions, or in 

constant mix, portfolio allocation strategies, whereby the portfolio is continuously rebalanced so as to always keep a 

constant proportion of wealth in the various asset classes, regardless of the level of instant wealth.   
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Our use of marginal excess return in the value add return function for indicating the return decreasing under 

information impact and finding a critical value related to the growth optimum portfolio choice on a risk adjusted basis. 

In this framework we obtain a closed form solution in an incomplete market with jumps and show how to use this 

framework for modeling diversified portfolios.   

The remainder of the paper is organized as follows. The next section presents the modeling of the dynamic portfolio 

decision, reflecting the differences in equity risk, as measured by the volatilities of stock return. Section 3 establishes 

the optimal portfolio and provides analytical solutions to the optimal portfolio choice problem for events jump. Section 

4 finds the solution to the generalized optimal portfolio return to set up the measurement of risk-adjusting and criteria 

for portfolio. Section 5 provides empirical results and Section 6 summarizes the results and makes concluding remarks. 

    
2. Modeling the Dynamic Portfolio Decision in Incomplete Market 

 
Assume that a fund manager or an investor who knows the diffusion parameterσ ,  the optimal estimates about 

the mean return, represented by m, we can formulate the portfolio optimization problems for the fully informed agent 

from the maximization of Merton proportion  

2t
m rφ
γ σ
−

=
⋅

                                 (1) 

where γ  is the constant relative risk aversion coefficient, σ  is the instantaneous standard deviation of diffusive 

asset return, and compound rate of asset which is not random, r . At time zero the fund manager/investor views the 

distribution of asset return,μ  as normal with mean 0m  and variance 0v . Similarly, denote the expectation and 

variance of mean return at time t by  tm  and tv  respectively. Following the work of Liptser and Shiryayev (1978), 

change in the conditional variance tv  at time t , is determined by 0v and can be obtained using the differential 

equation: 

2

2
vdv dt
σ

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

                             (2a) 

Equation (2a) can be rewritten as  
2

0
2

0
t

vv
v t

σ
σ

=
+

                              (2b) 

This problem can be solved analytically by first guess of the value function followed by using the principle of 

optimality, which leads to the Hamilton-Jacobi-Bellman equation. In doing so, we arrive at the following expression for 

optimal weight on the risky asset by using the Cox and Huang (1989) method. 

2t
m rφ
γ σ

−
=

⋅
+ htφ                               (3) 

where htφ  represents the fully informed agent’s need to hedge against the realization of the estimated mean. Assuming 

( m r− )>0, we can see that the hedging demand htφ  is always negative for a conservative agent, while it might be 

positive for an aggressive agent. For a logarithmic agent, the hedging demand is zero.  
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In our setting, firstly the desire to hedge against changes in the assessed mean of the process depends on the agent’s 

degree of risk aversion. The value function which arises from observation of the instantaneous realized return on the 

asset may lead the agent to invest more or less in the risky asset than he would under complete information. Next, we 

solve for the optimal portfolio strategy *φ  by conjecturing that the indirect utility function is of the form 

11( , ) exp( ( ))
1

J W t W a tγ

γ
−=

−
                   (4) 

where W represents the wealth under the state tm , )(ta  is a time dependent only function. Thus the value function J 

has two separable components: a time dependent and a wealth dependent. By Bellman’s Principle of optimality, we 

obtain the Hamilton-Jacobi-Bellman equation as follows.  

   
2

2 2
2

1 1max{ ( ( ) } 0
2 2t

t
t t t W t t WW mm t t t mW

vJ r m r W J W J J v W J
φ

φ σ φ φ
σ

+ + − + + + = .  (5) 

Solving equation (5), we obtain the optimal portfolio   

*
2 2

tvm rφ
γ σ γ σ

−
= +

⋅ ⋅
.                        (6) 

In Equation (6) the first term is the Merton portfolio, and the second term is the hedge demand portfolio. Equation (6) 

also implies the following six relationships among the parameters. They are: 

1. The coefficient of relative risk aversion γ  rises as the optimal portfolio weight falls. 

2. For the conservative investor, the optimal portfolio weight decreases as the time horizon increases, and for the 

aggressive investor, the optimal portfolio weight increases as variance of the private signal increases. 

3. For the conservative investor, the optimal portfolio weight decreases as the variance of the private signal of more 

informed agent increases; and for the aggressive investor, the optimal portfolio weight increases as the time horizon 

increases.  

4. The optimal portfolio weight falls as the variance of the asset return increases. 

5. For the conservative investor, the optimal portfolio weight decreases as the variance of the earlier, increases; and 

for the aggressive investor, the optimal portfolio weight will increase as the variance of the earlier increases. 

6. As time horizon becomes infinite, the optimal portfolio weight goes to zero. Although the different agents start at 

different points, they should follow somewhat similar paths, and eventually end up at approximately the same point. 

Since the agents with more information want to minimize the variance of their mean return estimates, they put 

relatively more weight on a signal with relatively lower variance. As time goes by, the agents learn more and more 

about the true mean and so their mean return estimates eventually converge to the true mean.   

 
3. Portfolio Choice with Event Jumps  

 
By applying Taylor expansion to the Euler equation and approximate the portfolio choice, we can extend our last 

formulation in equation (6) to n risky assets portfolio decision with information asymmetry. We assume that in the 

economy, there are n+1 assets: a riskless asset, treasury bond, represented by B , paying a constant rate of interest, r , 

and n risky assets whose prices S ( )t =[ 1( )S t ,…, ( )]nS t ′  are subject to information filtration. In continuous time 
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finance, a popular way to generate discontinuity is to apply the compound Poisson Jump Model of Press (1967). 

Therefore, the return of risky assets follows a jump-diffusion process described by  

 

( )   x
d dt d dq= + +
S μ - λμ σ Z X

S
                      (7) 

where 1[ ,..., ]nμ μ ′=μ  is the vector of mean return of n industrial assets, 1[ ,.., ] ~ (0,1)nd dZ dZ N′=Z  is the 

vector of standard Brownian motion and “ '” denotes the transposition operator. The n n×  variance-covariance matrix 

11 1

1

... n

n nn

σ σ

σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

σ  is deterministic of diffusive returns. The variables in vector [ ]1 nX X ′=X  are 

random price-jumps size with means [ ]1x x xnμ μ ′=μ .  We define dq  as a Poisson process with stochastic 

arrival intensity λ , i.e. Pr( 1)dq dtλ= = . The term ( )x E Xμ =  captures the mean percentage jump in the asset 

price conditional on one jump occurrence. The jump size ,  i=1,...,niX , is assumed to be itself a random variable 

with a distribution ( )2ln ~ ,x xX N μ σ . If μ , 2σ , xμ , 2
xσ  and λ  are constants, then 

( ) ( )2 2( )ln ~ ,
( ) !

n

x x

eS T N n n
S t n

λτ λτ
μτ μ σ τ σ

−

+ +∑              (8) 

where T tτ = − , the log return distribution is described as a Poisson mixture of normal distribution. Using the 

relationship between cumulants and moments (Kendall and Stuart, 1963), it can be proven that this distribution is 

leptokurtic and therefore might better describe the actual stock price return behavior than the pure lognormal model 

given in the Appendix. 

 

Now, we turn to the portfolio decision by applying the Taylor expansion to the Euler equation and approximating the 

portfolio choice. Maximizing the expected utility of the terminal wealth TW , i.e. max [ ( )]TE U W
φ

, and the return of 

wealth process satisfies the self-financing condition. We obtain the following equation: 

 (1 ) ( )dR dB dS
R B S

′ ′= − ⋅ +Φ 1 Φ =[ ( )]xr r dt d dq′ ′ ′+ ⋅ + +Φ μ - 1- λμ Φ σ Z Φ X ,   (9) 

where 1 [ ,..., ]nφ φ ′=Φ  is a vector of a portfolio whose components sum to 1 and which indicates the investor’s 

portfolio choice among the available investment opportunities and 1(1,1,...,1)n×′=1 , such that  1′ =Φ 1 .   

 
4. Dynamic Active Portfolio Management 
 
In general, portfolio managers’ performance is typically judged by the return on their actively managed portfolio 

relative to the return of the preset benchmark. We focus on the determination of an investment strategy that is optimal 

relative to the performance of a benchmark portfolio for an investment criterion. 
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4.1  Benchmark Portfolio 

Let 1 ,...,[ ]M M Mnφ φ ′=Φ  be the benchmark portfolio with M iφ  being the fraction of the benchmark portfolio in 

the ith security. In solving for the optimal portfolio strategy, we adopt the standard stochastic control approach without 

any jumps. We solve for the benchmark optimal portfolio strategy *
MΦ  without any jumps by first conjecturing that 

the indirect utility function is of the form 

11( , ) exp( ( )),
1

J W t W A tγ

γ
−=

−
                    (10) 

where ( )A t  is a time dependent only function. By the principle of optimal stochastic control leads to the 

Hamilton-Jacobi-Bellman (HJB) equation for the indirect utility function J . Given this function form, we take 

derivatives of ( , )J W t  with respect to its arguments, ,A
WJ W eγ−= 1 A

WWJ W eγγ − −= − , substitute it into the HJB 

equation then we have: 

' 1 '1max{ [ ( )] ( ) ( )  }
2M

A A
t M M MJ W r r e dt e W dtγ γγ− − − ′+ + ⋅ + ⋅ −

Φ
Φ μ- 1 Φ σσ Φ = 0   (11) 

Differentiate (11) with respect to the portfolio weight of the risky asset, MΦ , and divide by AW e dtγ−  to obtain 

the first-order condition: *( ) ( ) 0Mr γ ′⋅ − =μ - 1 σσ Φ . Hence the benchmark optimal portfolio weight can be 

expressed by 

* 1( )M
r
γ

− ⋅′=
μ - 1Φ σσ                     (12) 

It follows that the dynamics of the benchmark portfolio return M can be expressed as  

    [ ( ) ( )] ( )M M

dM r r dt d
M

′ ′= + ⋅ +Φ μ - 1 Φ σ Z .            (13) 

if value function J  is strictly concave with respect to gross return and the conditional expectation of the terminal 

utility of the portfolio’s excess return over the benchmark, given the current information tΩ . We denote the value 

function starting from time t to the end of the investment horizon T as 

( , , ) max [ ( ( ) ( )) | ]tJ R M t E U R T M T= − Ω              (14) 

Assuming J  is differentiable with respect to t and twice continuously differentiable with respect to R and M. In 

solving for the optimal portfolio strategy, we adopt the standard stochastic control approach. The principle of optimal 

stochastic control leads to the following Hamilton-Jacobi-Bellman (HJB) equation for the indirect utility function J : 

21{( ( )) ( ( )) ( )max 2M
R Mt x R M x x RRJ r r RJ r r MJ R Jλ
−

′′ ′ ′+ + ⋅ − + + ⋅ +
Φ

Φ μ - 1 μ Φ μ - 1 Φ σ σ Φ             

21( ) ( )( ) ( ) ( )( ) } 0
2x x M RM M x x M MMRMJ M J′ ′ ′ ′+ + =Φ σ σ Φ Φ σ σ Φ     (15) 

with boundary condition ( , , ) ( )J R M T U R M= − . 

Now we adjust the portfolios by focusing on the tradeoff between excess return and variability relative to the 
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benchmark. Since the risk of an adjusted portfolio is characterized by the performance of the selected bench mark, it 

may be more desirable to focus on the variation of the optimal portfolio over the benchmark. Roll (1992) discussed this 

approach under the standard mean variance framework and concluded that tracking error of the mean variance optimal 

portfolio is not necessarily mean-variance efficient.  

 
4.2 Growth Optimal Portfolio 

 
After deriving the optimal weights in terms of the indirect utility function which is also called the optimal value 

function, we can then explicitly obtain the optimal value in terms of the returns on the benchmark portfolio and the 

growth optimum. The optimal portfolio return shows that actively managed portfolio can be of value added over the 

benchmark portfolio on a risk adjusted basis. No arbitrage is often associated with the existence of a state price density 

or equivalent martingale measure, see Duffie (2001). In the benchmark framework, the object used as a reference unit 

for pricing purposes is a portfolio having a maximal growth rate, the growth optimal portfolio (GOP). Under the 

standard assumptions of risk-neutral pricing the inverse of the discounted GOP is the Radon-Nikodym derivative of a 

risk-neutral measure with respect to the empirical measure. Under the weaker assumptions made in the benchmark 

framework, in particular, the definition of arbitrage, such a risk-neutral measure may not exist, whereas it is still 

possible to define the GOP and apply it for pricing purposes as done in Platen (2002, 2004).   

In the previous standard utility maximization with Constant Relative Risk Aversion, the optimal policies are all 

constant proportion portfolio allocation strategies. The portfolio is continuously rebalanced so as to always keep a 

constant proportion of the total fund value in the various asset classes, regardless of the level of the fund. Although such 

rebalance policies have a variety of optimality properties for the ordinary portfolio problem and are widely used in asset 

allocation practice, some investors deny to use constant proportion strategies in the belief that their individual intuition 

would suggest otherwise (see Grinold and Kahn (2000), Perold (1988)). Browne (1999) studied active portfolio 

management problems with objective related to the achievement of performance goals and shortfalls. Intuitively, a 

general incomplete market case manager of actively managed mutual funds is interested in shifting the investment 

policy with changes of returns on both their investment portfolios and the benchmark portfolio from time to time.  

A well-known result about the growth optimum is that, in a long run, it can beat any portfolio with probability 1. 

This produces a valuable hint for investing in the growth optimum portfolio over a long term investment horizon. In the 

setting of Merton (1971) the vector of the growth optimum portfolio weights is  

1( ) ( )G xr λ−′= ⋅ −Φ σσ μ - 1 μ ,                    (16) 

where xr λ⋅ −μ - 1 μ  is the instantaneous risk premium with constant event jump arrival intensity λ  and 1( )−′σσ  

is an invertible matrix for the optimal portfolio.  

The vector GΦ  plays a fundamental role in the theory of finance (see Merton 1992, Ch. 6) and will also play a 

fundamental role in the sequel. Following Merton (1990), we refer to the vector GΦ  as the optimal-growth portfolio 

strategy. The reason for this is the proportion of the investor’s wealth invested in the risky stock at time t, has many 

optimality properties associated with it in an ordinary portfolio setting (there is no benchmark) that are relevant to 

growth-related objectives. In particular, for an investor whose wealth evolves according to the wealth process in 
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Equation (9), and who is not concerned with performance relative to any benchmark, (i) GΦ  maximizes the expected 

logarithm of terminal wealth, for any fixed terminal time T, hence (ii) GΦ  maximizes the actual and expected rate at 

which the wealth compounds. Moreover, perhaps, and certainly more relevant to our concerns here is the property (iii) 

GΦ  minimizes the expected time until any given level of wealth is achieved. The policy GΦ  has extended 

optimality properties in our benchmark-based model that minimizes the expected time until the benchmark portfolio 

strategy is beaten by any given percentage. The fact that it does not provide any insight for the active portfolio manger 

as to the role the benchmark plays in the investment decision, and as such might not be a reasonable objective for an 

active portfolio manager. To eliminate redundant assets, the dynamics of the growth return G of the optimal portfolio at 

time t is 

[ ( ) ( )] ( )G x G
dG r r dt d
G

λ ′′= + − ⋅ − +Φ μ 1 μ Φ σ Z .          (17) 

We take a brief review of the growth on optimal portfolio that maximizing expected log utility of wealth is 

equivalent to maximizing the geometric growth rate.  The optimal expected growth rate, ( )
1[ ln ]tE G
T

, defined as the 

average of the optimal value function over the investment horizon, is equal to  

   1

0

1 1[ ( ( ) ( ) ( )) ]
2

T

x xE r r r dt
T

λ λ−′ ′+ − ⋅ − − ⋅ −∫ μ 1 μ σσ μ 1 μ          (18) 

With 1( )−′σσ  and ( )xr λ− ⋅ −μ 1 μ  being constant, the optimal growth rate is  

         11 ( ) ( ) ( )
2 x xr r rλ λ−′ ′+ − ⋅ − − ⋅ −μ 1 μ σσ μ 1 μ .              (19) 

 
4.3 Solution for Optimal Portfolio Return 

 
The active portfolio management problems considered for an incomplete market in Browne (1999) are: (i) maximizing 

the probability that the performance goal is reached before shortfall occurs; (ii) minimizing the expected time until the 

performance goal is reached; (iii) maximizing the expected time until shortfall is reached; (iv) maximizing the expected 

discounted reward obtained upon achieving the goal; and (v) minimizing the expected discounted penalty paid upon 

falling to shortfall level. Since the utility function is strictly concave, the optimal value function F is also strictly 

concave in R. In solving for the optimal portfolio strategy, we adopt the standard stochastic control approach. Since the 

utility function U is strictly concave, the optimal value function J  is also strictly concave in R. The first order 

condition implies that the optimal solution, *Φ , to the embedded maximization problem in equation (16), 

21{( ( )) ( ( )) ( )sup
2Mx R M x x RRr r RJ r r MJ R Jλ ′′ ′ ′+ ⋅ − + + ⋅ +

Φ
Φ μ - 1 μ Φ μ - 1 Φ σ σ Φ          

21( ) ( )( ) ( ) ( )( ) }
2x x M RM M x x M MMRMJ M J′ ′ ′ ′+ +Φ σ σ Φ Φ σ σ Φ .       (20)   

which must satisfy the following equation 
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( ))x Rr RJλ⋅ −μ - 1 μ + * 2( )x x RRR J′σ σ Φ + ( )x x M RMRMJ′σ σ Φ =0       (21) 

For GΦ = 1( ) ( )xr λ−′ ⋅ −σσ μ - 1 μ , the optimal solution is  

* R RM
G M

RR RR

J JM
RJ R J

= − −Φ Φ Φ .                     (22) 

The optimal portfolio can be decomposed into two parts. The first part is the growth optimum, and the second part is a 

hedging component of the stochastic investment opportunities. We have adopted an incomplete market asset pricing 

model as in He and Pearson (1991). Now, we substitute the optimal solution *Φ  into the optimality equation (15) to 

yield the following partial differential equation 

R RM
t R M M

RR

MJ JJ rRJ rMJ MJ
J

ββ+ + + −
2 2

21 ( ) 0
2

R RM
MM

RR RR

J M J M J
J J
α θ θ+ − − + = (23)    

where 1( ) ( ) ( )x xr rα λ λ−′ ′= − ⋅ − − ⋅ −μ 1 μ σσ μ 1 μ  which can be interpreted as the market price for aggregated 

risk, ( )M xrβ λ′= − ⋅ −Φ μ 1 μ  and 1( )M Mθ −′ ′=Φ σσ Φ . Let ( ,  ,   )  ( - )
T

t
rds

K R M t R M e
−∫= ⋅ . By 

conjecturing the indirect utility function is of the form  

( ,  ,   ) ( ) ( ) ( )J R M t U K f t g t= + ,                   (24) 

where ( )f t  and ( )g t  satisfy the necessary boundary conditions ( )f T =1 and ( )g T =0, respectively. Given 

this functional form, we take derivatives of ( ,  ,   )J R M t  with respect to its arguments,  

( ) ( ) ,
( )

T

t
rds

R
dU KJ f t e
U K

∫= ⋅ and
2 2

2

( ) ( )
( )

T

t
rds

RR RM
d U KJ J f t e
U K

∫= − = ⋅ , where 
( )

( )
dU K
U K

 and 
2

2

( )
( )

d U K
U K

 

stand for the first order and the second order mathematical derivatives, respectively. Substituting the previous partial 

derivatives into the HJB equation in Equation (23) and using a specific utility function of the HARA type  
2

2

( ) ( )/
( ) ( )

dU d U c
U U

φ φ φ
φ φ

− = + >0,                      (25) 

where 
( )

( )
dU
U

φ
φ

 and 
2

2

( )
( )

d U
U

φ
φ

 stand for the first order and the second order mathematical derivatives of portfolio 

weight φ , respectively. 

in this case, we have ( ) ln( )U a c bφ φ= + +  and the first order 
( )

( )
dU a
U c

φ
φ φ

=
+

, where 0a ≠  is a conforming 

constant such that the function ( )U φ  is strictly concave within the domain and b is an arbitrary constant. We can 

reduce the optimality equation in (24) as  

( ) ( ) 1 ( )( ) ( ) ( ) 0
2 ( )

df t dg t dU KU K K c f t
dt dt U K

α+ + + =             (26) 

where K  is the function ( - )
T

t
rds

R M e
−∫⋅  and the value α  is actually equal to the risk premium of the growth 
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optimum in the risky assets. If the market portfolio in the risky asset is equivalent to the growth optimal portfolio, α  

should be viewed as the risk premium for the overall market. The solution in accordance with utility function form, by 

substituting, Equation (26) becomes 

( ln( )a K c b+ + )
( ) ( ) 1 ( ) 0

2
df t dg t a f t

dt dt
α+ + ⋅ ⋅ = .           (27)  

Similarly, it must be true that 
( ) 0df t

dt
=  and 

( ) 1 ( )
2

dg t a f t
dt

α= − ⋅ ⋅ , with the boundary condition ( ) 1f T =  

and ( ) 0g T = , it follows that  

( ) 1f t =  and 
1( )
2

T

t
g T a dsα= − ∫ . Therefore, substituting the obtained ( )f t  and ( )g t  back into equation 

(24) yields the optimal value function 

1( , , ) (ln( ( ) ) )
2

T

t
Trds

t
J R M t a e R M c ds bα∫= − + − +∫            (28) 

The parameters, a, b and c are constant. As for the embedded maximization, it is required that the optimal value 

function J be strictly concave in R.  

Having obtained the optimal value function, we now explicitly derive the optimal portfolio weight at each point in 

time. As a result of direct calculation using Equation (22) and (27), for any utility function of the HARA type as defined 

in Equation (25), the corresponding optimal weights are  

*
active =Φ

T

t
rds

G M
R M ce M

RR

−∫− +
+Φ Φ .              (29) 

Similar to Browne (2000), our actively managed portfolio is also a dynamic linear combination of weights in the 

growth optimum and the benchmark. However, the percentages allocated to the growth optimal portfolio and the 

benchmark must depend independently on the two state variables contrary to Browne (2000) in which the allocation 

depends on the single state variable, the ratio of the actively managed portfolio return and the benchmark portfolio 

return. When the utility function is logarithmic (c=0), the two optimal investment policies are identical. In this special 

case, by minimizing the time to achieve some target return before dropping to a subsistent level is equivalent to 

maximizing the expected logarithmic of return. The investors will solely split the funds in the benchmark and the 

growth optimum.    

However, the optimal weights are dynamically changing and depending on the actual outcome of the returns on the 

benchmark and the growth optimum. Our model is more general than Browne (2000) in a sense that it provides the 

investment managers/investors with more flexible allocation strategies depending on the two state variables 

independently. Since M(0)=R(0)=1, (if c ≠ 0), the managers/investors will initially invest all funds in the benchmark 

and finance the growth optimum portfolio through the cash bond (riskfree asset) if required. 

 The optimal weight in the benchmark portfolio dynamically depends on the ratio, 
M
R

, of the performance of the 

benchmark to that of the actively managed portfolio. It is true that if the benchmark performs better than the fund, the 

fund then allocates more in the benchmark portfolio than in the growth optimum. With 
T

t
rds

e
−∫  being interpreted as the 
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price of the cash bond, the optimal allocation to the growth optimum depends not only on the ratio
M
R

, but also on the 

ratio 

T

t
rds

e
R

−∫
 of the returns on the actively managed fund. The sum of the weights in the benchmark portfolio and the 

growth optimum is 1

T T

t t
rds rds

R M ce ceM
RR R

− −∫ ∫− +
+ = +  which is greater or less than one depending on the sign 

of the constant c. 

 
4.4 Criteria for Adjusting Portfolio Choice 

 
We now turn to the discussion of the optimal portfolio return over time. Since the optimal weight vector is a linear 

combination of the growth optimum and the benchmark portfolio as in Equation (29), one might imagine that the 

optimal portfolio return should be expressible in terms of the returns on the growth optimum and the benchmark 

portfolio. We find the relationship between the optimal portfolio return, growth optimum returns and benchmark 

portfolio return by substituting the optimal weight from Equation (29) in (9), which yields 

[ ( ) ( )]

T

t
rds

G M
dR R M c e Mr r dt
R R G

−∫− + ⋅ ′= + + − ⋅Φ Φ μ 1  

( ) ( )

T

t
G M

R M c rds M r d
R G

− + ⋅
′+ + − ⋅∫ Φ Φ μ 1 σ Z             (30) 

Combining with the dynamics of the growth optimum portfolio (17), it follows that 

0( ) [ ( ) ( )( ) ( )
t
rds

Md R M r R M R M c e r dt
−∫ ′− = − + − + ⋅ − ⋅Φ μ 1  

0( )( ) ( )
t
rds

MR M c e r d
−∫ ′+ − + ⋅ − ⋅Φ μ 1 σ Z              (31) 

The direct application of the Ito’s formula for a given stochastic process t
t t t

t

dP dt dZ
P

μ σ= + , at the most time 

varying with 0 0,q ≠  the solution to the stochastic differential equation t t

t t

dP dQk
P Q

=  is given as  

0

1 (1 )0 2

0

t
s sk k dsk

t t
PP Q e
Q

σ σ ′− ∫= ,                        (32) 

for any constant k. According to the dynamics of the growth optimum portfolio return that implies  

0

0

( ) ( )
( )

t

t

rds

G x G
rds

d G e r dt d
G e

λ
−

−

∫⋅ ′ ′= − ⋅ − +
∫⋅

Φ μ 1 μ Φ σ Z          (33) 

Therefore, by (32) if 0k ≠ , 
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0 0
0

0 0 0

(( ) ) ( )

( ) ( )

t T
t

t T t

rds rds
rds

rds rds rds

cd r M e e d G ek k
cr M e e G e
k

− −
−

− − −

∫ ∫− + ⋅ ∫⋅
= ⋅

∫ ∫ ∫− + ⋅ ⋅
                   (34a) 

then 

00 0 0 0

1 (1 )
2( ) ( )

tt T T t
k k dsrds rds rds rds kc cR M e e e G e e

k k
α−− − − − ∫∫ ∫ ∫ ∫− + ⋅ = ⋅ ⋅        (34b) 

Thus, the relationship is expressed by  

0 0

1 (1 )
2( 1)

t tT

t
k rds k k dsrds kcR M e G e

k
α− + −− ∫ ∫∫= + ⋅ ⋅ −             (35) 

where G is the gross return of the growth optimum portfolio with (0) 1G = . 

Owing to the optimal portfolio return is closely related to the return of the benchmark portfolio. The excess return of 

the actively managed portfolio is paid off on a risk adjusted basis. The added value is determined by the risk aversion 

level and the investment horizon. Thus, the added values are related to the risk aversion level and the investment 

horizon under the reward and variability are essential component in investment. If the investor’s utility function ( )U φ  

is of constant relative risk aversion, the return of an actively managed portfolio is identical to the return on the 

benchmark. In other words, the passive portfolio management strategy is optimal for constant relative risk aversion 

(CRRA) investors. Thereafter active portfolio managements for CRRA utilities, such as standard logarithmic and power 

utilities, and the exponential utilities do not add any value over the benchmark performance, since the optimal portfolio 

for these investors is identical to the benchmark. However, some of the utility functions of the hyperbolic absolute risk 

aversion (HARA) type do generate different optimal portfolios which are different from the benchmark, even though 

popular investment approach of mean variance analysis which explicitly characterizes the tradeoff between return and 

risk falls into this category of utility function. With risk aversion indexγ , let γφ  and Rγ  denote the optimal weight 

vector and the optimal gross return, respectively. By Equation (29) the optimal weight vector is  

*
γ =Φ

1 T

t
rds

G M

M R e
M
RR

γ

γγ

γ
−∫− +

+Φ Φ .                 (36) 

We find the criteria for adjusting portfolio choice focus on the tradeoff between excess return and variability relative 

to a benchmark. Since the risk of an actively managed portfolio is characterized by the performance of the selected 

benchmark, it may be more desirable to focus on the variation of the optimal portfolio over the benchmark. For instance, 

if the excess return of a portfolio is constant and equal to a negative value, the risk in the direction of error mean 

variance analysis would be quantified as zero, which is certainly unacceptable. To deviate from the variance measure, 

we use the variability which is defined as the mean square error between the actively management portfolio and the 

benchmark. For risk aversion level,γ , the objective function is defined as 

21max  [ ] [ ]
2

E R M E R Mγ− − −                      (37) 

which is equivalent to maximizing the expected quadratic utility of the excess return in the form 21( )
2

U φ φ γφ= − . 
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From the general form of the HARA utility function (27), the corresponding parameters, , ,k a b  and c  depend on 

the risk aversion index, γ  and are equal to -1, γ− , 
1

2γ
 and 

1
γ

, respectively. The optimal gross portfolio return 

depends on the risk aversion index is the benchmark plus some value of excess return related to the growth optimum on 

a risk adjusted basis. Explicitly by Equation (35), the optimal gross return with risk aversion indexγ , is  

0 011 (1 )
T t t

t
rds rds ds

R M e G e
α

γ γ
− −−∫ ∫ ∫= + −                   (38) 

with 
1
γ

 being interpreted as risk tolerance. Equation (38) implies that the excess return or value added is 

proportional to the risk tolerance, with a ratio being negatively sloped linear function of the inverse of growth optimum 

return. It implicates the higher growth optimum return, the greater the marginal excess return per risk tolerance. With 

growth return TG e α−> , a positive premium is added by using adjusted portfolio management. Otherwise, TG e α−< , 
a negative premium is added. When the event jump incurs the risk premium ( )xr λ− ⋅ −μ 1 μ  varying, thus 

1( ) ( ) ( )x xr rα λ λ−′ ′= − ⋅ − − ⋅ −μ 1 μ σσ μ 1 μ  forms a critical value in the optimal gross return when there are 

event jumps. Whether the adjusted portfolio achieves a positive excess return is dependent on the growth optimal 

portfolio, which can be viewed as a reference portfolio. Henceforth if the event jump xλμ to downward side α will 

compensate the jump risk, otherwise the event jump xλμ  to upward side α will reduce the compensation of the 

jump risk. When the risk premium on event jump portfolio ( )xr λ− ⋅ −μ 1 μ  is less than the optimal estimates about 

the excess return ( r− ⋅m 1 ), the investment will vary with the risk premium.   
 

 
5. Numeric Example 
 

In practice, many individual professional and institutional investors follow the benchmarking procedure: for example, 

many mutual funds take the Standard and Poors (S&P) 500 Index as a benchmark; commodity funds seek to beat the 

Goldman Sachs Commodity Index; bond funds try to beat the Lehman Brothers Bond Index/ etc. Moreover, 

benchmarking is not specific to professional investors, as many individual investors have implicitly followed a 

benchmarking procedure, for example, by trying to beat inflation, exchange rates, or other indices. In other applications, 

such as pension funds, the benchmark might be a liability, see Litterman and Winkelman (1996). For a treatment of 

active portfolio management in a static setting, see Grinold and Kahn (2000).  

We now calibrate a world stock portfolio that is a diversified portfolio to approximate the implementation. The 

paper employs monthly data over the period from January, 1997 to April, 2005 for a sample of country event risk on 

stock returns of BRICs. For comparative purposes, a sample of stock returns on developed markets of US, UK and 

Japan is also considered. We investigate the variety of stock returns without considering dividend yields. Since the 

literature can be used generally to aid in the identification of local risk factors that might play important roles across 

emerging markets. For instance, Bekaert and Harvey (2000) find dividend yields to be important determinants of local 

equity market variation in emerging markets, and further argue that dividend yields may proxy for capital market 

liberalization. Similar associations between returns and dividend yields have been reported for developed markets. 



 
 

14

Dividend yields forecast both future dividend changes and future stock returns when the expected returns vary through 

time. They are often used because permanent changes in costs of capital are more likely to be reflected in dividend 

yields than in returns. Further, dividend yields exhibit less variability than stock returns and hence are more likely to 

represent permanent, rather than transitory changes (Bekaert and Harvey, 2000). For this reason, we study the 

instantaneous movement in mean and standard deviation of stock return excluding the dividend yield.   

Stock values fluctuate in response to the activities of individual companies, and general market and economic 

conditions. One may have a gain or loss when one sell his shares. In addition to those general risks, international 

investing involves different or increased risks. The performance of international funds depends upon currency values, 

political and regulatory environments, and overall market and economic factors in the countries in which they invest. 

The risks are magnified in countries with emerging markets, since these countries may have relatively unstable 

governments and less established markets and economies. Suppose the investment opportunities consist of a riskless 

asset earning r=2% per annum and risky assets of seven countries, the data for US, UK, Japan, Brazil, Russia, India and 

China are retrieved from NASDAQ composition, London-FTSE-100 Index, Tokyo Nikkei 225 Index, Brazil Bovesp 

Index, Moscow Times Stock Index, Bombay Stock Exchange Index, and Shanghai Synthesis Index respectively. By 

investigating the monthly data period under the condition of political instability firstly, we present the parameter 

estimates for a jump-diffusion model of BRICs as specified by Press (1967) and summarize the statistical properties of 

the stock price return for US, UK and Japan in Table 1.  

Table 1.   Statistical Parameter Estimates for Stock Price Return 

 
Region 

           

μ  
2σ  

ˆxμ  2ˆ xσ  λ̂  

Developing countries: 

Brazil 

0.0132 0.0120 0.0311 

(-0.2289) 

0.0116 0.4233 

(0.0575) 

Russia      0.0348 0.0157 0.1621 

(-0.3708) 

0.0135 0.2147 

(0.0939) 

India          0.0066 0.0068 0.1878 0.0041 

(-0.0251) 

0.2632 

(0.0352) 

China 0.0016 0.0045 0.4347 

(-0.6416) 

0.0131 0.0025 

(0.0036) 

Developed countries: 

US 

 

0.0066 

 

0.0083 

 

-- 

 

-- 

 

-- 

UK 0.0007 0.0019 -- -- -- 
Japan -0.005 0.0032 -- -- -- 

Note: μ  is the mean of stock return, 2σ  is the instantaneous variance of stock return, and a Poisson process with 

stochastic estimated arrival intensity λ̂ . A random percentage jump size with estimated mean return ˆxμ , and 2ˆ xσ  

is the estimated variance of random percentage jump size of stock price return. 
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BrazilS , RussiaS , IndiaS , ChinaS , USS , UKS  and JapanS  represent the stock price dynamics of Brazil Bovesp Index, 

Moscow Times Stock Index, Bombay Stock Exchange Index, Shanghai Synthesis Index, NASDAQ composition, 

London-FTSE-100 Index, and Tokyo Nikkei 225 Index, respectively with the following process: 

  JapanBrazil Russia India China US UK

Brazil Russia India China US UK Japan

dSdS dS dS dS dS dS
S S S S S S S

′⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= 

0.0132 0.0120 0.0077 0.0038 0.0006 0.0061 0.0029 0.0024
0.0348 0.0077 0.0157 0.0023 0.0017 0.0045 0.0025 0.0024
0.0066 0.0038 0.0023 0.0068 0.0009 0.0029 0.0007 0.0017
0.0016 0.0006 0.0017 0.0009 0.0045 0.0004 -0.0002 0.0005
0.0067 0.0062 0.0045 0.0029 0.0004 0.0083 0.0025 0.0027
0.0007 0.0029 0.0025 0.0007 -0.00020.0025 0.0019 0.0010
-0.005 0.0024 0.0024 0.0016 0.0005 0.0027 0.0010 0.0032

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

1

2

3

4

5

6

7

dt
dZ
dZ
dZ
dZ
dZ
dZ
dZ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    (39)  

0.012 0.0137 0.0090 0.0073 0.0099 0.0047 0.0046
0.0137 0.0157 0.0103 0.0084 0.0114 0.0054 0.0071
0.0090 0.0103 0.0068 0.0055 0.0075 0.0036 0.0046

( ) 0.0073 0.0084 0.0055 0.0045 0.0061 0.0029 0.0038
0.0099 0.0114 0.0075 0.0061 0

′ =σσ
.0083 0.0039 0.0051

0.0047 0.0055 0.0036 0.0029 0.0039 0.0019 0.0024
0.0046 0.0071 0.0046 0.0038 0.0051 0.0025 0.0032

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        (40)  

(40) implies that the inverse matrix of covariance matrix is  

1

   -0.0073    0.0052   -0.0055    0.1359   -0.0324   -0.0073   -0.0931
    0.0251    0.1689   -0.1499   -0.2627    0.6094   -1.2007    0.0655
    0.1030   -0.1640    0.3199   -2.0101  

( ) 1.0e+004 *−′ =σσ
 0.3175    1.4839    0.4282

   -0.0803   -0.1161   -0.0425    1.7275   -0.3361   -1.0014   -0.2612
   -0.0074    0.0151    0.2809    0.1639   -0.4146    0.0983   -0.0305
   -0.0452   -0.0789   -0.7411  

.

 1.6457   -0.9869    1.7299   -0.3569
   -0.0512    0.0290    0.0522   -0.3024    0.0604    0.2366    0.0378 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(41)  

For simplicity without loss of the generality, given 3γ = , we calculate the benchmark portfolio weights with no jumps 

in the risky assets by  
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* 1 1

-0.0068
0.0148
-0.0134

1( ) ( ) -0.0184
3

-0.0134
-0.0193
-0.025

M
r
γ

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⋅ ⎢ ⎥′ ′= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

μ - 1Φ σσ σσ =

    2.0031
  75.1365
 -46.7615
  -6.7523
  -6.9445
-108.1713
  -2.2607  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (42) 

Thus, the dynamics of the benchmark M portfolio return is, 

( )
( )

dM t
M t

=[ ( ) ( )] ( )M Mr r dt d′ ′+ ⋅ +Φ μ - 1 Φ σ Z =4.1065 dt + 

[ ]

1

2

3

4

5

6

7

0.2193  9.4143  -3.8561  -0.4529  -0.6326  -4.7141  -0.1278

dZ
dZ
dZ
dZ
dZ
dZ
dZ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (43) 

For the risk premium, [ ]xr λ⋅ −μ - 1 μ =[ ]-0.0199,-0.02,-0.0628,-0.0195,-0.0134,-0.0193,-0.025 t
 with 

upward jumps, and  

 [ ]xr λ⋅ −μ - 1 μ =[ ]0.0063,0.0496,-0.0125,-0.0161,-0.0134,-0.0193,-0.025 t
 with downward jumps, and 

r =0.02.  

By Equation (16) 

[ ]1( ) [ ] -20.1934,135.1222, 212.9423, -286.8272, -235.0969,134.5251, 34.2799 t
G xr λ−′= ⋅ − =Φ σσ μ - 1 μ

 with upward jumps, 

 and [ ]-16.5857,174.9614,218.4717,-351.4773,-79.6417,-249.2130,57.0151 t
 with downward jumps. 

1[ ] ( ) ( )x xr rα λ λ−′ ′= ⋅ − ⋅ −μ - 1 μ σσ μ - 1 μ =-11.7172 with upward jumps, or 10.5106 with downward jumps. 

By Equation (17) 

( )
( )

dG t
G t

=[ ] ( )Gr dt dα ′+ + Φ σ Z  

=-11.6972 dt +[-2.211  16.930  17.559  -19.241  -21.418  5.862  1.939]dZ    (44) 

with upward jumps, or 10.5306 dt +[-0.242  2.1213  1.4480  -1.2906  -1.9513  0.2555  0.1096]dZ  with 

downward jumps. We then pass the function needed to solve the first-order system of Ordinary Differential Equation. 
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We obtain 4.1065t-0.1511ZM e=  and -11.6972t-0.57774ZG e=  with upward jumps, or 10.5306t+0.45053ZG e=  with 

downward jumps, assuming the investment horizon is a year (i.e. T=1). Note that the optimal gross portfolio return, 

dependent on the risk aversion index, is the benchmark plus some value excess return related to the growth optimum on 

a risk adjusted basis. Explicitly by Equation (36), the optimal portfolio weights in the risky assets are the vector 

*
γ =Φ

1 T

t
rds

G M

M R e
M
RR

γ

γγ

γ
−∫− +

+Φ Φ  

5

  -20.1934      2.0031
 135.1222    75.1365
 212.9423   -46.7615

6.0596 10  -286.8272 0.994656    -6.7523
-235.0969    -6.9445
 134.5251  -108.1713
   34.2799      -2.2607  

−

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢= × +⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

         (45) 

with upward jumps, or  5

  -16.5857      2.0031
  174.9614    75.1365
  218.4717   -46.7615

6.0596 10  -351.4773 0.994656    -6.7523
   -79.6417    -6.9445
 -249.2130  -108.1713
    57.0151      -2.2607  

−

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢× +⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦

  with downward jumps. 

Sensitivity analysis of optimal gross return Rγ , by simulating the equation (38) is given in Table 2. 

Table 2.  Risk Adjusted Basis Sensitivity Analysis of Optimal Gross Return 
(Jump Once Only λ =1) 

Risk Aversion Parameter Jump size 
Optimal Gross Return Rγ  

  1
10

t =  
1
2

t =  
9

10
t =  

0.5 0.9 6.4661 5.9492 5.5722 

 0.2 14.4915 14.5153 14.5391 

 0 2.4719 2.4719 2.4719 

 -0.2 -5.1247 -5.1012 -5.0776 

 -0.9 2.4324 2.9847 3.3934 

3.0 0.9 1.0944 1.0082 0.9454 

 0.2 2.4319 2.4359 2.4399 
 0 0.4287 0.4287 0.4287 
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 -0.2 -0.8375 -0.8335 -0.8296 
 -0.9 0.4221 0.5141 0.5822 

Table 2 shows that 20% downward jumps incur the negative gross return and risk aversion deserves preserved gross 

return. The gross return grows with time when jumps occur, except for the 90% jump size.   

 
6. Conclusion  
 

In the search for the appropriate criteria to be used for adjusting portfolio weights, we reveal 
some interesting findings. First, the critical criterion for adjusting the actively diversified portfolio is the survival rate of 

portfolio return below which the active portfolio under performs the selected benchmark. The optimal weight in the 

benchmark portfolio is dynamically dependent on the ratio of the performance of the benchmark to that of the actively 

managed portfolio. We also discover that if the benchmark performs better than the actively managed fund, the fund 

manager allocates more in the benchmark than in the growth optimum.  

With the survival rate, a compound rate being interpreted as the price of the bond, the optimal allocation to the 

growth optimum depends not only on the ratio of the benchmark to that of the actively managed portfolio, but also on 

the ratio of the returns on the money market fund and the actively managed fund. 

Whether the sum of the weights in the benchmark portfolio and the growth optimum is greater or less than 1 is 

dependent on the sign of the constant term in equation (38). 
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Appendix  

 
Using the relationship between cumulants and moments (Kendall and Stuart, 1963), it can be proven that this distribution 

is leptokurtic and therefore might better describe the actual stock price return behavior than the pure lognormal model. 

  Let ik  denotes the i-th cumulant, the kurtosis for a Poisson mixture of normal distribution is written as 

( )
( )

4 2 2 4
4

22 2 2 2
2

3 6x x x x

x x

k
k

λτ σ μ σ μ

σ τ λτσ λτμ

+ +
=

+ +
. It is easily seen to be positive as 4

2
2

k
k

 is zero for the normal distribution. The skewness 

has the sign of xμ ,      
( )

( )

2 2
3
3 3

2 2 22 2
2

3x x x

x x

k

k

λτμ σ μ

σ τ λτσ λτμ

+
=

+ +
, 3

3
2

2

k

k
=0, if xμ =0. Press (1967) assumes that the diffusion 

component has zero drift (μ =0), thereby reducing the number parameters to be estimated to four（ λ̂，
2σ̂ ，

2ˆ xσ ， ˆxμ ）in 

the model. The parameter estimation approach employs the cumulant matching method which relies upon the theoretical 

relationship between the population’s cumulants and the parameters of the data distribution. These four unknown variables 

can be derived by letting the relationship between the sample cumulants and the sample moments centered at around zero. It 

yields the solution by solving the following simultaneous equations:  

 
2

4 23 34
2

1 1 1

1

2
2 3 1

1

2
2 2 3 11

2
1

32 0
2 2

ˆ

ˆ
3

ˆ ,
3

x x x

x

x
x

x
x

x

k kk
k k k

k

k k
k

k kkk
k

μ μ μ

λ
μ

μσ

μσ μ
μ

⎧
⎪ − + − =
⎪
⎪
⎪ =⎪⎪
⎨

−⎪ =⎪
⎪
⎪ ⎛ ⎞−

= − +⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

 

where ik  denotes the sample cumulant. The polynomial in xμ  has four roots: two complex and two real. Of these 

roots, the real root which yields a positive λ̂  is chosen. Beckers (1981) considers that to obtain sensible parameter values 
some different prior restrictions must be applied to the diffusion mean. Therefore, the mean jump equal to zero is applied in 

estimation. This allows that at random intervals the stock price returns experience positive or negative jumps but presumes 

that the jumps average to zero. For the reasonable result in the impacts of jumps setting up the model, the mean return to the 

risky asset μ  is independent of the jump occurrence. Thus, we apply the way that Press obtains his parameter estimates. 
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