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Abstract 
 
A complicated decision-making problem such as environmental impact assessment usually requires 

both quantitative and qualitative decision support tools to collaborate for reaping their benefits 
concurrently. Although the analytic hierarchy process (AHP) has been widely used in EIA, it is hardly to 
address the dependence issue among environmental factors and reflect the subjectivity between science 
and societal values and beliefs. This paper proposes an integrated model to incorporate fuzzy analytic 
network process (quantitative decision support) with fuzzy logic (qualitative decision support) for 
managing environmental impact assessment. Finally, the proposed approach was applied to the EIEs of 
construction projects, exemplified in a case study of the Taiwan High-Speed Rail project.  

 
 
1. Introduction 

In decision theory, there are three types of decision-making: (1) structured, (2) unstructured and (3) semi-structured 
[24]. Structured decision-making is well defined, clearly understood and routine in nature, and can be addressed by 
following a set of standard operating procedures, data processing and management-science models. Structured 
decision-making can be handled by means of quantitative decision support tools such as analytic hierarchy process 
(AHP) [18] or analytic network process (ANP) [19]. On the other hand, unstructured decision-makings cannot be 
addressed by using standard operating procedures because it often has its basis in human intuition, judgment, 
knowledge, and adaptive problem-solving behavior. Qualitative decision support methods such as fuzzy logic [26] 
appear more suitable for dealing with unstructured decision-making. Semi-structured decision-making, having both 
structured and unstructured elements, is a combination of both standard solution procedures and human judgment. 
Environmental impact assessment (EIA) is such a complex semi-structured decision-making because it should not only 
consider the scientific aspect (quantitative decision-making) but also reflect political values and social acceptability 
(qualitative decision-making). Therefore, integrating quantitative and qualitative decision support tools for EIA is the 
focus of this paper. 

 
EIA can be defined as the systematic identification and evaluation of the potential impacts (effects) of proposed 

projects, plans, programs, or legislative actions relative to the physical-chemical, biological, cultural, and 
socioeconomic components of the total environment [4]. The EIA process essentially involves scoping, studying 
baseline conditions, identifying potential impacts, predicting significant impacts, and evaluating them. Scoping 
determines which components are to be included in the EIA and alternatives to be considered. A baseline condition, 
namely the existing environment, is recognized as a benchmark by which the future conditions of project alternatives 
are compared. Historically, several methodologies have been developed for the identification of impacts on the baseline 
condition, including the ad hoc, overlay, checklist, matrix, and networks methods. The purpose of impact prediction is 
to forecast the effects of an identified impact through methods such as subjective judgment, case studies, quantitative 
mathematical models, statistical models, pilot models and experiments. Once an impact has been forecasted, it is 
necessary to evaluate it.  

 
Traditionally, the use of AHP has become a significant trend in EIA due to its capability for facilitating multi-criteria 
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decision-making. For example, Tsamboulas and Mikroudis [15] devoted themselves to the combination of the AHP with 
cost-benefit analysis methods to develop an overall assessment of the impacts of transport initiatives over different 
geographical regions and time periods. Ong et al. [22] used the AHP method to assess the environmental impact of 
materials process techniques by deriving a single environmental score based on process emissions for each of the 
products or alternatives evaluated. In order to compare three large industrial development alternatives in an orderly 
manner, Sblnes [21] applied the AHP to calculate the environmental quality index of each. Readers are referred to 
Ramanathan’s [16] discussion on the advantages and shortcomings of using the AHP for environmental impact 
assessment. 

 
Despite the popularity of the AHP in EIA, it should be noted that the AHP makes three critical assumptions [8]. First, 

the relevant criteria form a hierarchical decision system and remain independent of each other. Second, the relevant 
criteria are well defined; hence, their scores are easily evaluated. Third, the relevant criteria and their associated weights 
are certain. However, these assumptions are not agreeable to the properties of EIA depicted below.  
 

 Dependences among environmental factors. The environmental factors involved in EIA can be roughly grouped 
into three categories: environmental pollution, ecological alteration and socioeconomic disturbance. The 
developments of human society and economics produce environmental pollution leading to further changes in the 
ecology. However, environmental pollution and destroyed ecology also increasingly impair human socioeconomic 
progress. These environmental factors are obviously interdependent; i.e., they can partially influence each other to 
various extents. In this paper, ‘dependence’ is synonymous with ‘influence.’  

 Subjectivity in EIA. Two sources of subjectivity in EIA originate in estimating the relative importances of 
environmental factors and evaluating the impacts induced by a project. Both are concerned with balancing 
economic developments, environmental risk and societal values, in which considerable subjective judgment is 
required because expertise, in addition to political values and social acceptability, has a significant role. Therefore, 
the subjectivity is inevitable in EIA, as Kontic [12] stated: ‘The influence of personal value systems and beliefs is 
unavoidable when creating an expert evaluation and interpretation (p.431).’  

 Fuzziness accompanied by subjectivity. Fuzziness originates from the qualitative nature of human thinking. In 
EIA, concepts, values and judgments are usually expressed as linguistic terms that are inherently imprecise, vague, 
ambiguous or fuzzy.  

 
The analytic network process (ANP) [19] relieves the independence limitation inherent in the AHP so that several 

researchers have been able to manipulate the dependence property of environmental factors. For example, according to 
data on the land cover, population, roads, streams, air pollution and topography of the Mid-Atlantic Region of the 
United States, Tran et al. [23] conducted an integrated environmental assessment by combining principal component 
analysis and the ANP. Chen et al. [5] introduced the use of the ANP to develop a decision model for evaluating 
potentially adverse environmental impacts of alternative construction plans. Although Mikhailov and Madan [14] have 
proposed a fuzzy extension of the ANP called fuzzy analytic network process (FANP), which allows fuzzy weights for 
dealing with imprecise human comparison judgments, there is still no published literature reporting the use of the FANP 
to appraise environmental impacts. 

 
Due to its ability to imitate human capabilities that manipulate perceptions and subjectivities to draw conclusions, 

fuzzy logic [27], i.e., ‘computing with words,’ has been applied to a variety of problems in environmental science and 
management, including the modelling of eutrophication in Taihu Lake [6], decision support in ecosystem management 
[1], an evaluation of environmental impact indicators for the mixed cropping systems of the Inland Pampa [9], a 
performance evaluation of slow sand filters used for wastewater treatment [20],  forecasting the possibility of next-day 
high-ozone levels (Heo and Kim, 2004), an integrated assessment of watershed conditions for sedimentation [7], and an 
assessment of sustainable development [2]. Borri et al. [3] introduced a fuzzy rule-based methodology for 
environmental evaluation which provided a robust tool to directly cope with linguistic models of human interpretation 
of environmental systems. Van der Werf and Zimmer [25], as well as Roussel et al. [17], endeavored to use fuzzy expert 
systems to calculate an indicator "Ipest" which reflects an expert perception of the potential environmental impact of the 
application of a pesticide in a crop field. Gonz´alez et al. [10] utilized fuzzy logic to avoid the need for in-depth 
environmental knowledge and extremely accurate data to implement the assessment, thus making life-cycle assessment 
more applicable to small and medium-sized enterprises. 

 
To consider these three properties of EIA simultaneously, this study attempted to integrate fuzzy logic into 

(qualitative decision support tool) a fuzzy analytic network process (quantitative decision support tool) to establish a 
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hybrid framework for evaluating environmental impacts. More specifically, this study sought to fulfil environmental 
impact evaluations by using fuzzy-set theory to model the fuzziness of the subjectivity, fuzzy analytic network process 
to manage the dependences among environmental factors and fuzzy logic to manipulate the subjectivity as experts do in 
an synthesized manner.  

 
2. Evaluation Methodologies 
 
2.1 Overall Evaluation Framework 

An evaluation framework for the environmental impact of public infrastructure projects during construction is depicted in 
Fig. 1. This framework considers the overall impact determined by three major clusters: environmental pollution, ecological 
alteration and socioeconomic disturbance. The environmental pollution contains five indicators: air (I1), water (I2), soil 
(I3), noise (I4), solid waste (I5); the ecological alteration contains two indicators: terrestrial (I6), aquatic (I7); the 
socioeconomic disturbance includes three indicators: economics (I8), society (I9) and culture (I10). When assessing these 
ten indicators, the concept of ‘acceptability’ is employed because it can appropriately reflect the confluence between science 
and societal values and beliefs, which is a subjective and qualitative judgment. As shown in Fig. 1 (a), fuzzy logic is applied to 
infer the acceptabilities because it can bridge the gap between scientific measurement and the fulfilment of social objectives 
and provide a way to translate a wide variety of information - objective data, qualitative information, subjective opinions, and 
social needs - into a common language for characterising environmental effects (Silvert, 2000). The evaluation of 
acceptabilities of impacts related to these indicators is based on their respective sub-indicators. Air pollution evaluation refers 
to the appraisal of emission of carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and total suspended 
particulates (TSP); water pollution evaluation involves the conditions of dissolved oxygen (DO), biochemical oxygen demand 
(BOD), suspended solids (SS) and ammonia nitrogen (NH3-N) in surface and ground water; soil pollution evaluation denotes 
liquid and gaseous chemical residues in soil; noise pollution evaluation indicates noise and vibration induced by construction 
equipment; solid waste evaluation implies rubbish and industrial waste from construction sites. The evaluation of threats to 
terrestrial species considers the threatened percentages of terrestrial animals, plants and endangered species; moreover, a 
similar evaluation focusing on aquatic species examines the threatened percentages of aquatic animals, plants and endangered 
species. Economic evaluation encompasses disturbances in land-use and development, life quality and economic activities. 
Societal evaluation considers inaccessibilities in public facilities and transportation, and disconnection in communities. 
Cultural evaluation encompasses destroyed cultural heritage and landscapes. The use of fuzzy logic to estimate the indicators 
is outlined in section 2.2. 

 
An evaluation of the overall acceptability of the environmental impact based on these ten indicators involves three 

properties. First, the ten indicators crossing three clusters exist dependences to a certain extent. For example, a lower 
acceptability of water pollution can directly threaten terrestrial and aquatic habitats and somewhat restrain economic 
development, resulting in lower acceptabilities of ecological and economic conditions. Conversely, unacceptable economic 
developments usually cause more water pollution, which in turn leads to threatening natural habitats. Second, due to a lack of 
complete understanding of the interaction between indicators, it is difficult to accurately formulate the mechanism of 
dependence; therefore, expert subjectivity plays a significant role in assessing dependences among indicators. Third, fuzziness 
originates from the qualitative nature of human thinking. The degrees of dependences among indicators are usually expressed 
as in linguistic terms that are inherently fuzzy. To consider these three properties, this study utilised the fuzzy analytic network 
process [14] to evaluate the environmental impact on the basis of the ten indicators shown in Fig. 1 (b) and discussed in 
section 2.3. 
 
2.2 Fuzzy Logic  

Fuzzy logic [27] can be treated as a tool having the ability to compute with words for modeling qualitative human thought 
processes in the analysis of complex systems and decisions. In fuzzy logic, qualitative perception-based reasoning is 
represented by ‘IF-THEN’ fuzzy rules. The rule set concerning the acceptability of air pollution can be exemplified as  

 
Rule 1: IF CO concentration is high AND SO2 concentration is high AND NO2 concentration is high AND TSP 

concentration is high THEN acceptability of I1 is very unacceptable. 
Rule 2: IF CO concentration is high AND SO2 concentration is high AND NO2 concentration is high AND TSP 

concentration is medium THEN acceptability of I1 is unacceptable. 
….. 
Rule 80: IF CO concentration is low AND SO2 concentration is low AND NO2 concentration is low AND TSP 

concentration is medium THEN acceptability of I1 is acceptable. 
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Rule 81: IF CO concentration is low AND SO2 concentration is low AND NO2 concentration is low AND TSP 
concentration is low THEN acceptability of I1 is very acceptable. 

where ‘CO concentration,’ ‘SO2 concentration,’ ‘NO2 concentration,’ ‘TSP concentration’ and ‘acceptability of I1’  are 
linguistic variables; ‘high,’ ‘medium,’ ‘low,’ ‘very unacceptable,’ ‘unacceptable,’ ‘acceptable’ and ‘very acceptable’ are their 
possible fuzzy values, as defined in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 1  An evaluation framework of environmental impact for public infrastructure projects during 

construction 
When assuming that four factual statements (i.e., Fact 1: CO concentration is 5.6 ppm; Fact 2: SO2 concentration is 9.1 

ppb; Fact 3: NO2 concentration is 31.8 ppb; Fact 4: TSP concentration is 187.0 μg/m3) are fed into this inference mechanism, 
Mamdani’s fuzzy reasoning [13] proceeds. Four major steps in reaching a conclusion using Mamdani’s fuzzy reasoning are 
illustrated in Fig. 3 and described as follows. 
 
Step 1: Computing compatibilities. Compatibility designates the similarity of an antecedent referring to a fact having the 
same linguistic variable or the suitability of a specific rule regarding several facts corresponding to the respective antecedents. 
For rule 80, the compatibility of Fact 1 with ‘CO concentration is low’ is 1.0; for Fact 2 with ‘SO2 concentration is low,’ 1.0; 
for Fact 3 with ‘NO2 concentration is low,’ 1.0; for Fact 4 with ‘TSP concentration is medium,’ 0.685. The overall 
compatibility of Rule 80 with the four facts is computed by a ‘min’ operator (i.e., minimum), thereby obtaining 0.685. 
Similarly, the compatibilities of Rules 81 with the same facts are 0.315. The overall compatibilities of rules 1 to 79 are not 
shown in Fig. 3 because these compatibilities are equal to zero. 
 
Step 2: Truncating conclusions. Once the compatibility for each rule has been calculated, the degree to which the 
antecedents have been satisfied for each rule is known. As shown in Fig. 3, a trapezoid conclusion is then inferred by 
truncating the triangular conclusion of each rule with its corresponding compatibility. 
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Step 3: Aggregating truncated conclusions. Several inferred conclusions having the same linguistic variable should be 
aggregated. Aggregation is the process by which the fuzzy sets representing the truncated conclusions of triggered rules are 
combined into a single fuzzy set. In Fig. 3, the final conclusion is aggregated by using the union of all truncated conclusions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Membership functions of fuzzy values for linguistic variables (a) CO concentration, (b) SO2 
concentration, (c) NO2 concentration, (d) TSP concentration and (e) acceptability of I1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Graphical representation of fuzzy reasoning 
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Step 4: Defuzzifying overall conclusion. In many cases, the final output of an inference system should be a single number. 
Defuzzification is a method to justifiably convert a fuzzy set into a precise value. This study utilised the center-of-gravity 
method, which takes the center of the area under the curve of the membership function of a fuzzy set as the answer. Fig. 3 
indicates that the score of acceptability for air pollution is 84.3.  
 

For evaluating the acceptabilities of the ten indicators, ten rule bases containing 252 fuzzy rules were produced: 81 rules 
for air (I1); for water (I2), 27; soil (I3), 9; noise (I4), 9; solid waste (I5), 9; terrestrial (I6), 27; aquatic (I8), 27; economics (I8), 27; 
society (I9), 27; culture (I10), 9. 

 
2.2   The analytic network process (ANP) 

The analytic network process (ANP) [19] extends the hierarchy structures in the AHP to networks so that dependence 
relationships among criteria can be manipulated. Similar to the AHP, the priorities in the ANP heavily rely on pairwise 
comparison, used to determine the influence of all criteria on a specific criterion. While comparing criteria, a natural 
way to represent comparison ratios is to use linguistic terms, thus reflecting the difficulty in expressing the preference 
of criteria by accurate numbers. Hence, the fuzzy analytic network process (FANP) [14] has been developed to tolerate 
fuzzy judgments in a pairwise comparison process, which can be summarized in seven steps.  
 
Step 1: Developing a decision hierarchy. A hierarchical structure including the decision goal, clusters, criteria, 
subcriteria and lower elements is configured. In Fig. 1 (b), the goal environmental impact evaluation’ is decomposed 
into three clusters (environmental pollution, ecological alteration and socioeconomic disturbance) and ten indicators  
(air (I1), water (I2), soil (I3), noise (I4), solid waste (I5), terrestrial (I6), aquatic (I7), economics (I8), society (I9) and 
culture (I10)), where wi is the relatively global weight of Ii with respect to the ‘environmental impact evaluation’ after 
considering the dependences among indicators. It should be noted that the global weights represent their relative 
influences; thus an indicator with a high global weight signifies high influences on other indicators. Conversely, an 
indicator is influenced largely by other indicators if it has a low global weight. 
 
Step 2: Identifying dependences: influence network. The dependences among all components of the previous 
structure are identified; thus, the hierarchical structure becomes an influence network. The dependences within the same 
clusters are termed inner dependences; whereas, those crossing over different clusters are outer dependences. In Fig. 4, 
an arch from indicators Ii to Ij denotes that Ij is influenced by Ii, its attachment wij, an influence weight, represents the 
degree of influence which Ii exerts on Ij. For example, w26 and w28 represent the influence weights of water pollution 
with respect to terrestrial species and economic development, respectively. Conversely, w82 is the influence weight of 
economic development with respect to water pollution.  
 
Step 3: Constructing influence matrices to weight dependences. To weight the dependences, a pairwise comparison 
of the components with fuzzy ratio judgments is applied. For example, to determine the influence weight wi2 of 
indicator Ii with respect to water pollution I2, an influence matrix A2 of pairwise comparison is constructed in Table 1. 
The entry aik of A2, in fuzzy form, represents the relative influence of indicator Ii compared to indicator Ik on water 
pollution I2. For example, in Table 1, a51 is 5~ , thereby indicating that the influence of solid waste on water pollution is 
about five times that of air pollution.  
 
Step 4: Deriving influence weights. A fuzzy preference programming method (Mikhailov and Madan, 2003) for 
calculating priorities from fuzzy pairwise comparison judgements is employed to derive influence weights from a fuzzy 
influence matrix. By an α-cut technique, this method decomposes a fuzzy influence matrix into a series of interval 
matrices; thus, a fuzzy linear programming approach is applied to solve the influence weights wij(αk) for each αk-cut 
level. Finally, all sets of influence weights are aggregated by Equation (1) as  

∑
∑=

k kk

k kkijk
ij

w
w *

*)(
λα

λαα                              (2) 

where *
kλ  is the consistency index for influence weights wij(αk). Therefore, the influence weights wi2 of indicator Ii 

with respect to water pollution I2 can be obtained on the basis of information from Table 1, the details of which are 
listed in Table 2. 
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Fig. 4  Influence network 
 
 

Table 1  Influence matrix for water pollution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 5: Constructing a supermatrix. By reiterating step 4, all influence weights can be acquired to ultimately form an 
unweighted supermatrix, as presented in Table 3. The weighted supermatrix is produced by adjusting the unweighted 
supermatrix so that the sum of the entries in each column is equal to one. In this study, the unweighted and weighted 
supermatrices are identical.  
 
Step 6: Extracting global weights. To elicit the global weights wi, the weighted supermatrix is limited by raising it to a 
sufficiently large power so that it converges into a stable supermatrix (all columns being identical), also called a limiting 
supermatrix. Table 4 constitutes the limiting supermatrix after the power of 19, showing that the global weights from w1 
to w10 are 0.077, 0.109, 0.107, 0.107, 0.275, 0.029, 0.025, 0.086, 0.108 and 0.077, respectively, being the results of 
considering dependences and influences among indicators. Solid waste (I5), especially referring to construction waste, 
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obtains the highest global weight (0.275) because the production of construction waste implies more TSP, SS, noise, soil 
pollution, and more destruction of terrestrial and aquatic habitats. However, aquatic (I7) has the lowest global weight 
(0.025) due to low influence. 
 

Table 2  Ten sets of derived influence weights and aggregation results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Unweighted supermatrix 
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Fig. 5  Route of Taiwan High-Speed Rail project 
 
Step 7: Synthesis. The final score φ of the environmental impact evaluation is computed by a weighted summation and 
formulated as 

∑
=

=
n

i
iiw

1
φφ                                           (3) 

where n is the number of indicators. 
 
3. Application to Taiwan High-Speed Rail POroject) 
 
3.1 Case Description 

Taiwan, located 160-km southeast of Mainland China, is in a subtropical island with beautiful and splendid natural scenery. 
Its total area is 35,961 km2, more than 70% of which is mountainous terrain, more than half having an altitude above 1000 
meters. The population is 21.3 million, 95% of which inhabits the Western Corridor. The major metropolises are Taipei in the 
north, with a population of 6.15 million, and Kaoshiung in the south, with a population of 2.71 million. Other cities along the 
Western Corridor are Taoyuan, Hsinchu, Taichung and Tainan. In 1987, in view of the deteriorating quality and saturation of 
transportation in the Western Corridor, the Taiwan Transportation Bureau was appointed by the Executive Yuan to undertake a 
‘Feasibility Study for a High-Speed Rail System in the Western Corridor.’ The aim of this study was to improve the 
transportation service in this area and coordinate with the metropolitan rapid transport system plan for constructing a complete 
transportation network.  

 
After almost 13 years of preparation and planning, the construction work on the Taiwan High-Speed Rail (THSR) system 

began on March 27, 2000. The THSR project, the route of which is mapped in Fig. 5, is not only one of the most challenging 
infrastructure projects in the world to date but also the largest private-sector-invested public construction project concurrently. 
The total construction investment needed is approximately USD 15 billion. The planned system is 344.68 kms in length, 
including 252 kms of overpasses and 48 kms of tunnels, for which revenue service is projected to commence by the end of 
2006. The THSR line runs from Taipei to Kaohsiung, passing 14 major cities and counties and 77 townships and regions. In 
the earliest phase, eight stations located in Taipei, Banciao, Taoyuan, Hsinchu, Taichung, Chiayi, Tainan and Kaohsiung, will 
be operational. Four additional stations (Nangang, Miaoli, Changhua, and Yunlin Stations) will be built in a later phase.  

 
For preventing a lateral impact on the adjacent environment along the THSR line within the construction and operation 

stages, the Taiwan Transportation Bureau conducted an environmental impact assessment report concerning the natural, 
biological, social and economical impacts, including 20 subjects within the years from 1990 to 1994. The Environmental 
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Protection Administration of the Executive Yuan approved this EIA report on September 12, 1994. According to the 
information provided in this EIA report, the integrated evaluation framework consisting of FANP and fuzzy logic 
demonstrates its use. 
 

Table 5  Fuzzy inference of acceptability of air pollution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Evaluation Results 

The following sections discuss assessment of the acceptability for each indicator through fuzzy logic and evaluation of the 
overall environmental impact by the FANP. Both are restricted to the construction phase of the THSR. 

 
(1) Fuzzy Inference of Acceptabilities for Indicators 

In this study, the THSR line was divided into three sections: northern, from Taipei to Hsinchu, about 90 kms; central, from 
Hsinchu to Yunlin, about 130 kms; and southern, from Yunlin to Kaohsiung, about 125 kms. For each THSR section, three 
conditions are discussed: the baseline condition (BC) before the construction of the THSR, prediction of the impact without 
mitigation measures (PIWOM) and prediction of the impact with mitigation measures (PIWM), as shown in Tables 5 and 6.   

 
First, fuzzy reasoning for the acceptability of air pollution is illustrated. The 81 fuzzy rules for evaluating air quality 

produced in section 2.1 are triggered by measured and predicted concentrations of air pollutants in the EIA report, the results 
of which are presented in Table 5. The concentrations listed in the four middle columns in Table 5 represent the average values 
over all measurement points within the respective sections. The acceptability of the air-quality standard is presumed to be 60%, 
the minimally acceptable value. This assumption is also applicable to the standard values of other subindicators when 
available. For the baseline condition, with the exception of total suspended particulates (TSP), the other air pollutants (CO, 
SO2 and NO2) were far below the air-quality standard, thereby inducing the acceptabilities of 80.7%, 80.3% and 78.2% in the 
northern, central and southern sections, respectively. The concentrations of CO, SO2 and NO2 were predicted not to cause 
increases in the construction phase of the THSR; however, a large amount of dust could be generated due to ground 
excavations, handling materials, truck haulage on unpaved site roads, as well as construction of stations, bridges, and tunnels. 
The exceedances of TSP for a 24-hour average were predicted at 100 air-sensitive receivers, thereby causing a decline in 
acceptabilities, i.e., 77.7%, 79.8% and 76.4% in the northern, central and southern sections, respectively. The number of 
air-sensitive receivers could be reduced to 54 and the increments of TSP concentrations eliminated by 60% by performing 
certain mitigation measures, such as spraying water to keep the hauling roads in a wet condition, reducing vehicle speeds and 
limiting vehicular movements in unpaved areas, providing wheel- and body-washing facilities at exits from the site, cleaning 
public roads wherever necessary, and covering all dusty vehicle loads with tarpaulins for transportation to, from and between 
site locations. With these mitigation measures, the acceptabilities improved to 80.3%, 80.3% and 76.7% in the northern, 
central and southern sections, respectively. In contrast with air pollution, water pollution obtains much lower acceptabilities in 
all conditions via the reasoning of the 27 fuzzy rules formulated in section 2.1 mainly because this pollution was severe at the 
time of testing (see Table 6). I.e., 40% of the rivers that the THSR would cross were severely polluted;  
32%, moderately polluted; 16%, slightly polluted; whereas, only 12% were acceptable. 
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Table 6  Fuzzy inference of acceptability of water pollution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7  Evaluation results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2) Overall Eevaluation via FANP 

The acceptabilities for the other eight indicators are also inferred through respective sets of fuzzy rules. Table 7 (middle 10 
columns) shows the outcomes of fuzzy reasoning. In the northern section, water (I2), noise (I4), terrestrial (I6) and aquatic (I7) 
did not reach minimum acceptance, even when the mitigation measures were performed. In central section, water (I2), noise 
(I4) and aquatic (I7) were below minimum acceptance, despite the application of certain mitigation measures. The southern  
section had results similar to those of the central section except for much less construction waste. Moreover, the consequences 
of the entire line sums weighted the inferred conclusions for the three sections in light of the rail-length proportion. It should 
be noted that a comprehensive plan for construction-waste management, including 29 landfills, can successfully solve the 
problem of 18.62 million m^3 and transform the unacceptable PIWOM situation into an acceptable PIWM condition.   

 
Finally, the overall evaluation results of the FANP are shown in the last column in Table 7. In the construction phase 

without mitigation measures, the acceptabilities are all below the minimum, ranging from 50.62 to 58.63; however, these 
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values can be increased to above-minimum acceptance if the mitigation measures are invoked.   
 
4. Conclusion 

A framework considering air, water, soil, noise, solid waste, terrestrial, aquatic, economics, society and culture has been 
developed to evaluate environmental impacts of construction projects during the construction phase. The entire 
evaluation-framework is composed of the fuzzy analytic network process and fuzzy logic, providing the following benefits:  

 
 Enabled to handle dependence problems among environmental factors through the FANP to derive their relative 

influences (i.e., global weights);  
 Empowered with subjective assessment modeled by fuzzy logic to bridge the gap between scientific measurement and 

the fulfilment of social values and beliefs;  
 Equipped with expressive power via the flexible extension of pairwise comparison to fuzzy judgments.  
 
Although the proposed approach has been demonstrated by a case study of the Taiwan High-Speed Rail project, further 

investigation is needed in the future, including a refinement of fuzzy rules to reflect realistic situations and the involvement of 
additional specialists to discuss the dependences among environmental factors. 
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