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Abstract 

 
In this paper, an initial sample of the adaptive cluster sampling design is considered in terms of primary and 

secondary units. The primary unit contains units that are called secondary units and all these secondary units 
are arranged in systematic order. Although in some situations in field work it is necessary to use a single 
primary, the variance estimator of the estimate of the population mean or total in this design is not available 
now. Two new variance estimators of the estimate of the population mean were found based on the method of 
splitting the sample. The preliminary study in terms of bias, MSE and percentage of confidence interval 
containing the population mean for each variance estimator was carried out with a small population. 
 

 
1. Introduction 
 
  Adaptive cluster sampling, a design with primary and secondary units, was proposed by Thompson [1] and is a 
suitable design for rare and cluster populations, especially for a biological population. In this design a primary unit 
contains units that are called secondary units. All of these secondary units are arranged in systematic order. A primary 
unit, sometimes called a systematic sample, is selected at random. The selected primary unit is called the initial sample. 
All secondary units within the initial sample will be automatically consisted in the sample. The condition for adding 
units is that y-values must be equal to or greater than c, a pre-specified value. Whenever a secondary unit within an 
initial sample satisfies the condition, its neighborhood will be added to the sample. Note that if a iju  is in the 
neighborhood of unit i j ; then unit i j  is also in the neighborhood of unit ij . A secondary unit that is not in the 
initial sample is called an adaptively added unit. An adaptively added unit may or may not satisfy the condition, but if it 
does not, it will be called an edge unit. A set of secondary units that satisfies the condition is called a network. A 
network and its associated edge units make up a cluster. For example, the study area is divided into 36 units of equal 
size. The y-value within a unit is the count of black dots. The condition of interest is 

u ′ ′ u ′ ′ u

{ }1: ≥= yyC ijij .  By using 
systematic sampling method there are 4 possible primary units. Figure 1A is one of them that the selected primary unit 
is a set of 9 dark squares. Starting with the gray area in figure 1A which is a secondary unit within the selected primary 
unit, its neighborhood is a set of units in the North, South, East and West direction as shown in figure 1B. The set of 
units that is shaded with the gray color in figure 1C is called a network. Edge units and all units within the dash lines are 
a cluster as shown in figure 1D. 
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              A: Selected primary unit     B: Neighborhood of unit 
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              C:  Network                D: Cluster 
 Figure 1: An example of a selected sample from adaptive clustering sampling with a single 
primary unit. 
 

In real work, an initial sample with a single primary unit is necessary in some situations. However, as stated in 
Thompson [1] “For an initial systematic sample with only one starting point (i.e., only one primary unit is selected), 
some of the joint inclusion probabilities are zero, underscoring the fact that an unbiased estimator of variance is not 
available for such a design.” This problem is likely to occur with conventional sampling when a conventional 
systematic sample is used. In such a case, eight biased estimators of the variance are reviewed and compared in Wolter 
[2]. Two of them are based on the method of splitting the sample in to sub-sample. The first estimator though is not 
recommended to be used in practice because of large value of bias when the number of sub-samples equals two, is 
simple for application and its bias may be reduced when the number of sub-samples is increased which make it 
interesting. The second estimator often gives a small bias compared to the other estimators in many situations, such as 
the population that has a linear trend and stratification effects, etc. Therefore, these two methods of estimation are of 
interest and will be adaptive cluster sampling with a single primary unit. 

 
In this paper, two methods of variance estimation will be proposed based on the above two methods. The properties 

of these estimators that will be considered are bias, MSE, and the proportion of confidence interval that contain the 
population mean. 
 
2. Methodology  

 

 In conventional systematic sampling from a finite population of size nqN = , where  is a sample size, n
n
Nq =  

is the sampling interval. Let  be the y-value of the jijY th units in the ith systematic sample, where and 

. Suppose the s

qi ,...,2,1=

  nj ,...,2,1= th systematic sample is selected, let , wheresjj Yy =*   nj ,...,2,1= ,  be the total y-value 

of units within the network associated with  and  be the number of primary units in the network associated with 

jy

*
jy jx



jy . The problem can be considered in two methods. First, each sample of size mpn = , say, is treated as if it is divided 

into p  sub-samples with size 
p
nm =  units. Second, for 2=m , the sample is treated as if it is divided into 

2
np =  

groups (assume that  is an even number) and each group of size  n 2=m . Both methods give the biased variance 
estimators [2] as follows 

 

Method I:  and . 2, ≥= pmpn 2≥m
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where ty  represents the sample mean of the tth sub-sample of size 
p
nm =  and y  represents the systematic 

sampling mean. 
 

Method II:  and . 2,2 ≥= ppn 2=m
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where  denotes the y-value of the (2j)*
2 jy th unit. 

 
In Adaptive Sampling Design, based on Thompson [1], an unbiased estimator of the population mean and its true 

variance when only one primary unit selected are  
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where  is the total y-values of the kky th network,  is the number of primary units associated with the kkx th network, 

sμ̂  represents the sample mean if the sth primary unit is selected and sκ  is the number of networks associated with 

the selected primary unit. 
 

In order to find the estimator of variance of μ̂ , the selected sample will be split at random into p  



sub-samples, where . Each sub-sample contains  secondary units, where 2≥p m
p
nm =  and . There are 2≥m

( ) !!
!

pm
n

p  possible sub-samples. After that, all units within the network corresponding to the selected sample will be 

included. Two methods of estimation are investigated: First, the number sub-samples is  and each contains 

 secondary units. Second, the number of sub-samples is  and 

2≥p

2≥m 2≥p 2=m . Then the estimator of the true 

variance ( )μ̂V  can be found. Details can be seen in the following section. 

 
3. Variance Estimation: The proposed variance estimators 
 

Let ∑
∈

=
tk kk

k
t xh

y
m κ

μ 1ˆ  be the sample mean of the tth sub-sample, t represent the sub-samples, where  is the 

number of secondary units in each sub-sample,  is the number of sub-samples in which the k

m

kh th network appears, tκ  

is the number of network associated with the tth sub-sample and pt ,..,2,1= . 

 

An unbiased estimator in equation (3) and its variance can be rewritten in terms of tμ̂ as follows 
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Method I:  and .  2≥p 2≥m

 
Based on equation (1), an estimator of variance is suggested to be 
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This estimator is biased (see appendix A ). 
 

Method II:  and . 2≥p 2=m
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, where  is the number of times that the kkv th network appears and t2κ  is the number of 



networks associated with the (2t)th secondary unit. 
 

Based on equation (2), an estimator of variance is suggested the to be 
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Note: 
2
mp = . This estimator is biased (see appendix B). The computation of estimators will be shown in the next part. 

 
4. Examples 
 

In this part, the bias and mean squared error (MSE) of each estimator were computed as well as the proportion of 
confidence intervals that contained the population mean. For confidence interval, consider here is 95% confidence 
interval. The computation of these was applied to a small population. The artificial populations of size 12=N  

secondary units is used. The case of and 3=q 2=q  primary units are considered. There are shown in figure 2A and 

2B, respectively. The condition of interest for both cases is defined by { }2≥= ijyC . In addition, a number appear in 

cell  is the value of . ji − ijy

 
  

1st primary unit 4 3 0 0  4 3 0 0 
2nd primary unit 2 0 1 5  2 0 1 5 
3rd primary unit 1 2 6 3  1 2 6 3 

2nd primary unit 

1st primary unit 

 
    
 

A           B 
      Figure 2:  represent primary units and secondary units of both cases. 
 

The population mean is μ = (4+3+0+0+2+0+1+5+1+2+6+3)/12 = 2.25.  

 For , table 1 shows the 3 possible sample mean 3=q μ̂ = 1.125, 3.375 and 2.250, respectively, and hence its 

expectation is 2.25 and the actual variance is 0.84375. Since an initial sample consists of 4 secondary units, the 

sub-sample can take on only one value, that is, mp == 2 . All possible sub-samples and their statistics based on 

equation (5), (7) and (8) are shown in table 2. In addition, 95% confidence interval of μ̂  are also calculated from all 

cases under the assumption that the population is normally. When 3=q  and 2=p , estimator ( )μ̂1v  seems to be the 

best choice in term of minimum bias,  but the percentage of CI containing the population mean of ( )μ̂2v  is higher 

than to the percentage of CI containing the population mean of ( )μ̂1v .  

 
 
 



Table 1: Sample means of all possible samples for adaptive cluster sampling with a single  

   primary unit from the population in figure 2A ( 3=q ). 

Sample 1 2 3 
Unit labels:  ( )ji, 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4

ijY  4 3 0 0 2 0 1 5 1 2 6 3 
ky  9 9 0 0 9 0 1 16 1 16 16 16 
kx  2 2 1 1 2 1 1 2 1 2 2 2 

network number 1 1 2 3 1 4 5 6 7 6 6 6 

k
k

x
y  4.5 4.5 0 0 4.5 0 1 8 1 8 8 8 

μ̂  1.125 3.375 2.250 
  

Table 2: All possible samples for 3=q  and 2=p and the calculation of ( )11 μ̂v  and ( )12 μ̂v . 

Method I Method II 
95% CI 95% CI Primary 

unit 
Sub- 

sample 
μ̂  

( )11 μ̂v  
Lower Upper 

( )12 μ̂v  
Lower Upper 

1 (4, 3) 
(0, 0) 1.125 0.8438 -0.675 2.926 0 na na 

(4, 3,0, 0) (4, 0) 
(3, 0) 1.125 0.000 na na 0.4219 -0.148 2.399 

 (4, 0) 
(3, 0) 1.125 0.000 na na 0.4219 -0.148 2.399 

2 (2, 0) 
(1, 5) 3.375 0.8438 1.574 5.176 2.8854 0.045 6.705 

(2, 0, 1, 5) (2, 1) 
(0, 5) 3.375 0.2604 2.374 4..376 3.1771 -0.118 6.869 

 (2, 5) 
(0, 1) 3.375 5.5104 -1.225 7.976 0.5521 1.918 4.833 

3 (1, 2) 
(6, 3) 2.250 0.0417 1.849 2.651 0.1157 1.583 2.917 

(1, 2, 6, 3) (1, 6) 
(2, 3) 2.250 0.0417 1.849 2.651 0.1157 1.583 2.917 

 (1, 3) 
(2, 3) 2.250 0.0417 1.849 2.651 0.1157 1.583 2.917 

Expectation  2.250 0.8426   0.8673   
Bias  0.000 -0.0012   0.0235   
MSE  0.8438 2.8302   1.3723   
% of CI contains the true mean 85.71  100.00 

   Note: na means is not available.  
 

For , table 3 shows the 2 possible sample mean 2=q μ̂ = 2.417 and 2.083 and there are two possible values 

of p, that is, . When , it is impossible to obtain the second method variance since m are not be equal to 2. 

That is, only method I is considered and the result are shown in table 4. It can be seen that the true variance of the 

unbiased estimator of 

3,2=p 2=p

μ̂ , is 0.0278. The bias of ( )μ̂1v  is large relatively to its expectation. However, the MSE of 

( )μ̂1v  in this case is not too large compare with the case when 2,3 == pq . For 2=q and , both methods can 

be considered. The true variance of 

3=p

μ̂  is 0.0278 which is the same as in the case . All possible 2,2 == pq



sub-samples within the selected primary unit and their statistics are shown in tables 5. When 2,2 == pq , both 

estimators have a large bias. However, the estimator ( )μ̂2v  has a smaller bias than the estimator ( )μ̂1v .  Additionally, 

the percentage of CI containing the population mean of ( )μ̂2v  is higher than the percentage of CI containing the 

population mean of ( )μ̂1v .  In additional, the MSE of estimators of both methods will decrease when q increases. 

 
Table 3: Sample means of all possible samples for adaptive cluster sampling with a single 

   primary unit from the population in figure 2B ( 2=q ). 

Sample 1 2 
Unit labels:  ( )ji, 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6

ijY  4 0 2 1 1 6 3 0 0 5 2 3 
ky  9 0 9 1 1 16 9 0 0 16 16 16 
kx  2 1 2 1 1 2 2 1 1 2 2 2 

network number 1 2 1 5 7 6 1 3 4 6 6 6 

k
k

x
y  4.5 0 4.5 1 1 8 4.5 0 0 8 8 8 

μ̂  2.417 2.083 
 

Table 4: All possible samples for 2,2 == pq  and the calculation of ( )11 μ̂v . 

Method I 
95% CI Primary unit Sub-sample μ̂  ( )11 μ̂v  

Lower Upper 

1 (4, 0, 2) 
(1, 1, 6) 2.417 0.4201 1.146 3.688 

(4, 0, 2, 1, 1,  6) (4, 0, 1) 
(2, 1, 6) 2.417 0.8889 0.568 4.265 

 (4, 0, 1) 
(2, 0, 6) 2.417 0.8889 0.568 4.265 

 (4, 0, 6) 
(2, 1, 1) 2.417 0.5000 1.030 3.803 

 (4, 2, 1) 
(0, 1, 6) 2.417 0.1701 1.608 3.226 

 (4, 2, 1) 
(0, 1, 6) 2.417 0.1701 1.608 3.226 

 (4, 2, 6) 
(0, 1, 1) 2.417 0.1531 -0.008 4.843 

 (4, 1, 1) 
(0, 2, 6) 2.417 0.5000 1.030 3.803 

 (4, 1, 6) 
(0, 2, 1) 2.417 0.8889 0.568 4.265 

 (4, 1, 6) 
(0, 2, 1) 2.417 0.8889 0.568 4.265 

 
 
 
 
 
 
 
 



Table 4: All possible samples for q=2 and p=2 and the calculation of ( )11 μ̂v   

 (continued). 
Method I 

95% CI Primary unit Sub-sample μ̂  ( )11 μ̂v  
Lower Upper 

2 (3, 0, 0) 
(5, 2, 3) 2.083 0.1701 1.274 2.891 

(3, 0, 0, 5, 2, 3) (3, 0, 5) 
(0, 2, 3) 2.083 0.2813 1.043 3.123 

 (3, 0, 2) 
(0, 5, 3) 2.083 0.2813 1.043 3.123 

 (3, 0, 3) 
(0, 5, 2) 2.083 0.2813 1.043 3.123 

 (3, 0, 5) 
(0, 2, 3) 2.083 0.2813 1.043 3.123 

 (3, 0, 2) 
(0, 5, 3) 2.083 0.2813 1.043 3.123 

 (3, 0, 3) 
(0, 5, 2) 2.083 0.2813 1.043 3.123 

 (3, 5, 2) 
(0, 0, 3) 2.083 0.2813 1.043 3.123 

 (3, 5, 3) 
(0, 0, 2) 2.083 0.2813 1.043 3.123 

 (3, 2, 3) 
(0, 0, 5) 2.083 0.2813 1.043 3.123 

Expectation 2.250 0.4774   

Bias  0.000 0.4497   

MSE  0.0278 0.3233   

%  of CI contains the true mean 100.00 

 Note: method II is not negligible. 
 

Table 5: All possible samples for q=2 and p=3 and the calculation of ( )11 μ̂v  and ( )12 μ̂v . 

Method I Method II 
95% CI 95% CI Primary unit Sub- 

sample μ̂  ( )11 μ̂v  
Lower Upper 

( )12 μ̂v  
Lower Upper 

1 
(4, 0) 
(2, 1) 
(1, 6) 

2.417 0.5530 0.959 3.875 0.7726 0.693 4.140 

(4,0,2,1,1,6) 
(4, 0) 
(2, 1) 
(1, 6) 

2.417 0.5530 0.959 3.875 0.7726 0.693 4.140 

 
(4, 0) 
(2, 6) 
(1, 1) 

2.417 0.9175 0.539 4.295 0.5265 0.990 3.843 

 
(4, 2) 
(0, 1) 
(1, 6) 

2.417 0.6701 0.812 4.022 0.6944 0.783 4.051 

 
(4, 2) 
(0, 1) 
(1, 6) 

2.417 0.6701 0.812 4.022 0.6944 0.783 4.051 

 
 
 
 
 
 
 



Table 5: All possible samples for q=2 and p=3 and the calculation of ( )11 μ̂v  and ( )12 μ̂v   

  (continued). 
Method I Method II 

95% CI 95% CI Primary unit Sub- 
sample μ̂  ( )11 μ̂v  

Lower Upper 
( )12 μ̂v  

Lower Upper 

1 
(4, 1) 
(0, 1) 
(2, 6) 

2.417 0.9700 0.486 4.347 0.4948 1.038 3.800 

 
(4, 1) 
(0, 6) 
(2, 1) 

2.417 0.3134 1.319 3.514 0.9323 0.524 4.310 

 
(4, 1) 
(0, 2) 
(1, 6) 

2.417 0.5530 0.959 3.875 0.7726 0.693 4.140 

 
(4, 1) 
(0, 1) 
(2, 6) 

2.417 0.9700 0.486 4.347 0.4948 1.038 3.796 

 
(4, 1) 
(0, 6) 
(2, 1) 

2.417 0.3134 1.319 3.514 0.9323 0.524 4.310 

 
(4, 6) 
(0, 2) 
(1, 1) 

2.417 0.9175 0.539 4.295 0.5295 0.990 3.843 

 
(4, 6) 
(0, 1) 
(2, 1) 

2.417 0.9700 0.486 4.347 0.4948 1.038 3.800 

 
(4, 6) 
(0, 1) 
(2, 1) 

2.417 0.9700 0.486 4.347 0.4948 1.038 3.800 

2 
(3, 0) 
(0, 5) 
(2, 3) 

2.083 0.0035 1.967 2.200 0.3800 0.785 3.292 

(3,0,0,5,2,3) 
(3, 0) 
(0, 2) 
(5, 3) 

2.083 0.0035 1.967 2.200 0.3800 0.785 3.292 

 
(3, 0) 
(0, 3) 
(5, 2) 

2.083 0.0035 1.967 2.200 0.3800 0.785 3.292 

 
(3, 0) 
(0, 5) 
(2, 3) 

2.083 0.0035 1.967 2.200 0.3800 0.785 3.292 

 
(3, 0) 
(0, 2) 
(5, 3) 

2.083 0.0035 1.967 2.200 0.3800 0.785 3.292 

 
(3, 0) 
(0, 3) 
(5, 2) 

2.083 0.0035 1.967 2.200 0.3800 0.785 3.292 

 
(3, 5) 
(0, 0) 
(2, 3) 

2.083 0.7535 0.382 3.785 0.0467 1.659 2.507 

 
(3, 5) 
(0, 2) 
(0, 3) 

2.083 0.2813 1.043 3.123 0.2442 1.114 3.052 

 
 
 
 
 
 
 
 
 



Table 5: All possible samples for q=2 and p=3 and the calculation of ( )11 μ̂v  and ( )12 μ̂v   

  (continued). 
Method I Method II 

95% CI 95% CI Primary unit Sub- 
sample μ̂  ( )11 μ̂v  

Lower Upper 
( )12 μ̂v  

Lower Upper 

 
(3, 2) 
(0, 5) 
(0, 3) 

2.083 0.2813 1.043 3.123 0.2442 1.114 3.052 

 
(3, 2) 
(0, 3) 
(0, 5) 

2.083 0.2813 1.043 3.123 0.2442 1.114 3.052 

 
(3, 3) 
(0, 0) 
(5, 2) 

2.083 0.7535 0.382 3.785 0.0467 1.659 2.507 

 
(3, 3) 
(0, 5) 
(0, 2) 

2.083 0.2813 1.043 3.123 0.2442 1.114 3.052 

 
(3, 3) 
(0, 2) 
(0, 5) 

2.083 0.2813 1.043 3.123 0.2442 1.114 3.052 

Expectation 2.250 0.4747   0.4719   
Bias 0.000 0.4467   0.4441   
MSE 0.0278 0.2668   0.2429   
% of CI contains the true mean 80.00  100.00 
 
 
5. Conclusion 

From a numerical example, the mean of the sub-sample mean of both methods is equal to μ̂ , as in equation (5) , 

which is an unbiased estimator of the population mean.  The proposed variance estimators though are biased, the 
numerical example shows that the bias of the variance estimators of both methods may reduce when q and p increase. 
However, the bias, MSE and the proportion of confidence intervals that contain the population mean of these new 
variance estimators in this paper are preliminarily studied. Further study is needed the point of increasing q and p. 
Moreover, to investigate properties of these estimators, Monte-Carlo method can be used so that various situations can 
be compared. The other issue such as the “partially systematic sampling” [3] and [4] will be studied in the future. 
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