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Abstract

We apply neural networks that have been trained and pruned using aug-

mented discretized input data for credit scoring. Credit scoring datasets

normally contain input data attributes that are continuous (e.g. salary)

and discrete (e.g. marital status). In order to improve the accuracy of

the neural network prediction, we augment the input data by including

the discretized values of the continuous attributes. Having both the orig-

inal continuous attributes and their discretized values make it easier for

the networks to form decision boundaries that could be axis-parallel or

oblique in the input space defined by these attributes. Neural network
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pruning is applied to determine which input attributes are actually useful.

We present the results from neural networks trained with augmented dis-

cretized input attributes on an artificial dataset as well as on a widely used

credit card scoring dataset. The results show that higher accuracy rates

can be obtained from these networks. After pruning, simple networks with

few connections are obtained. We present the classification rules that have

been extracted from such networks.

1 Introduction

Neural networks have been very useful tool for many practical application prob-

lems. In particular, credit scoring is an area where neural networks have been

shown to outperform more traditional methods in terms of accuracy. In a study

of credit risk evaluation process in the Egyptian banking sector, for example, the

authors found that the correct classification rates obtained by statistical meth-

ods such as discriminant analysis, probit analysis and logistic regression were

significantly lower than the accuracy achieved by neural networks [2].

Neural networks were also shown to produce predictions with very low error

rates when applied to a dataset of 76 small businesses from a bank in Italy [1].

The credit risk assessment was done to identify whether the small business was

solvent or would default. The excellent result obtained by the neural networks was

attributed to careful data pre-processing done prior to neural network training

in addition to the complex non-linear mapping between the input and output of

the networks.

The performance of neural networks with one layer of hidden units trained

with different learning schemes was thoroughly investigated by Khashman using

the publicly available German credit dataset [3]. The learning schemes differ in

the way the data samples were distributed for training and cross-validation. It

was discovered that the best results could be obtained when the number of hidden

units was set to 27 and the 1000 available data samples were distributed as 40%

and 60% for training and cross-validation, respectively.

A market comparative study that compared bond rating processes using data

gathered from US and Taiwan markets showed that backpropagation neural net-

works achieved accuracy that was comparable to the more recent method based

on statistical learning theory, namely support vector machines [5]. The Taiwan

dataset consisted of 74 cases described by 21 financial variables and one of the

five possible rating categories. The US data was larger with 265 cases. The
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results from 10 fold cross-validation experiments on both datasets revealed that

that support vector machines and neural networks achieved a maximum average

accuracy of over 80%. On the other hand, the best result from logistic regression

was 76.98%.

Municipal credit rating modeling by neural networks was shown to produce

a predictive accuracy of more than 90% [4]. In this study, the author used

municipal credit rating data collected from the state of Connecticut during the

years 2003-2007. A total of 766 samples were available. There were 4 categories

of input variables: economic, debt, financial, and administrative and a total of

52 variables. The municipalities were classified into 9 rating classes ranging from

Aaa to Baa2. In this particular application, it was shown that probabilistic neural

networks outperformed other methods including support vector machines, linear

regression, multiple discriminant analysis, k-means and classification tree.

In this paper, we propose to improve the performance of neural networks for

credit scoring by modifying the input data prior to network training. The modi-

fication involves adding strings of binary input which are generated according to

the values of the continuous attributes originally present in the data. In credit

scoring applications, datasets usually contain both continuous input attributes

such as income and age, as well as discrete attributes such the purpose of the

loan or the marital status. The partition of the data into different groups (e.g.

good credit risk versus bad credit risk) is determined by the interactions among

these input attributes. The continuous attributes contribute to the classification

by forming decision boundaries that are oblique. When rules are extracted from

a trained neural network by a rule extraction algorithm such as Re-RX [7], we ob-

tain decision rule conditions of the form
∑

iWixi ≥ b?, where Wi is a connection

weight, xi is the value of the i-th continuous attribute value and b is a threshold.

For some datasets, higher classification accuracy and/or more comprehensible

rule sets may be obtained if the decision boundaries formed by the continuous

inputs are not oblique but axis-parallel. For this purpose, we discretize the con-

tinuous attributes by simply dividing the range of each attribute into a number

of equal sub-intervals. These discretized attribute values are then represented

as binary string for input to the neural networks along with the values of the

continuous attributes and the discrete attributes originally present in the data.

The outline of the paper is as follows. In Section 2 we describe how neural

networks are trained with the addition of the discretized continuous variables as

input. In Section 3, we present our experimental results. Two sets of data are
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used in the experiments. The first is an artificial dataset created to demonstrate

the usefulness of having the discretized inputs. The second dataset is the publicly

available CARD dataset. There are 3 permutations of this credit scoring dataset

[6]. On the 3 versions of the CARD data, we present and compare the performance

of neural networks trained with and without the augmented discrete inputs. We

also compare the results with those published in the literature. For each of the

three datasets, we also extracted the rules that distinguish between good and bad

credits. Finally, Section 4 concludes the paper.

2 Neural network training with augmented dis-

crete input variables

In our earlier work [8], we proposed how a string of N binary variables was aug-

mented to the input data for each continuous attribute prior to network training.

By adding the binary input variables, it becomes easier for the network to achieve

the minimum required accuracy rate on the training data. After network pruning,

we also expect to extract accurate and concise classification rules which define

sub-regions in the input space bounded by a combination of axis-parallel and

oblique hyperplanes. The flexibity of having such a combination of hyperplanes

in the rule conditions yields more concise and easier to understand rules.

Let ci be the i-th input attribute in the data having continuous values, the

steps to generate the augmented inputs for this continuous attribute are as fol-

lows:

1. Normalize the values of ci so that for all data samples s = 1, 2, . . . S, the

values lie in the interval [0, 1]:

ncsi =
csi − cmin,i

cmax,i − cmin,i

where cmin,i and cmax,i are the minimum and the maximum values of at-

tributes ci, respectively.

2. Set the number of sub-intervals equal to N , and let δ = 1
N

.

3. Compute the index K:

K =

 N if ncsi = 0

= N + 1− dncsi/δe otherwise
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4. Generate N binary inputs Isk for csi as follows:

Isk =

 0 if k < K

1 otherwise

for k = 1, 2, . . . N .

Using the new augmented input data, we train and prune the neural networks

for classification as follows:

Algorithm ADV-NN (Augmented Discrete Variable - Neural Networks)

Input: A labeled set of data samples {cs
i ,d

s
j , `

s}, where

• s = 1, 2, . . . S, and S is the number of data samples.

• ci, i = 1, 2, . . . I are input variables with continuous values.

• dj, j = 1, 2, . . . J are input variables with discrete values.

• `s is the class label of data sample s. For simplicity we assume `s ∈ [0, 1].

Output: A pruned neural network.

Step 1. For each continuous input variable ci, generate N additional columns

of binary inputs. Let xs ∈ IRn be the augmented input data which include

the original discrete and continuous input attributes plus the I × N new

columns of binary inputs.

Step 2. Train a neural network with a single hidden layer of H hidden units to

minimize an error function

F (W,V) =
S∑

s=1

O∑
m=1

(dsm − ysm)2 + P (W,V), (1)

dsm and ysm are them components of desired output and the predicted output

from the neural network for data sample s. For a binary classification

problem, the number of output units in the network O is set to 2 and

ds1 = 0, ds2 = 1 if the class label `s = 0 and ds1 = 1, ds2 = 0 if `s = 1. P (W,V)

is a penalty function that pushes unnecessary connections in the network

to have small weights. A quadratic penalty function that is the sum of the

squared weights of the network connections is used in our implementation.

Step 3. Prune the network:
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• Hidden unit removal:

i. Group the hidden units into two subsets: P and Q are the sets

of hidden units still present in the network and those that have

been checked for possible removal in the current stage of pruning,

respectively. Initially, P corresponds to all the hidden units in the

trained network and Q is the empty set.

ii Save a copy of the weight values of all connections in the network.

iii Find a set of connections from the input units to the hidden unit

h ∈ P and h /∈ Q such that when the weight values of the connec-

tions from the input units to h are set to 0, the accuracy of the

network is least affected.

iv. Set the weights for network connections from the input units to

the hidden unit h to 0 and retrain the network.

v. If the accuracy of the network is still satisfactory, then

(a) Remove h, i.e. set P := P − {h}.
(b) Reset Q := ∅.
(c) Go to Step (ii).

vi. Otherwise,

(a) Set Q := Q∪ {h}.
(b) Restore the network weights with the values saved in Step (ii)

above.

(c) If P 6= Q, go to Step (ii). Otherwise, Stop.

• Input unit removal done in similar way as for hidden unit removal

above.

• Network connection removal done in similar way as for hidden unit

removal above.

The addition of discretized input variables requires the network to have more

input units, and as a result there are more weights in the network that need to be

optimized. The time for one iteration of network training will thus increase. In

our experiments, however, having additional inputs actually allows the network

training to be more likely to converge to a solution where the minimum accuracy

requirement is met in fewer iterations.
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3 Experimental results

We first generate an artificial dataset where the classification of the samples in

2-dimensional space are determined by a combination of axis-parallel and oblique

decision hyperplanes. For the credit scoring application, we then apply the pro-

posed method on the publicly available credit scoring CARD datasets [6, 10].

We show how the prediction of the data samples in these CARD datasets can

be achieved with better accuracy when the input data are augmented with the

discretized inputs of the original continuous attribute values.

3.1 An artificial dataset
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Figure 1: A randomly generated data samples with 2 classes separated by axis-

parallel and oblique hyperplanes.

A dataset consisting a total of 3000 random samples were generated. The

4 input attribute values x1, x2, x3 and x4 were generated uniformly in [0, 1]4. A
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sample was assigned the class label 0 if one of the two conditions below was

satisfied:

• (x1 ≤ 0.5) and (x2 ≥ x1) and (x2 < x1 + 0.5) then

• (x1 > 0.5) and (x2 ≤ 0.5) and (x2 > 1− x1)

Otherwise, the sample is labeled as class +1. The attributes x3 and x4 are noise

and irrelevant for classification. The numbers of samples used for training and

testing the network were 2000 and 1000, respectively. Figure 1 shows the plot of

the 2000 samples in the training dataset.

Two groups of thirty neural networks were trained:

1. Group 1: Network training was done using the original dataset having 4

attributes. The number of input, hidden and output units in the networks

were 4, 10 and 2, respectively. Networks connections were removed by

pruning as long as the classification accuracy was at least 90%.

2. Group 2: Network training was done using the original dataset having 4

attributes plus 4 ×N(= 40) discretized input variables. The number of

input, hidden and output units in the networks were 164, 3 and 2, respec-

tively. The networks were trained and pruned to maintain a classification

accuracy of at least 95%.

Table 1: The results from neural network training with original and augmented

discretized inputs.

Data set # Hidden units # Connections Training Acc. (%) Test Acc. (%)

Group 1 6.47± 1.92 14.97± 6.38 91.92± 1.18 92.56± 1.31

Group 2 2.90± 0.30 11.63± 4.66 95.90± 1.74 94.89± 2.01

With just 4 input attributes, it was more difficult to train a neural network

to reach a preset minimum accuracy rate than when there are 164 inputs. This is

because with more inputs, the large increase in the number of connection weights

in the network makes it more likely for the training to reach a solution where the

error function value is small. We had 10 hidden units and a minimum accuracy

threshold of 90% when training the networks with original data. The averages and
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standard deviations were computed from 30 pruned networks and are summarized

Table 1. The number of hidden units in the table is the average number of hidden

units left in the pruned networks. The number of connections is the average

number of connections between the input units and the hidden units. Comparing

the average number of connections for the two groups of neural networks, we can

see that the networks trained with augmented discretized inputs actually have 3

fewer connections than the neural networks trained with the original data. At

the same time, the accuracy rates on both the training and test data of the latter

group of networks are actually higher.

I64

I24

x2

x1

Input units

H1

H2

H3

Hidden units Output units

bias

Figure 2: A pruned neural network for the artificial dataset.

A relatively small number of connections in the pruned network enable us to

extract concise classification rules that explain how the distinction between the

two classes in the data was made by the network. We apply the rule extraction

algorithm Re-RX [7] on one of the pruned networks that has the best predictive

performance (Figure 2). This network accuracy rates are 98.15% and 98.70% on

the training and test datasets, respectively. The rule set below is the output from
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Re-RX.

Rules for the artificial dataset:

Rule R1: If I24 = 1 and I64 = 1, then predict Class 1,

Rule R2: else if I24 = 0 and I64 = 1, then

Rule R2a: If x1 − 1.041x2 > −0.524, then predict Class 0, else

Rule R2b: predict Class 1,

Rule R3: else if I24 = 1 and I64 = 0, then

Rule R3a: If x1 + 1.025x2 > 1.006, then predict Class 0, else

Rule R3b: predict Class 1,

Rule R4: else if x1 − 0.980x2 < 0.001, then predict Class 0, else

Rule R5: predict Class 1,

The augmented binary variable I24 is 0 if and only if x1 < 0.5. Similary, the

augmented binary variable I64 is 0 if and only if x2 < 0.5. It is evident that the

rules extracted from the neural network are similar to the conditions under which

the training data samples have been generated. The overall accuracy rates of

these rules on the training and test datasets are 99.75% and 99.40%, respectively.

Obtaining a concise and comprehensible set of classification rules with such high

accuracy rates would not be possible without augmenting the input data with

discretized inputs prior to neural network training.

3.2 The CARD datasets

The three variations of the CARD datasets have been used in benchmark studies

for credit scoring [10, 9] and they are available publicly [6]. Table 2 shows the

distribution of the data samples in the training and test sets. Of the 690 samples,

307 samples have target values of +1 (Class 1) and the remaining 383 have target

values of 0 (Class 0).

Each data sample is described by 6 continuous attributes and 9 discrete

attributes. The discrete attributes have been coded using binary representa-

tion. As a result, there is a total of 51 input attributes. As there is no de-

tailed explanation on what each of the attributes represents, continuous input

attributes 4, 6, 41, 44, 49 and 51 are simply labeled C4, C6, C41, C44, C49, and
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Table 2: The sample distribution in the CARD1, CARD2 and CARD3 credit

approval datasets.

Data set Training set Test set

Class 0 Class 1 Class 0 Class 1

CARD1 291 227 92 80

CARD2 284 234 99 73

CARD3 290 228 93 79

C51, respectively. The remaining binary-valued attributes are D1, D2, D3, D5,

D7, . . . , D40, D42, D43, D45, D46, D47, D48, and D50. We normalized the continu-

ous input attributes and discretized them by dividing the [0, 1] normalized range

into N = 40 subintervals of equal length. In total, the neural networks have

6 + 6× 40 + 45 = 291 inputs.

The number of hidden units is set to one, as it has been shown that net-

works with just one hidden unit are able to provide good predictive accuracy [9].

Samples that correspond to credit card applications that have been approved or

denied are assigned target values of +1 or 0, respectively.

Table 3: Comparison of the best predictive error rates on the test data samples

from various neural network models.

Method CARD1 CARD2 CARD3

GA 10.47 15.12 11.63

Prechelt 13.95 18.02 18.02

NeuralWorks 12.79 18.02 12.21

NeuroShell 11.63 18.02 15.12

PNN 10.47 12.79 11.63

NN-ADV (Rules) 9.30 12.21 11.05

The predictive error rates of the rules extracted from neural networks that

have been trained using augmented discretized inputs are depicted in Table 3 as

NN-ADV (Rules). These errors rates are lower than those obtained from other

11



methods. The PNN results were the error rates of the rules that have been

obtained from neural networks trained with the original data [9]. The rest of

the figures were reported by Sexton et al. [10]. PNN rules and NN-ADV rules

have been extracted by applying the Re-RX algorithm. The accuracy obtained

by NN-ADV rules is slightly better than the accuracy obtained by PNN rules.

The improvement in accuracy is more evident when NN-ADV rules are compared

with the other methods reported by Sexton et al.

The NN-ADV rules for the 3 datasets are given below.

Rules for CARD1 dataset:

Rule R1: If D8 = 1 and D26 = 0 and D42 = 0, then predict Class 0,

Rule R2: else if D2 = 1 and D42 = 0, then predict Class 0,

Rule R3: else if D8 = 1 and D29 = 1, then predict Class 0,

Rule R4: else if D8 = 1 and D29 = 1, then

Rule R4a: If D26 = 0, then

Rule R4a−i: If C49 − 1.50C50 − 0.42C51 > 0.0550, then predict Class

0, else

Rule R4a−ii: predict Class 1,

Rule R4b: else

Rule R4b−i: If C49 − 1.50C50 − 0.42C51 > 0.2470, then predict Class

0, else

Rule R4b−ii: predict Class 1,

Rule R5: else if D29 = 0 and D42 = 1, then predict Class 1,

Rule R5a: If C49 + 4.18C50 + 0.58C51 > 0.3759, then predict Class 0, else

Rule R5b: predict Class 1,

Rule R6: else if D8 = 0 and D12 = 0, then predict Class 1,

Rule R7: else predict Class 0.

Rules for CARD2 dataset:

Rule R1: If D12 = 1 and D42 = 0, then predict Class 0,
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Rule R2: else if D8 = 1 and D42 = 0, then predict Class 0,

Rule R3: else if D8 = 1 and D26 = 0, then

Rule R3a: if C49 − 0.377C51 > 0.055, then predict Class 0,

Rule R3b: else predict Class 1,

Rule R4: else if D8 = 0 and D42 = 1, then

Rule R4a: if C49 − 0.662C51 > 0.069, then predict Class 0,

Rule R4b: else predict Class 1,

Rule R5: else if D26 = 1 and D42 = 1, then predict Class 1

Rule R6: else if D8 = 0 and D12 = 0, then predict Class 1

Rule R7: else predict Class 0.

Rules CARD3 for dataset:

Rule R1: If D42 = 0, then predict Class 0

Rule R2: else if D44 = 1 and C48 ≤ 0.05 and C49 > 0.025 and C51 ≤ 0.425, then

predict Class 0

Rule R3: else if D43 = 1 and 0.05 ≤ C51 ≤ 0.425, then predict Class 0

Rule R4: else if C48 ≤ 0.05 and 0.05 ≤ C51 ≤ 0.3, then predict Class 0

Rule R5: else predict Class 1.

A closer inspection of the rules indicates that for the CARD1 and CARD2

datasets, the rule conditions do not include any of the discretized variables. That

is, they all have been removed by network pruning. As a result, the decision

boundaries that are represented by the rule conditions correspond to oblique hy-

perplanes in the input space. Only for the CARD3 dataset, six of the discretized

inputs remained in the pruned network. These inputs are I130, I169, I210, I219, I274

and I290. Their values are either 0 or +1 depending on the original value of the

corresponding continuous variable. For example, I130 = 0 if and only if C48 < 0.05

and I290 = 0 if and only if C51 < 0.05. In this case, the decision region formed

by the continuous attributes is hyper-rectangular.
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4 Conclusion

In this paper we have described how higher prediction accuracy can be achieved

when discretized continuous input attributes are augmented to the input data

prior to neural network training. We demonstrated that networks with such

inputs obtained higher prediction accuracy on both the training and test data

samples through a classification problem with synthetic data. In this artificial

classification problem, the decision boundaries separating 2 classes of samples

are a mix of axis-parallel and oblique hyperplanes. Not only higher accuracy

rates, the networks trained with augmented discretized input also have simpler

structure after pruning as more hidden units and connections were removed.

On a credict scoring application dataset, neural networks trained with aug-

mented input data are also shown to be more accurate than neural networks

trained with the original data. The few connections left in the networks after

pruning make it possible for us to obtain very concise classification rules from

the data. On two of the three CARD datasets, the continuous attributes formed

decision boundaries that are oblique. On the third dataset, the network inputs

corresponding to the continuous inputs were all pruned out. Some of the dis-

cretized continuous attributes were still relevant for classification and produced

axis-parallel decision boundaries in the rules extracted from the network. In an

application domain such as credit scoring, having such comprehensible rules sets

helps us understand better how exactly the input data attributes interact and

determine the class labels. Our plan for the near future is to apply the approach

described in this paper on other credit scoring data sets as well as other datasets

for business intelligence applications.
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