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Abstract: The generalized Taguchi capability index 
pmC  has been shown superior to 

other existing generalizations and to be applicable for measuring process performance 

with asymmetric tolerances. Existing literature related to the generalized Taguchi 

capability index have assumed not considering gauge measurements errors (GME). 

Unfortunately, evaluating process performance of such a capability index without 

considering GME may not accommodate the real manufacturing situations. Hence, 

this paper applies a novel approach, generalized confidence intervals (GCI) to 

evaluate process performance in the presence of GME. In order to examine the 

performance of the proposed approach, a series of simulations was undertaken. The 

simulations result claim that the proposed approach performs good enough for 

assessing process performance for asymmetric tolerances in the presence of 

measurement errors or not. 
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interval estimation, process performance evaluation. 

 

1. Introduction 

Barely, suppliers and manufacturers entail their products not only to be high in 

quality but also have a good process capability. As a high quality product with very 
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low fraction of nonconformities (NC), the conventional method might be useless for 

measuring fraction of NC since the manufacturing sample contains no defective 

product items. Process Capability Indices (PCIs) as one of the tools in measuring the 

capability process have attract major attention in the manufacturing industries 

especially for tight quality needs. The first generation, 
pC  index has been proposed 

to evaluate the capability of process to meet the specification limits (see Kane, 1986). 

However, 
pC  index unable to reflect the situation where the proceess is off the 

target value, T .  

In order to remedy this kind of problems, several indices have been proposed which 

include the deviation from the target value of a particular process (see Boyles, 1991). 

Since the statistical distributions of the proposed methods quite complicated and 

difficult, in 1988, Spiring et al proposed a new index called 
pmC  to asses the 

capability process which take into account departures from the target value. The 

second generation index, 
pmC

 
is defined as follow: 

 
226

pm

USL LSL
C

T 




   

where   denotes process mean,   denotes process standard deviation, USL and 

LSL denote upper and lower specification limit. 

A process is said to be asymmetric when the customer’s specification is not 

equal to the midpoint of specification limits, i.e. T≠M. In 1994, Boyles noted that such 
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problem can understate or overstate capability process in many cases. Even symmetric 

tolerances are often occurs in manufacturing industries, but still cases with 

asymmetric tolerances also appears in the manufacturing industries (see Chen, 1998, 

Pearn and Chen, 1998, and Wu and Chang, 2008). To remedy the problem, Lin et al. 

(1999) proposed a generalization of 
pmC , 

pmC  index. The result showed that 
pmC  

measures process capability more accurately than the original index 
pmC . 

Unfortunately, the estimation of 
pmC , ˆ

pmC  involving unknown parameter while 

using the conventional approaches. To avoid the lack of exact confidence intervals for 

pmC , in 1993, Weerahandi proposed an extension of conventional confidence interval. 

The concept of generalized pivotal quantity (GPQ) and generalized confidence 

interval (GCI) are developed to derive confidence interval when exact values are 

difficult to obtain. Usually, any variation in the measurement process has a direct 

effect on estimating and testing process capability. By ignoring the measurement 

errors, the empirical used indices are unreliable while the quality of the observed data 

depends on them. Consequently, gauge measurement analysis is needed in the 

measurement system.  

Based on the complicated conventional confidence intervals and the 

importance of GME, this article applied the GCI approach to assess process capability 

based on pmC  index in the presence of GME under asymmetric tolerances. The 
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generalization for 
pmC  is given in Section 2. In Section 3, we described about the 

generalized confidence intervals with GME. To assess the performance of the GCI 

approach, a simulation was conducted and the result is given in Section 4. Some 

conclusions are drawn in Section 5 as the final section. 

2. The Generalized Taguchi Capability Index Cpm   

The generalization of the second generation index, 
pmC  provides numerical 

measure that takes into account the asymmetric tolerance which reflects the process 

capability more accurately. This index is defined as follow:  

*

2 23
pm

d
C

A
 

  

Where   2d USL LSL  , max[ ( ) , ( ) ]u lA d T D d T D    , uD USL T  , 

lD T LSL   and * min{ , }u ld D D . The 
pmC  index obtains its maximal value at 

T   whether the tolerances are symmetric or asymmetric. Lin et al. (1999) 

considered the natural estimator ˆ
pmC  to estimate the 

pmC  index. This estimator can 

be defined as follow: 

*

2 2

ˆ
ˆ3

pm

n

d
C

S A
 


 

where ˆ max[ ( ) , ( ) ]u lA d X T D d T X D   ,
1

n

i

i

X X n


 is unbiased estimator and 

Maximum Likelihood Estimation (MLE) and 2 2

1

( )
n

n i

i

S X X n


   is MLE 

estimator of 2 .  
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3. GCIs for 
pmC  index with gauge measurement errors 

In 1993, Weerahandi was motivated to broaden the common definition of a 

confidence interval such that practically useful. There seems to be no approach that is 

generally and practically applicable to solve the problems in such a way theoretically 

guaranteed to cover all cases. In fact, the quality of the data related to the process 

characteristics relies on the gauge capability. The numerical results indicate that the 

GCI approach appears satisfactory in both conditions, with or without measurements 

errors for assessing process capability. Let  2,X N    reflects relevant quality 

characteristic of a manufacturing process and 
pmC  measures the real process 

capability of the random variable X . However, in real situations, we deal with the 

observed variable Y  rather than variable X . Assume that X  and G  are 

stochastically independent, thus we have  2 2 2,Y Y GMEY N        , after 

substituting Y  for  , the empirical PCI 
Y

pmC
 

can be obtained. Assume that the 

observed measurement with errors data is , 1,2, ,iY i n  and the existing data are 

from a stable process; ˆ Y

pmC  can then be obtain using 
1

n

ii
Y Y n


  and 

 
1 2

1

n

nY ii
S Y Y n


  
   as the estimators.  

     

*

2
23 max ,

Y

pm

Y Y u Y l

d
C

d T D d T D  

 

  

 

Using  2 2 2,Y Y GY N         with  2, YY N n   and 
2 2 2

1nY Y nnS     

where   and 2

Y  are unknown constant. In order to develop the GCI for   and 
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2

Y , we used the same procedure for the symmetric tolerances as shown in Wu et al 

(2009) and Wu (2011). Since  
22 3GME d   can be estimated, then the GPQ for 

2 , 2R


 can be obtained by  2 2

2max ,
Y

GMER R
 

   , where   is a small 

positive number to preserve non-negative variance properties. Obviously, 
Y

R  and 

2
Y

R


 are exempt from unknown parameters, thus a GPQ of 
Y

pmC  is given by 

     2

*

2

3 max ,

Y
pm

Y YY

C

u l

d
R

R d R T D d T R D 




  

 

In appearance of measurement errors, the GPQ for 
pmC  is given by 

     2

*

2

3 max ,
pm

Y Y

C

u l

d
R

R d R T D d T R D 

 

  

 

The  100 1 %  generalized lower confidence limit of 
Y

pmC  and pmC  can be 

derived by calculate  Y
pmC

R 


 and  
pmCR  , the 100 th  percentile of Y

pmC
R


 and 

pmCR   which satisfies   
pm pmC CP R R    , respectively. 

4. Numerical Results 

To verify the performance of the generalized lower confidence limit for 

capability testing using 
Y

pmC  index, a series of simulations is conducted. Without any 

loss of generality, all simulation was used the value T=0. A total of five different 

1, 0.5, 0, 0.5,1     and 0.5   was used to represent symmetric, on target and 

asymmetric tolerances. Three different ratios 1 1,1 2,1 3u lD D 
 
and different 

degrees of contamination of GME 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3   were 
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considered in this paper. Thus we can have complete simulation for all conditions. For 

each simulation, a sample of size 50,100n   was drawn and 10,000 values of 

 ,Z V  were simulated. The generalized lower confidence limit was computed using 

10,000 simulated values of  ,Z V  by keeping the observed values of Yx  and Ys  

fixed. Every single simulation was then replicated 10,000N   times. Hence, we 

were able to calculate the proportion of times the generalized lower confidence limit 

where less than the corresponding true value of 
pmC . This actual coverage rate (CR) 

could then be compared to the nominal confidence level 1 0.95  . The expected 

value of the generalized lower confidence limit of 
pmC  is simply the average of these 

10,000 values of the generalized lower confidence limit  pmL . For every cases were 

computed under the nominal confidence level 1 0.95  . 

The notations of generalized lower confidence limit of 
pmC  with or without 

considering GME are CRx and CRy, respectively. In this case, the accuracy of the 

proposed approach will be considered as satisfactory when the simulation results in 

terms of coverage probabilities are close to the nominal value, 0.95. Since the 

coverage probabilities values are almost the same for every n , we plot the average of 

coverage rate under different ratio and  , respectively. Figures 1-3 plot the averages 

of CRx and CRy versus   under the ratios / 1/1,1/ 2 and 1/ 3u lD D 
 

and  , 

respectively. From these figures, it is clear that a process performance evaluation with 
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consideration of GME result in more accurate generalized lower confidence limit. 

Since the calculated CRs without considering GME tends to be overestimated as   

increases and by considering GME, the variability of the CRx is much smaller, thus 

we can conclude that the proposed approach results in a stable calculation and works 

well in the presence of GME. 

Figure 1. Average values of CRx and CRy versus 

  under 0.5   and / 1/1u lD D  . 

Figure 2. Average values of CRx and CRy versus 

  under 0.5   and / 1/ 2u lD D  . 

 

Figure 3. Average values of CRx and CRy versus 

  under 0.5   and / 1/ 3u lD D  . 
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For the generalized lower confidence limits of 
pmC  with and without 

considering GME, we used the notations xL  and yL , respectively. The values of xL  

and yL  tend to increase towards the true value of 
pmC  as n increases. Figures 4–9 

display the generalized lower confidence limits of 
pmC  against   under

/ 1/1,1/ 2 and 1/ 3u lD D  , respectively. It is evident that the difference between xL  

and yL  becomes larger as   increases. This condition evidence that the true 

process capability 
pmC  would have been underestimated if we ignored GME while 

its exist. 

Figure 4. Lower Confidence Bound 
xL  and yL  

versus   under 50n   and / 1/1u lD D  . 

Figure 5. Lower Confidence Bound 
xL  and yL  

versus   under 100n   and / 1/1u lD D  . 
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Figure 6. Lower Confidence Bound 
xL  and yL  

versus   under 50n   and / 1/ 2u lD D  . 

Figure 7. Lower Confidence Bound 
xL  and yL  

versus   under 100n   and / 1/ 2u lD D  . 

 

Figure 8. Lower Confidence Bound 
xL  and yL  

versus   under 50n   and / 1/ 3u lD D  . 

Figure 9. Lower Confidence Bound 
xL  and yL

 

versus   under 100n   and / 1/ 3u lD D  . 
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measure capability process based on the generalized 
pmC  index in the presence of 

measurement errors for asymmetric tolerances using the generalized confidence 

interval (GCI) approach. By conducting a series of simulations in terms of the 

coverage rate and the generalized lower confidence limits, we examine the 

performance of the proposed approach. The simulation results indicate that the 

proposed GCI approach seemingly quite satisfactory since it provides an accurate 

lower confidence limit. The calculated CRs are also very close to the nominal value in 

the presence of GME. Accordingly, the GCI approach is suitable for cases with 

asymmetric tolerances when GME are actually present. 
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